31 |
Idempotents de Jones-Wenzl évaluables aux racines de l'unité et représentation modulaire sur le centre de $overline{U}_q sl_2$. / Evaluable Jones-Wenzl idempotents at roots of unity and modular representation on the center of $overline{U}_q sl_2$Ibanez, Elsa 04 December 2015 (has links)
Soit $p in N^*$. On définit une famille d'idempotents (et de nilpotents) des algèbres de Temperley-Lieb aux racines $4p$-ième de l'unité qui généralise les idempotents de Jones-Wenzl usuels. Ces nouveaux idempotents sont associés aux représentations simples et indécomposables projectives de dimension finie du groupe quantique restreint $Uq$, où $q$ est une racine $2p$-ième de l'unité. A l'instar de la théorie des champs quantique topologique (TQFT) de [BHMV95], ils fournissent une base canonique de classes d'écheveaux coloriés pour définir des représentations des groupes de difféotopie des surfaces. Dans le cas du tore, cette base nous permet d'obtenir une correspondance partielle entre les actions de la vrille négative et du bouclage, et la représentation de $SL_2(Z)$ de [LM94] induite sur le centre de $Uq$, qui étend non trivialement de la représentation de $SL_2(Z)$ obtenue par la TQFT de [RT91]. / Let $p in N^*$. We define a family of idempotents (and nilpotents) in the Temperley-Lieb algebras at $4p$-th roots of unity which generalizes the usual Jones-Wenzl idempotents. These new idempotents correspond to finite dimentional simple and projective indecomposable representations of the restricted quantum group $Uq$, where $q$ is a $2p$-th root of unity. In the manner of the [BHMV95] topological quantum field theorie (TQFT), they provide a canonical basis in colored skein modules to define mapping class groups representations. In the torus case, this basis allows us to obtain a partial match between the negative twist and the buckling actions, and the [LM94] induced representation of $SL_2(Z)$ on the center of $Uq$, which extends non trivially the [RT91] representation of $SL_2(Z)$.
|
32 |
Catégorification de données Z-modulaires et groupes de réflexions complexes / Categorification of Z-modular data and complex reflection groupsLacabanne, Abel 29 November 2018 (has links)
Cette thèse porte sur l'étude des données $mathbb{Z}$-modulaires et leur catégorification, et particulièrement sur des données $mathbb{Z}$-modulaires reliées aux groupes de réflexions complexes, ainsi que sur la notion de caractère cellulaire pour ces derniers. Dans sa classification des caractères des groupes finis de type de Lie, Lusztig décrit une transformée de Fourier non abélienne et définit des données $mathbb{N}$-modulaires pour chaque famille de caractères unipotents. Dans des tentatives de généralisation aux Spetses, Broué, Malle et Michel introduisent des données $mathbb{Z}$-modulaires. On commence par donner une explication catégorique de certaines de ces données via la catégorie des représentations du double de Drinfeld d'un groupe fini, que l'on munit d'une structure pivotale non sphérique. Une étude approfondie de la notion de catégorie de fusion pivotale et légèrement dégénérée montre que l'on peut ainsi produire des données $mathbb{Z}$-modulaires. Afin de construire des exemples de telles catégories, on considère des extensions des catégories de fusion associées à $qgrroot{mathfrak{g}}$, où $mathfrak{g}$ est une algèbre de Lie simple, et $xi$ une racine de l'unité. Ces dernières sont construites comme des semi-simplifications de la catégorie des modules basculants de l'algèbre $qdblroot{mathfrak{g}}$, qui est une extension centrale de $qgrroot{mathfrak{g}}$. Dans le cas où $mathfrak{g}=mathfrak{sl}_{n+1}$, on relie cette catégorie à une des données $mathbb{Z}$-modulaires associée au groupe de réflexions complexes $Gleft(d,1,frac{n(n+1)}{2}right)$. Les groupes de réflexions exceptionnels sont également étudiés, et les catégorifications des données $mathbb{Z}$-modulaires associées font apparaître diverses catégories : des catégories de représentations de doubles de Drinfeld tordus ainsi que des sous-catégories des catégories de fusion des modules basculants en $qdblroot{mathfrak{g}}$ en type $A$ et $B$. / This work is a contribution to the categorification of $mathbb{Z}$-modular data and deals mainly with $mathbb{Z}$-modular data arising from complex reflection groups, as well as cellular characters for these groups. In his classification of representations of finite groups of Lie type, Lusztig defines a nonabelian Fourier transform, and associate a $mathbb{N}$-modular datum to each family of unipotent characters. In a generalization of Lusztig's theory to Spetses, Broué, Malle and Michel construct $mathbb{Z}$-modular data associated to some complex reflection groups. We first give a categorical explanation of some of these $mathbb{Z}$-modular data in terms of representation of the Drinfeld double of a finite group. We had to endow the category of representations with a non-spherical structure. The study of slightly degenerate categories shows that they naturally give rise to $mathbb{Z}$-modular data. In order to construct some examples, we consider an extension of the fusion categories associated to $qgrroot{mathfrak{g}}$, where $mathfrak{g}$ is a simple Lie algebra and $xi$ a root of unity. These categories are constructed as semisimplification of the category of tilting modules of $qdblroot{mathfrak{g}}$, which is a central extension of $qgrroot{mathfrak{g}}$. If $mathfrak{s}=mathfrak{sl}_{n+1}$, we show that this category is related to some $mathbb{Z}$-modular data associated to the complex reflection group $Gleft(d,1,frac{n(n+1)}{2}right)$. Exceptional complex reflection groups are also considered and many different categories appear in the categorification of the associated $mathbb{Z}$-modular data : modules categories over twisted Drinfeld doubles as well as some subcategories of fusion categories of tilting modules over $qdblroot{mathfrak{g}}$ in type $A$ and $B$.
|
33 |
Approche intégrabiliste des modèles de physique statistique hors d'équilibre / An integrabilist approach of out-of-equilibrium statistical physics modelsVanicat, Matthieu 30 June 2017 (has links)
Malgré son indéniable succès pour décrire les systèmes physiques à l'équilibre thermodynamique (grâce à la distribution de Boltzmann, reflétant la maximisation de l'entropie, et permettant la construction systématique de potentiels thermodynamiques), la physique statistique n'offre pas de cadre général pour étudier les phénomènes hors d'équilibre, i.e dans lesquels on observe un courant moyen non nul d'une grandeur physique (énergie, charge, particules...).L'objectif de la thèse est de décrire de tels systèmes à l'aide de modèles très simples mais qui retranscrivent néanmoins les principales caractéristiques physiques de ceux-ci. Ces modèles sont constitués de particules se déplacant de manière aléatoire sur un réseau unidimensionnel connecté à des réservoirs et soumises à un principe d'exclusion. L'enjeu est de calculer exactement l'état stationnaire du modèle, notamment le courant de particules, ses fluctuations et plus particulièrement sa fonction de grande déviation (qui pourrait jouer le rôle d'un potentiel thermodynamique hors d'équilibre).Une première partie de la thèse vise à construire des modèles dits intégrables, dans lesquels il est possible de mener à bien des calculs exacts de quantités physiques. De nouveaux modèles hors d'équilibre sont proposés grâce à la résolution dans des cas particuliers de l'équation de Yang-Baxter et de l'équation de réflexion. De nouvelles structures algébriques permettant la construction de ces solutions par une procédure de Baxtérisation sont introduites.Une deuxième partie de la thèse consiste à calculer exactement l'état stationnaire de tels modèles en utilisant l'ansatz matriciel. Les liens entre cette technique et l'intégrabilité du modèle ont été mis en lumière au travers de deux relations clef: la relation de Zamolodchikov-Faddeev et la relation de Ghoshal-Zamolodchikov. L'intégrabilité a aussi été exploitée au travers des equations de Knizhnik-Zamolodchikov quantiques, afin de calculer les fluctuations du courant, mettant en lumière des connexions avec la théorie despolynômes symétriques (polynômes de Koornwinder en particulier).Enfin une dernière partie de la thèse porte sur la limite hydrodynamique des modèles étudiés, i.e lorsque la maille du réseau tend vers zero et que le nombre de constituants du système tend vers l'infini. Les résultats exacts obtenus sur les modèles à taille finie ont permis de vérifier les prédictions de la théorie des fluctuations macroscopiques (concernant les fluctuations du courant et du profil de densité dans l'état stationnaire) et de l'étendre à des modèles comprenant plusieurs espèces de particules. / Although statistical physics has been very successful to describe physical systems at thermal equilibrium (thanks to the Boltzmann distribution, which reflects the maximization of the entropy, and allows one to construct in a systematic way thermodynamic potentials), it remains elusive to provide an efficient framework to study phenomena that are out-of-equilibrium, i.e displaying non vanishing current of physical quantities (energy, charge, particles...).The goal of the thesis is to describe such systems with very simple models