141 |
Brightly Luminescent Core/Shell Nanoplatelets with Continuously Tunable Optical Properties TitleMeerbach, Christian, Tietze, Remo, Voigt, Sascha, Sayevich, Vladimir, Dzhagan, Volodymyr M., Erwin, Steven C., Dang, Zhiya, Selyshchev, Oleksandr, Schneider, Kristian, Zahn, Dietrich R.T., Lesnyak, Vladimir, Eychmüller, Alexander 19 July 2019 (has links)
A straightforward, rapid method to create colloidally stable and brightly luminescent core/shell CdSe-based nanoplatelets (NPLs) with fluorescence quantum yields (QYs) up to 50% is demonstrated. A layer-by-layer deposition technique based on a two-phase mixture ‒ consisting of a nonpolar phase which includes the NPLs, and a saturated ionic polar phase ‒ to separate the reagents and hinder the nucleation of the shell material is used. The deposition of the first sulfur layer leads to a significant red-shift (by more than 100 nm) of the optical absorption and emission of the NPLs. Hence, by varying either the sulfur precursor content or the reaction time one can precisely and continuously tune the absorption and emission maxima from 520 to 630 nm. This evolution of the absorption onset during the shell growth is explained quantitatively using density-functional theory and atomistic statistical simulations. The emission can be further enhanced by exposure of the NPL solution to ambient sunlight. Finally, it is demonstrated that the core/shell NPLs can be transferred from the organic solution to aqueous media with no reduction of their QY that opens the door to a broad range of practical applications.
|
142 |
Surface- and tip-enhanced resonant Raman scattering from CdSe nanocrystalsSheremet, E., Milekhin, A. G., Rodriguez, R. D., Weiss, T., Nesterov, M., Rodyakina, E. E., Gordan, O. D., Sveshnikova, L. L., Duda, T. A., Gridchin, V. A., Dzhagan, V. M., Hietschold, M., Zahn, D. R. T. 27 February 2015 (has links)
Surface- and tip-enhanced resonant Raman scattering (resonant SERS and TERS) by optical phonons in a monolayer of CdSe quantum dots (QDs) is demonstrated. The SERS enhancement was achieved by employing plasmonically active substrates consisting of gold arrays with varying nanocluster diameters prepared by electron-beam lithography. The magnitude of the SERS enhancement depends on the localized surface plasmon resonance (LSPR) energy, which is determined by the structural parameters. The LSPR positions as a function of nanocluster diameter were experimentally determined from spectroscopic micro-ellipsometry, and compared to numerical simulations showing good qualitative agreement. The monolayer of CdSe QDs was deposited by the Langmuir–Blodgett-based technique on the SERS substrates. By tuning the excitation energy close to the band gap of the CdSe QDs and to the LSPR energy, resonant SERS by longitudinal optical (LO) phonons of CdSe QDs was realized. A SERS enhancement factor of 2 × 10<sup>3</sup> was achieved. This allowed the detection of higher order LO modes of CdSe QDs, evidencing the high crystalline quality of QDs. The dependence of LO phonon mode intensity on the size of Au nanoclusters reveals a resonant character, suggesting that the electromagnetic mechanism of the SERS enhancement is dominant. Finally, the resonant TERS spectrum from CdSe QDs was obtained using electrochemically etched gold tips providing an enhancement on the order of 10<sup>4</sup>. This is an important step towards the detection of the phonon spectrum from a single QD. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
143 |
LAYER BY LAYER NANOASSEMBLY OF COPPER INDIUM GALLIUM SELENIUM (CIGS) NANOPARTICLES FOR SOLAR CELL APPLICATIONHemati, Azadeh 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In this research thesis, copper indium gallium selenium (CIGS) nanoparticles were synthesized from metal chlorides, functionalized to disperse in water, and further used in layer by layer (LbL) nanoassembly of CIGS films. CIGS nanoparticles were synthesized through the colloidal precipitation in an organic solvent. The peak and average sizes of the synthesized particles were measured to be 68 nm and 75 nm in chloroform, and 30 nm and 115 nm in water, respectively. Two methods were used to disperse the particle in water. In the first method the stabilizing agent oleylamine (OLA) was removed through multiple cleaning processes, and in the second method ligand exchange was performed with polystyrene sulfonate (PSS). Zeta potential of CIGS nanoparticles dispersed in water was measured to be +61 mV. The surface charge of the nanoparticles was reversed by raising the pH of the solution, which was measured to be −43.3 mV at 10.5 pH. In a separate process, the CIGS nanoparticles dispersed in water were coated with PSS. The resulting dispersion was observed to be stable and the surface charge was measured to be −56.9 mV.
