11 |
An Inverse Eigenvalue Problem for the Schrödinger Equation on the Unit Ball of R<sup>3</sup>Al Ghafli, Maryam Ali 01 January 2019 (has links)
The inverse eigenvalue problem for a given operator is to determine the coefficients by using knowledge of its eigenfunctions and eigenvalues. These are determined by the behavior of the solutions on the domain boundaries. In our problem, the Schrödinger operator acting on functions defined on the unit ball of $\mathbb{R}^3$ has a radial potential taken from $L^2_{\mathbb{R}}[0,1].$ Hence the set of the eigenvalues of this problem is the union of the eigenvalues of infinitely many Sturm-Liouville operators on $[0,1]$ with the Dirichlet boundary conditions. Each Sturm-Liouville operator corresponds to an angular momentum $l =0,1,2....$. In this research we focus on the uniqueness property. This is, if two potentials $p,q \in L^2_{\mathbb{R}}[0,1]$ have the same set of eigenvalues then $p=q.$ An early result of P\"oschel and Trubowitz is that the uniqueness of the potential holds when the potentials are restricted to the subspace of the even functions of $L_{\mathbb{R}}^2[0,1]$ in the $l=0$ case. Similarly when $l=0$, by using their method we proved that two potentials $p,q \in L^2_{\mathbb{R}}[0,1]$ are equal if their even extension on $[-1,1]$ have the same eigenvalues. Also we expect to prove the uniqueness if $p$ and $q$ have the same eigenvalues for finitely many $l.$ For this idea we handle the problem by focusing on some geometric properties of the isospectral sets and trying to use these properties to prove the uniqueness of the radial potential by using finitely many of the angular momentum.
|
12 |
Wave Invariants on Flat ToriBerg, Tillmann 18 April 2018 (has links)
Wir untersuchen und berechnen Welleninvarianten von Schrödinger-Operatoren, die auf Schnitte von Hermiteschen Geradenbündeln über flachen Tori gerader Dimension wirken. Die Schrödinger-Operatoren werden aus einem translationsinvarianten Zusammenhang des Bündels sowie einem Potential, d.h. einer glatten Funktion auf dem Torus, konstruiert. Wir beschränken uns auf Bündel mit nichtentarteter Chern-Klasse und untersuchen, in welchem Umfang das Spektrum eines Schrödinger-Operators mit gegebenem Potential den Zusammenhang bestimmt.
Wir berechnen die ersten fünf Welleninvarianten explizit mittels des Computeralgebrasystems Mathematica. Für einfache Potentiale erhalten wir eine vollständige Charakterisierung der Isospektralität der translationsinvarianten Zusammenhänge. Weiterhin werden allgemeine Eigenschaften der Welleninvarianten bewiesen, welche allgemeinere Aussagen über die Existenz nichtisospektraler Zusammenhänge implizieren. Andererseits ergeben sich Erkenntnisse über die Grenzen der spektralen Information, die in endlich vielen Welleninvarianten enthalten ist.
Negative spektrale Ergebnisse, d.h. Unterschiede in den Zusammenhängen, die nicht durch das Spektrum bestimmt werden, werden durch die Konstruktion von Transplantationen zwischen den Schrödinger-Operatoren zweier Zusammenhänge bei gleichem Potential bewiesen. / We study and compute wave invariants of Schrödinger operators acting on sections of Hermitian line bundles over even-dimensional flat tori. The Schrödinger operators are constructed from translation-invariant connections on the bundle and a potential, a smooth function on the torus. Restricting to bundles with nondegenerate Chern class we study the extent to which the spectrum of the Schrödinger operator of a given potential determines the connection.
The first five wave invariants are computed explicitly using the computer algebra software Mathematica. For simple potentials we find a full characterization of the isospectrality of the translation-invariant connections. We also prove general properties of the wave invariants, which imply a more general existence of nonisospectral connections but which also show limitations of the spectral information contained within finitely many wave invariants.