which retain nevertheless their main physical features. The models consist in particles evolving randomly on a one dimensional lattice connected to reservoirs and subject to hard-core repulsion. The challenge lies in computing exactly the stationary state of the model, especially the particle current, its fluctuations and more precisely its large deviation function (which is expected to play the role of an out-of-equilibrium thermodynamic potential).In the first part of the thesis we construct models, called integrable, in which we can perform exact computations of physical quantities. We introduce several new out-of-equilibrium models that are obtained by solving, in specific cases, the Yang-Baxter equation and the reflection equation. We provide new algebraic structures which allow us to construct the solutions through a Baxterisation procedure.In the second part of the thesis we compute exactly the stationary state of these models using a matrix ansatz. We shed light on the connection between this technique and the integrability of the model by pointing out two key relations: the Zamolodchikov-Faddeev relation and the Ghoshal-Zamolodchikov relation. The integrability is also exploited, through the quantum Knizhnik-Zamolodchikov equations, to compute the fluctuations of the particles current, unrevealing connections with the theory of symmetric polynomials (the Koornwinder polynomials in particular).Finally the last part of the thesis deals with the hydrodynamic limit of the models, i.e when the lattice spacing tends to $0$ and the number of particles tends to infinity. The exact results obtained for a finite size system allow us to check the validity of the predictions of the macroscopic fluctuations theory (concerning the fluctuations of the current and the density profile in the stationary state) and to extend the theory to systems with several species of particles.
|
34 |
Investigating non commutative structures - quantum groups and dual groups in the context of quantum probability / Étude des structures non-commutatives : le cas des groupes quantiques et des groupes duaux dans le contexte des probabilités quantiquesUlrich, Michael 21 June 2016 (has links)
Les Mathématiques non-commutatives sont un domaine en plein essor. L'idée de base consiste à remarquer qu'au lieu de décrire un espace donné comme étant un ensemble de points, on peut de manière équivalente le décrire par l'algèbre des fonctions définies sur cet espace. Cette algèbre est commutative. On remplace alors cette algèbre par une algèbre qui n'est plus forcément commutative et que l'on cherche à interpréter comme une algèbre de fonctions sur un « espace non-commutatif ». Les groupes quantiques sont un exemple de généralisation non-commutative de la notion de groupe. Il s'agit d'une C*-algèbre munie d'une comultiplication à valeur dans le produit tensoriel de l'algèbre avec elle-même. Les groupes quantiques ont été bien étudiés. Les groupes duaux sont similaires aux groupes quantiques, mais la comultiplication est cette fois-ci à valeur dans le produit libre, et non plus dans le produit tensoriel. Bien qu'ils aient été introduits dans les années 80, ils n'ont pas encore été vraiment étudiés. Le but de cette thèse est d'explorer les propriétés des groupes duaux, en se concentrant sur l'un d'entre eux – le groupe dual unitaire – et ce en utilisant les méthodes des probabilités non-commutatives (ou probabilités quantiques) / Noncommutative Mathematics are a very active domain. The idea underlying it is that instead of describing a space as a set of points, it is equivalent to describe it with the algebra of functions defined on said space. This algebra is commutative. Now we replace this algebra with an algebra that is not necessarily commutative any more and we want to interpret it as the algebra of functions defined on a « noncommutative space ». Quantum groups are an example of such a noncommutative generalization of the notion of group. They are C*-algebras equipped with a comultiplication that takes its values in the tensor product of the algebra with itself. Quantum groups are well-known and well studied. Nevertheless we can also define dual groups, which are similar to quantum groups, but the comultiplication takes now its values in the free product of the algebra with itself, instead of the tensor product. Though dual groups have been introduced in the 80s, they have not been much studied so far. The goal of this thesis is to study their properties, especially in the case of one particular dual group called the unitary dual group, by using methods from noncommutative probability (or quantum probability).