The LbL deposition process of CIGS nanoparticles was characterized by depositing thin films on quartz crystal microbalance (QCM). LbL depositions was conducted using (i) oppositely charged CIGS nanoparticles, (ii) positively charged CIGS nanoparticles and PSS, and (iii) PSS-coated CIGS (CIGS-PSS) and polyethyleneimine
(PEI). The average thickness of each bi-layer of the above mentioned depositions were measured to be 2.2 nm, 1.37 nm, and 10.12 nm, respectively.
The results from the QCM have been observed to be consistent with the film thickness results obtained from atomic force microscopy (AFM). Various immersion times versus thickness of the film were also studied. For electrical characterization, the CIGS films were deposited on indium tindioxide (ITO)-coated glass substrates. Current versus voltage (I/V) measurements were carried out for each of the films using the Keithley semiconductor characterization instruments and micromanipulator probing station. It was observed that the conductivity of the films was increased with the deposition of each additional layer. The I/V characteristics were also measured under the light illumination and after annealing to study the photovoltaic and annealing effects. It was observed that under light illumination, the resistivity of a 12-layer CIGS film decreased by 93% to 0.54 MΩ.m, and that of the same number of layers of PSS-coated CIGS and PEI film decreased by 60% to 0.97 MΩ.m under illumination. The resistivity of an 8-layer CIGS and PSS film decreased by 76.4% to 0.1 MΩ.m, and that of the same layers of PSS-coated CIGS and PEI decreased by 87% to 0.07 MΩ.m after annealing.
The functionalized nanoparticles and the LbL CIGS films were implemented in the solar cell devices. Several configurations of CIGS films (p-type), and ZnO and CdS films (n-type) were considered. Poly(3,4-ethylenedioxythiophene) (PEDOT), molybdenum (Mo), and ITO were used as back contacts and ITO was used as front contact for all the devices. The devices were characterized the Keithley semiconductor characterization instruments and micromanipulator probing station. For a CIGS and n-ZnO films device with PEDOT as back contact and ITO as front contact, the current density at 0 V and under light illumination was measured to be 60 nA/cm2 and the power density was measured to be 0.018 nW/cm2. For a CIGS and CdS films device with ITO as both back and front contact, the current density at 0 V and under light illumination was measured to be 50 nA/cm2 and the power density was measured to be 0.01 nW/cm2. For a drop-casted CIGS and CdS films device with Mo as back contact and ITO as front contact, the current density of 50 nA/cm2 at 0 V and power density of 0.5 nW/cm2 under light illumination was measured. For the LbL CIGS and chemical bath deposited CdS films device with ITO as both back and front contact, the current density of 0.04 mA/cm2 at 0 V and power density of 1.6 μW/cm2 under light illumination was measured. Comparing to Device-III, an increase by 99% in the power density was observed by using the CIGS LbL film in the device structure.
The novel aspects of this research include, (i) functionalization of the CIGS nanoparticles to disperse in water including coating with PSS, (ii) electrostatic LbL deposition of CIGS films using oppositely charged nanoparticles and polymers, and (iii) the utilization of the fabricated LbL CIGS films to develop solar cells. In addition, the n-type cadmium sulfide film (CdS) and zinc oxide (ZnO) buffer layer were also deposited through LbL process after the respective particles were functionalized with PSS coating in separate experiments.
|
144 |
Assessment of Lead Chalcogenide Nanostructures as Possible Thermoelectric MaterialsGabriel, Stefanie 12 November 2013 (has links)
The assembly of nanostructures into “multi”-dimensional materials is one of the main topics occurring in nanoscience today. It is now possible to produce high quality nanostructures reproducibly but for their further application larger structures that are easier to handle are required. Nevertheless during their assembly their nanometer size and accompanying properties must be maintained. This challenge was addressed in this work. Lead chalcogenides have been chosen as an example system because they are expected to offer great opportunities as thermoelectric materials. Three different ways to achieve assemblies of lead chalcogenide nanostructures were used and the resulting structures characterized with respect to their potential application as thermoelectric material.