Negative spectral results, i.e. differences in connections not determined by spectra, are obtained by constructing transplantations between the Schrödinger operators of two connections with a fixed potential.
|
13 |
Modèles mathématiques et simulation numérique de dispositifs photovoltaïques / Mathematical models and numerical simulation of photovoltaic devicesBakhta, Athmane 19 December 2017 (has links)
Cette thèse comporte deux volets indépendants mais tous deux motivés par la modélisation mathématique et la simulation numérique de procédés photovoltaïques. La Partie I traite de systèmes d’équations aux dérivées partielles de diffusion croisée, modélisant l’évolution de concentrations ou de fractions volumiques de plusieurs espèces chimiques ou biologiques. Nous présentons dans le chapitre 1 une introduction succincte aux résultats mathématiques connus sur ces systèmes lorsqu’ils sont définis sur des domaines fixes. Nous présentons dans le chapitre 2 un système unidimensionnel que nous avons introduit pour modéliser l’évolution des fractions volumiques des différentes espèces chimiques intervenant dans le procédé de déposition physique en phase vapeur (PVD) utilisé pour la fabrication de cellules solaires à couches minces. Dans ce procédé, un échantillon est introduit dans un four à très haute température où sont injectées les différentes espèces chimiques sous forme gazeuse, si bien que des atomes se déposent petit à petit sur l’échantillon, formant une couche mince qui grandit au fur et à mesure du procédé. Dans ce modèle sont pris en compte à la fois l’évolution de la surface du film solide au cours du procédé et l’évolution des fractions volumiques locales au sein de ce film, ce qui aboutit à un système de diffusion croisée défini sur un domaine dépendant du temps. En utilisant une méthode récente basée sur l’entropie, nous montrons l’existence de solutions faibles à ce système et nous étudions leur comportement asymptotique dans le cas où les flux extérieurs imposés à la surface du film sont supposés constants. De plus, nous prouvons l’existence d’une solution à un problème d’optimisation sur les flux extérieurs. Nous présentons dans le chapitre 3comment ce modèle a été adapté et calibré sur des données expérimentales. La Partie II est consacrée à des questions reliées au calcul de la structure électronique de matériaux cristallins. Nous rappelons dans le chapitre 4 certains résultats classiques relatifs à la décomposition spectrale d’opérateurs de Schrödinger périodiques. Dans le chapitre 5, nous tentons de répondre à la question suivante : est-il possible de déterminer un potentiel périodique tel que les premières bandes d’énergie de l’opérateur de Schrödinger associé soient aussi proches que possible de certaines fonctions cibles ?Nous montrons théoriquement que la réponse à cette question est positive lorsque l’on considère la première bande de l’opérateur et des potentiels unidimensionnels appartenant à un espace de mesures périodiques bornées inférieurement en un certain sens. Nous proposons également une méthode adaptative pour accélérer la procédure numérique de résolution du problème d’optimisation. Enfin, le chapitre 6 traite d’un algorithme glouton pour la compression de fonctions de Wannier en exploitant leurs symétries. Cette compression permet, entre autres, d’obtenir des expressions analytiques pour certains coefficients de tight-binding intervenant dans la modélisation de matériaux 2D / This thesis includes two independent parts, both motivated by mathematical modeling and numerical simulation of photovoltaic devices. Part I deals with cross-diffusion systems of partial differential equations, modeling the evolution of concentrations or volume fractions of several chemical or biological species. We present in Chapter 1 a succinct introduction to the existing mathematical results about these systems when they are defined on fixed domains. We present in Chapter 2 a one-dimensional system that we introduced to model the evolution of the volume fractions of the different chemical species involved in the physical vapor deposition process (PVD) used in the production of thin film solar cells. In this process, a sample is introduced into a very high temperature oven where the different chemical species are injected in gaseous form, so that atoms are gradually deposited on the sample, forming a growing thin film. In this model, both the evolution of the film surface during the process and the evolution of the local volume fractions within this film are taken into account, resulting in a cross-diffusion system defined on a time dependent domain. Using a recent method based on entropy estimates, we show the existence of weak solutions to this system and study their asymptotic behavior when the external fluxes are assumed to be constant. Moreover, we prove the existence of a solution to an optimization problem set on the external fluxes. We present in Chapter3 how was this model adapted and calibrated on experimental data. Part II is devoted to some issues related to the calculation of the electronic structure of crystalline materials. We recall in Chapter 4 some classical results about the spectral decomposition of periodic Schrödinger operators. In text of Chapter 5, we try to answer the following question: is it possible to determine a periodic potential such that the first energy bands of the associated periodic Schrödinger operator are as close as possible to certain target functions? We theoretically show that the answer to this question is positive when we consider the first energy band of the operator and one-dimensional potentials belonging to a space of periodic measures that are lower bounded in certain ness. We also propose an adaptive method to accelerate the numerical optimization procedure. Finally, Chapter 6 deals with a greedy algorithm for the compression of Wannier functions into Gaussian-polynomial functions exploiting their symmetries. This compression allows, among other things, to obtain closed expressions for certain tight-binding coefficients involved in the modeling of 2D materials
|
14 |
Quantengraphen mit zufälligem Potential / Quantum Graphs with a random potentialSchubert, Carsten 11 April 2012 (has links) (PDF)
Ein metrischer Graph mit einem selbstadjungierten, negativen Laplace-Operator wird Quantengraph genannt. In dieser Arbeit werden Transporteigenschaften zufälliger Laplace-Operatoren betrachtet.