|
35 |
Semi-anneau de fusion des groupes quantiques / Fusion semiring of quantum groupsMrozinski, Colin 05 December 2013 (has links)
Cette thèse se propose d’étudier des problèmes de classification des groupes quantiques via des invariants issus de leur théorie de représentation. Plus précisément, nous classifions les algèbres de Hopf possédant un semi-anneau de fusion isomorphe à un groupe algébrique réductif donné G. De tels groupes quantiques sont alors appelés G-déformations. Dans cette thèse, nous étudions les cas GL(2) et SO(3). Nous donnons une classification complète des GL(2)-déformations en construisant une famille d’algèbres de Hopf indexées par des matrices inversibles. Nous décrivons leurs catégories de comodules et donnons certains résultats de classification quant à leurs objets de Hopf-Galois. Ensuite, nous donnons une classification des SO(3)-déformations compactes tout en étudiant le cas non-compact. Finalement, la dernière partie de la thèse est une étude de l’algèbre sous-jacente à une certaine famille d’algèbres de Hopf, dont nous exhibons une base. Cette base nous permet de calculer le centre des ces algèbres ainsi que quelques groupes de (co)homologie. / The purpose of this dissertation is to classify quantum groups according to invariants coming from their representation theory. More precisely, we classify Hopf algebras having a fusion semiring isomorphic to that of a given reductive algebraic group G. Such a quantum group is called a G-deformation. We study the case of GL(2) and SO(3). We give a complete classification of GL(2)-deformations by building a family of Hopf algebras parametrized by invertible matrices. We describe their comodule category and we give some classification results about the Hopf-Galois objects. We also classify compact SO(3)-deformations and we study the noncompact case. Finally, the last part of this dissertation is a study of the underlying algebra of some Hopf algebras, for which we exhibit a linear basis. This basis allows us to compute the centre and some (co)homology groups of those algebras.
|
36 |
Monoidal equivalence of locally compact quantum groups and application to bivariant K-theory / Equivalence monoïdale de groupes quantiques localement compacts et application à la K-théorie bivarianteCrespo, Jonathan 20 November 2015 (has links)
Les travaux présentés dans cette thèse concernent l'équivalence monoïdale de groupes quantiques localement compacts et ses applications. Nous généralisons au cas localement compact et régulier, deux résultats importants concernant les actions de groupes quantiques compacts. Soient G1 et G2 deux groupes quantiques localement compacts réguliers et monoïdalement équivalents. Nous développons un procédé d'induction des actions qui permet d'établir une équivalence canonique des catégories dont les objets sont les actions continues de G1 et G2 sur les C*-algèbres. Comme application de ce résultat, nous obtenons une équivalence canonique des catégories de KK-Théorie équivariante pour G1 et G2. Nous introduisons et étudions une notion d'actions sur les C*-algèbres, de groupoïdes quantiques mesurés sur une base finie. La preuve de la seconde équivalence s'appuie alors sur une version du théorème de bidualité de Takesaki-Takai pour les actions de groupoïdes quantiques mesurés sur une base finie. Enfin, nous terminons en définissant et étudiant une notion de modules hilbertiens équivariants pour des actions de groupoïdes quantiques mesurés sur une base finie. / This dissertation deals with the notion of monoidal equivalence of locally compact quantum groups and its applications. We generalize to the case of regular locally compact quantum groups, two important resultst concerning the actions of compact quantum groups. Let G1 and G2 be two regular locally compact quantum groups monoidally equivalent. We develop an induction procedure and we build an equivalence of the categories, whose objects are the continuous actions of G1 and G2 on C*-algebras. As an application of this result, we obtain a canonical equivalence of the categories of equivariant KK-theory for actions of G1 and G2. We introduce and investigate a notion of actions on C*-algebras of mesured quantum groupoids on a finite basis. The proof of the second equivalence relies on a version of the Takesaki-Takai duality theorem for continuous actions of measured quantum groupoids on a finite basis. We conclude by defining and studying a notion of equivariant Hilbert modules for actions of mesured quantum groupoids on a finite basis.
