Spelling suggestions: "subject:"reis"" "subject:"res""
11 |
Sylvester forms and Rees algebrasMacêdo, Ricado Burity croccia 24 July 2015 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-31T12:43:01Z
No. of bitstreams: 1
arquivo total.pdf: 1366177 bytes, checksum: 1b02d1a5ce5861390070022558e311b0 (MD5) / Made available in DSpace on 2016-03-31T12:43:01Z (GMT). No. of bitstreams: 1
arquivo total.pdf: 1366177 bytes, checksum: 1b02d1a5ce5861390070022558e311b0 (MD5)
Previous issue date: 2015-07-24 / This work is about the Rees algebra of a nite colength almost complete intersection ideal
generated by forms of the same degree in a polynomial ring over a eld. We deal with two
situations which are quite apart from each other: in the rst the forms are monomials in an
unrestricted number of variables, while the second is for general binary forms. The essential
goal in both cases is to obtain the depth of the Rees algebra. It is known that for such ideals the
latter is rarely Cohen{Macaulay (i.e., of maximal depth). Thus, the question remains as to how
far one is from the Cohen{Macaulay case. In the case of monomials one proves under certain
restriction a conjecture of Vasconcelos to the e ect that the Rees algebra is almost Cohen{
Macaulay. At the other end of the spectrum, one proposes a proof of a conjecture of Simis
on general binary forms, based on work of Huckaba{Marley and on a theorem concerning the
Ratli {Rush ltration. Still within this frame, one states a couple of stronger conjectures that
imply Simis conjecture, along with some solid evidence. / Este trabalho versa sobre a algebra de Rees de um ideal quase intersec cão completa, de cocomprimento
nito, gerado por formas de mesmo grau em um anel de polinômios sobre um
corpo. Considera-se duas situa c~oes inteiramente diversas: na primeira, as formas s~ao mon^omios
em um n umero qualquer de vari aveis, enquanto na segunda, s~ao formas bin arias gerais. O
objetivo essencial em ambos os casos e obter a profundidade da algebra de Rees. E conhecido
que tal algebra e raramente Cohen{Macaulay (isto e, de profundidade m axima). Assim, a quest~ao
que permanece e qua o distante são do caso Cohen{Macaulay. No caso de monômios prova-se,
mediante certa restri cão, uma conjectura de Vasconcelos no sentido de que a algébra de Rees e
quase Cohen {Macaulay. No outro caso extremo, estabelece-se uma prova de uma conjectura de
Simis sobre formas bin arias gerais, baseada no trabalho de Huckaba{Marley e em um teorema
sobre a ltera cão de Ratli {Rush. Al em disso, apresenta-se um par de conjecturas mais fortes
que implicam a conjectura de Simis, juntamente com uma evidência s olida.
|
12 |
Álgebra de Rees de ideaisSantana, Jeocástria Rezende dos Santos 25 February 2014 (has links)
Fundação de Apoio a Pesquisa e à Inovação Tecnológica do Estado de Sergipe - FAPITEC/SE / The Rees algebra of an ideal is an algebraic construction that takes place in
commutative algebra and algebraic geometry. Currently, the study of arithmetic and
homological properties of this object is cause for diverse research in commutative
algebra. Our main goal in this work is to address aspects such as dimension and
defining equations of the Rees algebra and other algebras that relate to it. / A álgebra de Rees de um ideal é uma construção algébrica que ocupa lugar de destaque na álgebra comutativa e na geometria algébrica. Atualmente, o estudo de propriedades aritméticas e homológicas desse objeto é motivo de diversas pesquisas em álgebra comutativa. Nosso principal objetivo nesse trabalho é tratar de aspectos como dimensão e equações de definição da álgebra de Rees e de outras álgebras que relacionam-se com ela.
|
13 |
Potências simbólicas e suas interaçõesSantos, Diego Cardoso dos 29 February 2016 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The notion of symbolic power dates back to W. Krull, who used it in the proof of
the famous theorem of principal ideal, this a crucial milestone in the short history of
commutative algebra. Later, O. Zariski, M. Nagata, D. Rees and others have shown
how this purely algebraic notion has important signi cance in algebraic geometry.