Dazu wird die Multiskalenanalyse (MSA) von euklidischen Räumen auf metrische Graphen angepasst. Eine Überdeckung der metrischen Graphen wird aus gleichmäßig polynomiellem Wachstum und der gleichmäßigen Beschränkung der Kantenlängen gewonnen. Als Hilfsmittel für die MSA werden eine Combes-Thomas-Abschätzung und eine Geometrische Resolventenungleichung bewiesen. Zusammen mit einer Wegner-Abschätzung und der Existenz von verallgemeinerten Eigenfunktionen wird mittels der modifizierten MSA spektrale Lokalisierung (d.h. reines Punktspektrum) mit polynomiell fallenden Eigenfunktionen am unteren Rand des Spektrums für negative Laplace-Operatoren mit zufälligem Potential geschlossen. Dabei sind alle Randbedingungen, die eine nach unten beschränkten Operator liefern, wählbar. / We prove spectral localization for infinite metric graphs with a self-adjoint Laplace operator and a random potential. Therefor we adapt the multiscale analysis (MSA) from the euclidean case to metric graphs. In the MSA a covering of the graph is needed which is obtained from a uniform polynomial growth of the graph. The geometric restrictions of the graph contain a uniform bound on the edge lengths. As boundary conditions we allow all settings which give a lower bounded self-adjoint operator with an associated quadratic form.
The result is spectral localization (i.e. pure point spectrum) with polynomially decaying eigenfunctions in a small interval at the ground state energy.
|
15 |
Bornes supérieures pour les valeurs propres d'opérateurs naturels sur les variétés riemanniennes compactes / Upper bounds for the eigenvalues of natural operators on compact Riemannian manifoldsHassannezhad, Asma 14 June 2012 (has links)
Le but de cette thèse est de trouver des bornes supérieures pour les valeurs propres des opérateurs naturels agissant sur les fonctions d’une variété compacte (M; g). Nous étudions l’opérateur de Laplace–Beltrami et des opérateurs du type laplacien. Dans le cas du laplacien, deux aspects sont étudiés. Le premier aspect est d’étudier des relations entre la géométrie intrinsèque et les valeurs propres du laplacien. Nous obtenons des bornes supérieures ne dépendant que de la dimension et d’un invariant conforme qui s’appelle le volume conforme minimal. Asymptotiquement, ces bornes sont consistantes avec la loi de Weyl. Elles améliorent également les résultats de Korevaar et de Yang et Yau. La méthode employée est intéressante en soi. Le deuxième aspect est d’étudier la relation entre la géométrie extrinsèque et les valeurs propres du laplacien agissant sur des sous-variétés compactes de RN et de CPN. Nous étudions un invariant extrinsèque qui s’appele l’indice d’intersection. Pour des sous-variétés compactes de RN, nous généralisons les résultats de Colbois, Dryden et El Soufi et obtenons des bornes supérieures qui sont stables par des petites perturbations. Pour des sous-variétés de CPN, nous obtenons une borne supérieure ne dépendant que du degré des sous-variétés. Pour des opérateur du type laplacien, une modification de notre méthode donne des bornes supérieures pour les valeurs propres des opérateurs de Schrödinger en termes du volume conforme minimal et de l’intégrale du potentiel. Nous obtenons également les bornes supérieures pour les valeurs propres du laplacien de Bakry–Émery dépendant d’invariants conformes. / The purpose of this thesis is to find upper bounds for the eigenvalues of natural operators acting on functions on a compact Riemannian manifold (M; g) such as the Laplace–Beltrami operator and Laplace-type operators. In the case of the Laplace-Beltrami operator, two aspects are investigated: The first aspect is to study relationships between the intrinsic geometry and eigenvalues of the Laplacian operator. In this regard, we obtain upper bounds depending only on the dimension and a conformal invariant called min-conformal volume. Asymptotically, these bounds are consistent with the Weyl law. They improve previous results by Korevaar and Yang and Yau. The method which is introduced to obtain the results, is powerful and interesting in itself. The second aspect is to study the interplay of the extrinsic geometry and eigenvalues of the Laplace–Beltrami operator acting on compact submanifolds of RN and of CPN. We investigate an extrinsic invariant called the intersection index studied by Colbois, Dryden and El Soufi. For compact submanifolds of RN, we extend their results and obtain upper bounds which are stable under small perturbation. For compact submanifolds of CPN, we obtain an upper bound depending only on the degree of submanifolds. For Laplace type operators, a modification of our method lead to have upper bounds for the eigenvalues of Schrödinger operators in terms of the min-conformal volume and integral quantity of the potential. As another application of our method, we obtain upper bounds for the eigenvalues of the Bakry–Émery Laplace operator depending on conformal invariants.