|
37 |
Contributions à l'étude des groupes quantiques de permutations / Contributions to the study of quantum permutation groupsChassaniol, Arthur 28 June 2016 (has links)
Dans cette thèse nous étudions le groupe quantique d’automorphismes des graphes finis, introduit par Banica et Bichon. Dans un premier temps nous montrerons un théorème de structure du groupe quantique d’automorphismes du produit lexicographique de deux graphes finis réguliers, qui généralise un résultat classique de Sabidussi. Ce théorème donne une condition nécessaire et suffisante pour que ce groupe quantique s’exprime comme le produit en couronne libre des groupes quantiques d’automorphismes de ces deux graphes. Dans un deuxième temps, nous expliciterons certaines améliorations de résultats de Banica, Bichon et Chenevier permettant d’obtenir des critères de non symétrie quantique sur les graphes, à l’aide des outils développés par les auteurs susmentionnés.Enfin, pour poursuivre ces recherches, nous développerons une autre méthode utilisant la dualité de Tannaka-Krein et inspirée de l’étude des groupes quantiques compacts orthogonaux par Banica et Speicher. Celle-ci nous permettra, à l’aide d’une étude orbitale approfondie des graphes sommets-transitifs, d’énoncer une condition suffisante pour qu’un graphe ait des symétries quantiques ; condition qui a vocation à être aussi nécessaire mais ceci reste une conjecture à ce stade. / In this thesis we study the quantum automorphism group of finite graphs, introduces by Banica and Bichon. First we will prove a theorem about the structure of the quantum automorphism group of the lexicographic product of two finite regular graphs. It is a quantum generalization of a classical result of Sabidussi. This theorem gives a necessary and sufficient condition for this quantum group to be discribe as the free wreath product of the quantum automorphism groups of these two graphs. Then, we will give some improvement of Banica, Bichon and Chenevier results, to obtain a quantum non-symmetry criteria on graphs, using tools developped by the above authors. Finally, to continue this research, we will describe another method using Tannaka-Krein duality and inspired by the study of orthogonal compact groups by Banica and Speicher. This will enable us, with a thorough orbital study of vertex-transitive graphs, to state a sufficient condition for a graph to have quantum symmetries ; condition which is intended to be also necessary but this remains conjecture at this point.
|
38 |
Mapping class groups, skein algebras and combinatorial quantization / Groupes de difféotopie, algèbres d'écheveaux et quantification combinatoireFaitg, Matthieu 16 September 2019 (has links)
Les algèbres L(g,n,H) ont été introduites par Alekseev-Grosse-Schomerus et Buffenoir-Roche au milieu des années 1990, dans le cadre de la quantification combinatoire de l'espace de modules des G-connexions plates sur la surface S(g,n) de genre g avec n disques ouverts enlevés. L'algèbre de Hopf H, appelée algèbre de jauge, était à l'origine le groupe quantique U_q(g), avec g=Lie(G). Dans cette thèse nous appliquons les algèbres L(g,n,H) à la topologie en basses dimensions (groupe de difféotopie et algèbres d'écheveaux des surfaces), sous l'hypothèse que H est une algèbre de Hopf de dimension finie, factorisable et enrubannée mais pas nécessairement semi-simple, l'exemple phare d'une telle algèbre de Hopf étant le groupe quantique restreint associé à sl(2) (à une racine 2p-ième de l'unité). D'abord, nous construisons en utilisant L(g,n,H) une représentation projective des groupes de difféotopie de S(g,0)D et de S(g,0) (où D est un disque ouvert). Nous donnons des formules pour les représentations d'un ensemble de twists de Dehn qui engendre le groupe de difféotopie; en particulier ces formules nous permettent de montrer que notre représentation est équivalente à celle construite par Lyubashenko-Majid et Lyubashenko via des méthodes catégoriques. Pour le tore S(1,0) avec le groupe quantique restreint associé à sl(2) comme algèbre de jauge, nous calculons explicitement la représentation de SL(2,Z) en utilisant une base convenable de l'espace de représentation et nous en déterminons la structure.Ensuite, nous introduisons une description diagrammatique de L(g,n,H) qui nous permet de