The first means by which a “multi”-dimensional assembly of lead chalcogenide quantum dots can be produced is the formation of porous structures such as aerogels and xerogels. A procedure, where the addition of an initiator such as oxidizers or incident radiation is unnecessary, is introduced and the formation process studied by absorption spectroscopy. The time-consuming aggregation step could be significantly reduced by employing a slightly elevated temperature during gelation that does not lead to any observable differences within the resulting gel structures. After either supercritical or subcritical drying, highly porous monolithic gel structures can be achieved. During the gel formation the size and the shape of the particles changed and they were directly linked together. Nevertheless the resulting porous structures remain crystalline and size dependent effects of the optical properties could be shown. Gels produced from a mixture of PbS and PbSe QDs show a homogenous distribution of both materials but it is not clear to what extent they form an alloy. Although the particles are directly linked together the resulting porous structures possess a very high resistivity and so it was not possible to characterize the semiconductor aerogels with regard to their thermoelectric properties. To achieve an enhanced conductivity porous structures containing PbS and Au nanoparticles have been produced. As has been seen for the pure semiconductor gels the size of the PbS quantum dots has increased and elongated particles were formed. In contrast to the PbS QDs the Au nanoparticles did not change their size and shape and are unevenly distributed within the PbS network. Through the use of the gold nanoparticles the conductivity could be increased and although the conductivity is still quite small, it was possible to determine Seebeck coefficients near room temperature for a mixed semiconductor-metal gel.
The second means by which QD solids could be formed was by the compaction of the QD building blocks into a material that is still nanostructured. Therefore the synthesis of PbS was optimized to achieve sufficient amounts of PbS quantum dots. The ligands used in the synthesis of the QDs unfortunately act as an insulating layer resulting in QD solids with resistivities as high as 2 Gigaohm. For this reason different surface modification strategies were introduced to minimize the interparticle distance and to increase the coupling between the QDs so as to increase the conductivity of the resulting quantum dot solids. One very promising method was the exchange of the initial ligands by shorter ones that can be destroyed at lower temperatures. By such heat treatments the resistivity could be decreased by up to six orders of magnitude. For the pressing of the quantum dots two different compaction methods (SPS and hydraulic pressing) were compared. While the grain growth within the SPS pressed samples is significantly higher the same densification can be achieved by a cold hydraulic pressing as well as by SPS. The densification could be further increased through the use of preheated PbS QDs due to the destruction of the ligands. Samples which had been surface modified with MPA and subsequently thermally treated show the best results with respect to their thermopower and resistivities. Nevertheless the conductivity of the QD solids is still too high for them to be used as efficient thermoelectric materials.
The final assembly method does not involve QDs but instead with one dimensional nanowires. Therefore a synthesis was developed that enables the formation of PbS nanowires of different diameters and one that is easy up-scalable. By the use of a less reactive sulfur precursor and an additional surfactant the formation of nuclei is significantly retarded and within an annealing time of two hours nanowires can be formed presumably by an oriented attachment mechanism. Single crystalline nanowires with a diameter of 65-105 nm could be achieved with the longest axes of the nanowires being parallel to [100]. The resulting nanowires were used as building blocks for film formation on glass substrates by an easily implemented method that requires no special equipment. To characterize the films with a view to their possible application as a thermoelectric material, surface modifications of the films were performed to improve the charge transfer in the films and the Seebeck coefficients of the resulting films measured. Therefore the previous approach of using MPA was applied and a subsequent thermal treatment demonstrated very promising results. In addition an crosslinking ligand was used for surface treatment that leads to similar results as was observed for the thermally treated MPA approach. Both approaches lead to an order of magnitude decrease in the resistivity and due to the fewer grain boundaries present in the films composed of nanowires as compared to the QD assemblies the conductivity is significantly higher. The Seebeck coefficient measurements show that the thermal treatment only slightly affects the Seebeck coefficients. Therefore a significantly higher power factor could be achieved for the nanowire films than for the QD solids.
|
145 |
Electronic Transport in Functional Materials and Two-Dimensional Hole SystemLiu, Shuhao 01 June 2018 (has links)
No description available.