|
16 |
Lokalisierung auf Gittergraphen mit zufälligem PotentialHelm, Mario 30 October 2007 (has links)
Es wird Anderson-Lokalisierung und starke
dynamische Lokalisierung für Quantengraphen mit
Gitterstruktur mit Multiskalenanalyse bewiesen.
Für eine weitere Klasse von Quantengraphen wird
eine lineare Wegner-Abschätzung gezeigt, woraus die
Lipschitz-Stetigkeit der integrierten Zustandsdichte
folgt.
|
17 |
Lokalisierung auf Gittergraphen mit zufälligem PotentialHelm, Mario 30 October 2007 (has links)
Es wird Anderson-Lokalisierung und starke
dynamische Lokalisierung für Quantengraphen mit
Gitterstruktur mit Multiskalenanalyse bewiesen.
Für eine weitere Klasse von Quantengraphen wird
eine lineare Wegner-Abschätzung gezeigt, woraus die
Lipschitz-Stetigkeit der integrierten Zustandsdichte
folgt.
|
18 |
Semiclassical methods for the two-dimensional Schrödiger operator with a strong magnetic fieldPankrachkine, Konstantin 09 December 2002 (has links)
Es werden spektrale Eigenschaften des zweidimensionalen Schrödinger-Operators mit einem zweifach periodischen Potential und starkem magnetischem Feld untersucht mit Hilfe semiklassischer Methoden. Man beschreibt die spektrale Asymptotik durch Benutzung der Reeb-Graph-Technik. Im Falle des rationalen Flusses konstruiert man semiklassische Magneto-Bloch-Funktionen und beschreibt die Asymptotik des Spektrums auf dem physikalischen Beweisniveau. / Spectral properties of the two-dimensional Schroedinger operator with a two-periodic potential and a strong uniform magnetic field is studied with the help of semiclassical methods. The spectral asymptotics is described using the Reeb graph technique. In the case of the rational flux one constructs semiclassical magneto-Bloch functions and describes the asymptotics of the band spectrum on the physical level of proof.
|
19 |
Quantengraphen mit zufälligem PotentialSchubert, Carsten 13 December 2011 (has links)
Ein metrischer Graph mit einem selbstadjungierten, negativen Laplace-Operator wird Quantengraph genannt. In dieser Arbeit werden Transporteigenschaften zufälliger Laplace-Operatoren betrachtet.