définir de façon très naturelle l'application boucle de Wilson W. Cette application associe un élément de L(g,n,H) à chaque entrelac dans (S(g,n)D) x [0,1] qui est parallélisé, orienté et colorié par des H-modules. Quand l'algèbre de jauge est le groupe quantique restreint associé à sl(2), nous utilisons W et les représentations de L(g,n,H) pour construire des représentations des algèbres d'écheveaux S_q(S(g,n)). Pour le tore S(1,0) nous étudions explicitement cette représentation. / The algebras L(g,n,H) have been introduced by Alekseev-Grosse-Schomerus and Buffenoir-Roche in the middle of the 1990's, in the program of combinatorial quantization of the moduli space of flat G-connections over the surface S(g,n) of genus g with n open disks removed. The Hopf algebra H, called gauge algebra, was originally the quantum group U_q(g), with g = Lie(G). In this thesis we apply these algebras L(g,n,H) to low-dimensional topology (mapping class groups and skein algebras of surfaces), under the assumption that H is a finite dimensional factorizable ribbon Hopf algebra which is not necessarily semisimple, the guiding example of such a Hopf algebra being the restricted quantum group associated to sl(2) (at a 2p-th root of unity).First, we construct from L(g,n,H) a projective representation of the mapping class groups of S(g,0)D and of S(g,0) (D being an open disk). We provide formulas for the representations of Dehn twists generating the mapping class group; in particular these formulas allow us to show that our representation is equivalent to the one constructed by Lyubashenko-Majid and Lyubashenko via categorical methods. For the torus S(1,0) with the restricted quantum group associated to sl(2) for the gauge algebra, we compute explicitly the representation of SL(2,Z) using a suitable basis of the representation space and we determine the structure of this representation.Second, we introduce a diagrammatic description of L(g,n,H) which enables us to define in a very natural way the Wilson loop map W. This maps associates an element of L(g,n,H) to any link in (S(g,n)D) x [0,1] which is framed, oriented and colored by H-modules. When the gauge algebra is the restricted quantum group associated to sl(2), we use W and the representations of L(g,n,H) to construct representations of the skein algebras S_q(S(g,n)). For the torus S(1,0) we explicitly study this representation.
|
39 |
Invariants numériques de catégories de fusion : calculs et applications / Numerical invariants of fusion categories : calculations and applicationsMignard, Michaël 14 December 2017 (has links)
Les catégories de fusion pointées sont des catégories de fusion pour lesquelles les objets simples sont inversibles. Nous développons des méthodes basés par ordinateur pour classifier les catégories pointées à équivalence de Morita près, et les appliquons aux catégories pointées de dimensions comprises entre 2 et 32. Nous prouvons qu'il existe 1126 classes de Morita pour de telles catégories. Aussi, nous prouvons que les indicateurs de Frobenius-Schur du centre d'une catégorie pointée de dimension inférieure à 32, accompagnés de structure enrubannée de ce centre, déterminent sa classe de Morita. Ceci est faux en général: les données modulaires, et donc a fortiori les indicateurs et structures enrubannées, ne distinguent pas les catégories modulaires. Nous donnons une famille d'exemples ; en réalité, il existe un nombre arbitrairement grand de catégories modulaires deux-à-deux non équivalentes qui peuvent partager les mêmes données modulaires. / Pointed fusion categories are fusion categories in which all simple objects are invertible. We develop computer-based methods to classify pointed categories up to Morita equivalence, and apply them to pointed fusion categories of dimension from 2 to 31. We prove that there are 1126 Morita classes of such categories. Also, we prove that the Frobenius-Schur indicators of the centers of a pointed category of dimension less than 32, along with its ribbon twist, determine its Morita class. This is not true in general: the modular data, and a fortiori the indicators and the ribbon twists, do not distinguish modular categories. We give a family of examples; in fact, arbitrarly many pairwise non-equivalent modular categories can share the same modular data.