In this paper we study the symbolic powers showing some of its most fundamental
properties and their connections with various aspects of algebraic geometry and
commutative algebra. / A no ção de potência simb ólica remonta a W. Krull, que a usou na prova do
c élebre teorema do ideal principal, este um marco crucial na curta hist ória da álgebra
comutativa. Mais adiante, O. Zariski, M. Nagata, D. Rees e outros mostraram como
esta no ção puramente alg ébrica tem importante signi ficado em geometria alg ébrica.
Neste trabalho estudaremos as potências simb ólicas evidenciando algumas de suas
propriedades mais fundamentais e suas conexões com aspectos variados da geometria
alg ébrica e álgebra comutativa.
|
14 |
On the Defining Ideals of Rees Rings for Determinantal and Pfaffian Ideals of Generic HeightEdward F Price (9188318) 04 August 2020 (has links)
<div>This dissertation is based on joint work with Monte Cooper and is broken into two main parts, both of which study the defining ideals of the Rees rings of determinantal and Pfaffian ideals of generic height. In both parts, we attempt to place degree bounds on the defining equations.</div><div> </div><div> The first part of the dissertation consists of Chapters 3 to 5. Let $R = K[x_{1},\ldots,x_{d}]$ be a standard graded polynomial ring over a field $K$, and let $I$ be a homogeneous $R$-ideal generated by $s$ elements. Then there exists a polynomial ring $\mathcal{S} = R[T_{1},\ldots,T_{s}]$, which is also equal to $K[x_{1},\ldots,x_{d},T_{1},\ldots,T_{s}]$, of which the defining ideal of $\mathcal{R}(I)$ is an ideal. The polynomial ring $\mathcal{S}$ comes equipped with a natural bigrading given by $\deg x_{i} = (1,0)$ and $\deg T_{j} = (0,1)$. Here, we attempt to use specialization techniques to place bounds on the $x$-degrees (first component of the bidegrees) of the defining equations, i.e., the minimal generators of the defining ideal of $\mathcal{R}(I)$. We obtain degree bounds by using known results in the generic case and specializing. The key tool are the methods developed by Kustin, Polini, and Ulrich to obtain degree bounds from approximate resolutions. We recover known degree bounds for ideals of maximal minors and submaximal Pfaffians of an alternating matrix. Additionally, we obtain $x$-degree bounds for sufficiently large $T$-degrees in other cases of determinantal ideals of a matrix and Pfaffian ideals of an alternating matrix. We are unable to obtain degree bounds for determinantal ideals of symmetric matrices due to a lack of results in the generic case; however, we develop the tools necessary to obtain degree bounds once similar results are proven for generic symmetric matrices.</div><div> </div><div> The second part of this dissertation is Chapter 6, where we attempt to find a bound on the $T$-degrees of the defining equations of $\mathcal{R}(I)$ when $I$ is a nonlinearly presented homogeneous perfect Gorenstein ideal of grade three having second analytic deviation one that is of linear type on the punctured spectrum. We restrict to the case where $\mathcal{R}(I)$ is not Cohen-Macaulay. This is a natural next step following the work of Morey, Johnson, and Kustin-Polini-Ulrich. Based on extensive computation in Macaulay2, we give a conjecture for the relation type of $I$ and provide some evidence for the conjecture. In an attempt to prove the conjecture, we obtain results about the defining ideals of general fibers of rational maps, which may be of independent interest. We end with some examples where the bidegrees of the defining equations exhibit unusual behavior.</div>
|
15 |
Rees algebras and fiber cones of modulesAlessandra Costantini (7042793) 13 August 2019 (has links)