Dazu wird die Multiskalenanalyse (MSA) von euklidischen Räumen auf metrische Graphen angepasst. Eine Überdeckung der metrischen Graphen wird aus gleichmäßig polynomiellem Wachstum und der gleichmäßigen Beschränkung der Kantenlängen gewonnen. Als Hilfsmittel für die MSA werden eine Combes-Thomas-Abschätzung und eine Geometrische Resolventenungleichung bewiesen. Zusammen mit einer Wegner-Abschätzung und der Existenz von verallgemeinerten Eigenfunktionen wird mittels der modifizierten MSA spektrale Lokalisierung (d.h. reines Punktspektrum) mit polynomiell fallenden Eigenfunktionen am unteren Rand des Spektrums für negative Laplace-Operatoren mit zufälligem Potential geschlossen. Dabei sind alle Randbedingungen, die eine nach unten beschränkten Operator liefern, wählbar. / We prove spectral localization for infinite metric graphs with a self-adjoint Laplace operator and a random potential. Therefor we adapt the multiscale analysis (MSA) from the euclidean case to metric graphs. In the MSA a covering of the graph is needed which is obtained from a uniform polynomial growth of the graph. The geometric restrictions of the graph contain a uniform bound on the edge lengths. As boundary conditions we allow all settings which give a lower bounded self-adjoint operator with an associated quadratic form.
The result is spectral localization (i.e. pure point spectrum) with polynomially decaying eigenfunctions in a small interval at the ground state energy.
|
20 |
Résonances et diffusion pour les opérateurs de Dirac et de Schrödinger magnétique / Resonances and scattering for Dirac and magnetic Schrödinger operatorsKhochman, Abdallah 02 December 2008 (has links)
Le sujet de cette thèse est l’étude de certaines équations de physique mathématique. Dans un premier temps, on étudie les résonances et la fonction de décalage spectral pour les opérateurs de Dirac semi-classique et de Schrödinger magnétique en dimension 3. On dé?nit les résonances comme des valeurs propres d’un opérateur non-autoadjoint obtenu par distortion complexe. Pour l’opérateur de Dirac, on majore le nombre de résonances par O(h-3) où h ? 0 est le paramètre semi-classique. Dans le cas de Schrödinger magnétique, l’opérateur de référence génère des valeurs propres de multipli- cité in?nie plongées dans le spectre continu. Dans une couronne centrée en une de ces valeurs propres et de rayons (r, 2r), on établit une borne supérieure, quand r ? 0, du nombre de résonances. Une approximation de type Breit-Wigner de la dérivée de la fonction de décalage spectral en fonction des résonances et une formule de trace locale sont obtenues pour ces deux opérateurs. De plus, on prouve une formule asymptotique de Weyl pour la fonction de décalage spectral pour l’opérateur de Dirac avec un potentiel électro-magnétique. Dans un deuxième temps, on s’intéresse à l’opérateur de Dirac semi-classique en dimension 1 avec un potentiel ayant des limites constantes mais pas nécessairement les mêmes à ±8. En utilisant la méthode BKW complexe, on construit des solutions analytiques de l’opérateur de Dirac. On étudie la théorie de la di?usion en fonction des solutions entrantes et sortantes. On obtient une asymptotique semi-classique de la matrice de di?usion dans di?érents cas, notamment dans le cas où le paradoxe de Klein apparaît. Le calcul des valeurs propres et des résonances est aussi traité pour l’opérateur de Dirac semi-classique unidimensionnel. / In this thesis, we consider equations of mathematical physics. First, we study the reso- nances and the spectral shift function for the semi-classical Dirac operator and the magnetic Schrö- dinger operator in three dimensions. We de?ne the resonances as the eigenvalues of a non-selfadjoint operator obtained by complex distortion. For the Dirac operator, we establish an upper bound O(h-3), as the semi-classical parameter h tends to 0, for the number of resonances. In the Schrödinger magne- tic case, the reference operator has in?nitely many eigenvalues of in?nite multiplicity embedded in its continuous spectrum. In a ring centered at one of this eigenvalues with radiuses (r, 2r), we establish an upper bound, as r tends to 0, of the number of the resonances. A Breit-Wigner approximation formula for the derivative of the spectral shift function related to the resonances and a local trace formula are obtained for the considered operators. Moreover, we prove a Weyl-type asymptotic of the SSF for the Dirac operator with an electro-magnetic potential. Secondly, we consider the semi-classical Dirac ope- rator on R with potential having constant limits, not necessarily the same at ±8. Using the complex WKB method, we construct analytic solutions for the Dirac operator. We study the scattering theory in terms of incoming and outgoing solutions. We obtain an asymptotic expansion, with respect to the semi-classical parameter h, of the scattering matrix in di?erent cases, in particular, in the case when the Klein paradox occurs. Quantization conditions for the resonances and for the eigenvalues of the one-dimensional Dirac operator are also obtained.
|
Page generated in 0.1056 seconds