|
40 |
Some problems in harmonic analysis on quantum groups / Quelques problèmes en analyse harmonique sur les groupes quantiquesWang, Simeng 22 June 2016 (has links)
Cette thèse étudie quelques problèmes d’analyse harmonique sur les groupes quantiques compacts. Elle consiste en trois parties. La première partie présente la théorie Lp élémentaire des transformées de Fourier, les convolutions et les multiplicateurs sur les groupes quantiques compacts, y compris la théorie de Hausdorff-Young et les inégalités de Young.Dans la seconde partie, nous caractérisons les opérateurs de convolution positifs sur un groupe quantique fini qui envoient Lp dans L2, et donnons aussi quelques constructions sur les groupes quantiques compacts infinis. La méthode pour étudier les états non-dégénérés fournit une formule générale pour calculer les états idempotents associés aux images deHopf, qui généralise un travail de Banica, Franz et Skalski. La troisième partie est consacrée à l’étude des ensembles de Sidon, des ensembles _(p) et des notions associées pour les groupes quantiques compacts. Nous établissons différentes caractérisations des ensembles de Sidon, et en particulier nous démontrons que tout ensemble de Sidon est un ensemble de Sidon fort au sens de Picardello. Nous donnons quelques liens entre les ensembles de Sidon, les ensembles _(p) et les lacunarités pour les multiplicateurs de Fourier sur Lp, généralisant un travail de Blendek et Michali˘cek. Nous démontrons aussi l’existence des ensembles de type _(p) pour les systèmes orthogonaux dans les espaces Lp non commutatifs, et déduisons les propriétés correspondantes pour les groupes quantiques compacts. Nous considérons aussi les ensembles de Sidon centraux, et nous prouvons que les groupes quantiques compacts ayant les mêmes règles de fusion et les mêmes fonctions de dimension ont des ensemble de Sidon centraux identiques. Quelques exemples sont aussi étudiés dans cette thèse. Les travaux présentés dans cette thèse se basent sur deux articles de l’auteur. Le premier s’intitule “Lp-improving convolution operators on finite quantum groups” et a été accepté pour publication dans Indiana University Mathematics Journal, et le deuxième est un travail intitulé “Lacunary Fourier series for compact quantum groups” et a été publié en ligne dans Communications in Mathematical Physics. / This thesis studies some problems in the theory of harmonic analysis on compact quantum groups. It consists of three parts. The first part presents some elementary Lp theory of Fourier transforms, convolutions and multipliers on compact quantum groups, including the Hausdorff-Young theory and Young’s inequalities. In the second part, we characterize positive convolution operators on a finite quantum group G which are Lp-improving, and also give some constructions on infinite compact quantum groups. The methods for ondegeneratestates yield a general formula for computing idempotent states associated to Hopf images, which generalizes earlier work of Banica, Franz and Skalski. The third part is devoted to the study of Sidon sets, _(p)-sets and some related notions for compact quantum groups. We establish several different characterizations of Sidon sets, and in particular prove that any Sidon set in a discrete group is a strong Sidon set in the sense of Picardello. We give several relations between Sidon sets, _(p)-sets and lacunarities for Lp-Fourier multipliers, generalizing a previous work by Blendek and Michali˘cek. We also prove the existence of _(p)-sets for orthogonal systems in noncommutative Lp-spaces, and deduce the corresponding properties for compact quantum groups. Central Sidon sets are also discussed, and it turns out that the compact quantum groups with the same fusion rules and the same dimension functions have identical central Sidon sets. Several examples are also included. The thesis is principally based on two works by the author, entitled “Lp-improvingconvolution operators on finite quantum groups” and “Lacunary Fourier series for compact quantum groups”, which have been accepted for publication in Indiana University Mathematics Journal and Communications in Mathematical Physics respectively.
|
Page generated in 0.0412 seconds