<div>In the first part of this thesis, we study Rees algebras of modules. We investigate their Cohen-Macaulay property and their defining ideal, using <i>generic Bourbaki ideals</i>. These were introduced by Simis, Ulrich and Vasconcelos in [65], in order to characterize the Cohen-Macaulayness of Rees algebras of modules. Thanks to this technique, the problem is reduced to the case of Rees algebras of ideals. Our main results are the following.</div><div><br></div><div><div>In Chapters 3 and 4 we consider a finite module <i>E</i> over a Gorenstein local ring <i>R</i>. In Theorem 3.2.4 and Theorem 4.3.2, we give sufficient conditions for <i>E</i> to be of linear type, while Theorem 4.2.4 provides a sufficient condition for the Rees algebra <i>R(E)</i> of <i>E</i> to be Cohen-Macaulay. These results rely on properties of the residual intersections of a generic Bourbaki ideal <i>I</i> of<i> E</i>, and generalize previous work of Lin (see [46, 3.1 and 3.4]). In the case when <i>E</i> is an ideal, Theorem 4.2.4 had been previously proved independently by Johnson and Ulrich (see [39, 3.1]) and Goto, Nakamura and Nishida (see [20, 1.1 and 6.3]).</div></div><div><br></div><div><div>In Chapter 5, we consider a finite module <i>E</i> of projective dimension one over <i>k</i>[X<sub>1</sub>, . . . , X<sub>n</sub>]. Our main result, Theorem 5.2.6, describes the defining ideal of <i>R(E)</i>, under the assumption that the presentation matrix φ of <i>E</i> is <i>almost linear</i>, i.e. the entries of all but one column of φ are linear. This theorem extends to modules a known result of Boswell and Mukundan on the Rees algebra of almost linearly presented perfect ideals of height 2 (see [5, 5.3 and 5.7]).</div></div><div><br></div><div><div>The second part of this thesis studies the Cohen-Macaulay property of the special fiber ring<i> F(E)</i> of a module <i>E</i>. In Theorem 6.2.14, we prove that the generic Bourbaki ideals of Simis, Ulrich and Vasconcelos allow to reduce the problem to the case of fiber cones of ideals, similarly as for Rees algebras. We then provide sufficient conditions for <i>F(E)</i> to be Cohen-Macaulay. Our Theorems 6.2.15, 6.1.3 and 6.2.18 are module versions of results proved for the fiber cone of an ideal by Corso, Ghezzi, Polini and Ulrich (see [10, 3.1] and [10, 3.4]) and by Monta˜no (see [47, 4.8]), respectively.</div></div><div><br></div>
|
16 |
Représentations matricielles en théorie de l'élimination et applications à la géométrieBusé, Laurent 29 April 2011 (has links) (PDF)
Ce mémoire d'habilitation présente des travaux qui développent une approche matricielle de la théorie de l'élimination et l'illustrent au travers d'applications à la modélisation géométrique. Cette approche matricielle, qui correspond essentiellement à un changement de représentation, permet de livrer des problèmes géométriques à la puissance des algorithmes d'algèbre linéaire numérique. Le premier chapitre traite de la représentation matricielle implicite d'une hypersurface rationnelle dans un espace projectif et propose une nouvelle méthode pour traiter le problème d'intersection entre une courbe et une surface rationnelles dans l'espace projectif de dimension trois. Le deuxième chapitre propose une représentation matricielle implicite d'une courbe rationnelle dans un espace projectif de dimension arbitraire, représentation qui est illustrée par un algorithme répondant au problème d'intersection entre deux courbes rationnelles. Le dernier chapitre est dédié à une approche matricielle du test d'irréductibilité de Ruppert qui conduit au raffinement du dénombrement des fibres réductibles dans un pinceau d'hypersurfaces algébriques génériquement irréductible.
|
17 |
On Amoebas and Multidimensional ResiduesLundqvist, Johannes January 2012 (has links)
This thesis consists of four papers and an introduction. In Paper I we calculate the second order derivatives of the Ronkin function of an affine polynomial in three variables. This gives an expression for the real Monge-Ampére measure associated to the hyperplane amoeba. The measure is expressed in terms of complete elliptic integrals and hypergeometric functions. In Paper II and III we prove that a certain semi-explicit cohomological residue associated to a Cohen-Macaulay ideal or more generally an ideal of pure dimension, respectively, is annihilated precisely by the given ideal. This is a generalization of the local duality principle for the Grothendieck residue and the cohomological residue of Passare. These results follow from residue calculus, due to Andersson and Wulcan, but the point here is that our proof is more elementary. In particular, it does not rely on the desingularization theorem of Hironaka. In Paper IV we prove a global uniform Artin-Rees lemma for sections of ample line bundles over smooth projective varieties. We also prove an Artin-Rees lemma for the polynomial ring with uniform degree bounds. The proofs are based on multidimensional residue calculus. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: Manuscript. Paper 3: Manuscript. Paper 4. Manuscript.</p>
|
18 |
Algèbre de Rees et Fibre spécialeHa, Minh Lam 19 October 2006 (has links) (PDF)
Ce travail se situe à la fois en Géométrie Algébrique et l'Algèbre Commutative. La premier partie de cette thèse est consacrée à l'anneau de Rees (blow-up ring) et la fibre spéciale d'un idéal de réseau de codimenson 2 dans un anneau de polynômes. Dans le cas où l'idéal est engendré par trois ou quatre éléments, une présentation explicite de l'anneau de Rees est donnée. Dans le cas général, nous définissons le graphe de syzygies de l'idéal, et l'étudions combinatoirement. Nous obtenons : 1/ La dimension de la fibre spéciale est 2 ou 3. 2/ Si l'idéal n'est pas une intersection complète, alors la fibre spéciale est Cohen--Macaulay de dimension 3, réduite, de degré minimal, i.e. la fibre spéciale a des propriétés géométriques remarquables. Une présentation explicite de la fibre spéciale est aussi donnée. 3/ L'anneau de Rees est Cohen--Macaulay, et engendré par des formes de degré au plus 2. La deuxième partie de la thèse est consacrée aux idéaux simpliciaux, introduits par M. Morales. En étudiant des propriétés combinatoires, nous donnons une large classe d'idéaux binômiaux simpliciaux pour lesquels le nombre de réduction est 1.
|
19 |
Noetherian Filtrations and Finite Intersection AlgebrasMalec, Sara 18 July 2008 (has links)
This paper presents the theory of Noetherian filtrations, an important concept in commutative algebra. The paper describes many aspects of the theory of these objects, presenting basic results, examples and applications. In the study of Noetherian filtrations, a few other important concepts are introduced such as Rees algebras, essential powers filtrations, and filtrations on modules. Basic results on these are presented as well. This thesis discusses at length how Noetherian filtrations relate to important constructions in commutative algebra, such as graded rings and modules, dimension theory and associated primes. In addition, the paper presents an original proof of the finiteness of the intersection algebra of principal ideals in a UFD. It concludes by discussing possible applications of this result to other areas of commutative algebra.
|
20 |
Noetherian Filtrations and Finite Intersection AlgebrasMalec, Sara 18 July 2008 (has links)
This paper presents the theory of Noetherian filtrations, an important concept in commutative algebra. The paper describes many aspects of the theory of these objects, presenting basic results, examples and applications. In the study of Noetherian filtrations, a few other important concepts are introduced such as Rees algebras, essential powers filtrations, and filtrations on modules. Basic results on these are presented as well. This thesis discusses at length how Noetherian filtrations relate to important constructions in commutative algebra, such as graded rings and modules, dimension theory and associated primes. In addition, the paper presents an original proof of the finiteness of the intersection algebra of principal ideals in a UFD. It concludes by discussing possible applications of this result to other areas of commutative algebra.
|
Page generated in 0.0596 seconds