|
146 |
Synthesis of stable and non-cadmium containing quantum dots conjugated with folic acid for imaging of cancer cells / Synthèse de quantum dots stables et sans cadmium conjugués à l’acide folique pour l’imagerie de fluorescence de cellules cancéreusesGeszke-Moritz, Malgorzata 28 October 2011 (has links)
Les Quantum Dots (QDs) sont des particules cristallines de semi-conducteur ou du métal de forme sphérique et de dimension nanométrique. L'intérêt majeur des QDs réside dans leur grande adaptabilité à de nombreuses applications biologiques.Le but de mon travail était de développer une nouvelle classe de QDs de faible toxicité afin de les utiliser pour la bio-imagerie des cellules cancéreuses. Pour cela, il est nécessaire de préparer des sondes hydrosolubles, photostables, biocompatibles, de luminescence élevée et possédant une faible toxicité. La synthèse des cœurs de type ZnS and ZnSe dopés au manganèse ou au cuivre et stabilisés par l’acide 3-mercapropropionique ou par le 1-thioglycérol a été réalisée par la voie hydrothermale. Les techniques analytiques de caractérisation utilisées sont la spectroscopie UV-visible, la spectroscopie de fluorescence, la diffraction des rayons X (XRD), la spectroscopie photoélectronique de rayon X (XPS), la microscopie électronique à transmission (TEM), la diffusion dynamique de la lumière DLS, la spectroscopie infra-rouge (IR), et la résonance paraélectronique (RPE). La toxicité des QDs a été déterminée sur des cellules cancéreuses. Les différents test de cytotoxicité (MTT, XTT et ferrous oxidation-xylenol orange) ont été réalisés. Finalement, les QDs de type ZnS:Mn conjugués à l’acide folique ont été utilisés pour la bio-imagerie des cellules cancéreuses par le biais d’une excitation biphotonique / Semiconductor QDs are tiny light-emitting crystals, and are emerging as a new class of fluorescent labels for medicine and biology. The aim of this work was to develop a new class of non-toxic QDs probes with essential attributes such as water dispersibility, photostability, biocompatibility, high luminescence and possible excitation with low-energy visible light, using simple processing method. Such nanoprobes could be used for bio-imaging of cancer cells. In the performed studies, I focused on ZnS and ZnSe QDs as they are cadmium-free and might be excited biphotonically.The synthesis protocols of ZnS and ZnSe QDs doped with two ions such as Mn or Cu and stabilized by 3-mercaptopropionic acid or 1-thioglycerol were established, followed by NCs characterization (diameter, surface charge, photophysical properties, …) using analytical techniques such as spectrophotometry UV-vis, fluorimetry, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), dynamic light scattering (DLS), infra-red analysis (FT-IR), thin layer chromatography (TLC) and electron paramagnetic resonance (EPR). The cytotoxicity of synthesized bare and conjugated NPs was evaluated on cancer cell lines using MTT, XTT and ferrous oxidation-xylenol orange assay.Finally, chosen well fluorescent and weakly toxic types of as-prepared and characterized QDs were used for bio-imaging of cancer cells. In these experiments, FA-functionalized NCs were excited biphotonically. The performed experiments showed the potential of QDs as cancer cells fluorescent markers and that they accumulate around the cell nuclei
|
147 |
Studies On The Growth And Characterization Of II-VI Semiconductor Nanostructures By Evaporation MethodsYuvaraj, D 07 1900 (has links)
In recent years, there has been growing interests on II-VI semiconductor nanostructures, which are suitable for applications in electronics and optoelectronic devices such as solar cells, UV lasers, sensors, light emitting diodes and field emission displays. II-VI semiconductor nanostructures with different morphologies such as wires, belts, rods, tubes, needles, springs, tetrapods, plates, hierarchical structures and so on, have been widely grown by vapor transport methods. However the process conditions used for the growth of nanostructures still remains incompatible for device fabrication. The realization of practical nanoscale devices using nanostructured film depends mainly on the availability of low cost and lower processing temperatures to manufacture high purity nanostructures on a variety of substrates including glass and polymer.
In this thesis work, studies have been made on the growth and characterization of II-VI semiconductor nanostructures prepared at room temperature, under high vacuum, without employing catalysts or templates.
(i) ZnO nanostructured films with different morphology such as flowers, needles and shrubs were deposited at room temperature on glass and polymer substrates by plasma assisted reactive process. (ii) Zn/ZnO core/shell nanowires were grown on Si substrates under optimized oxygen partial pressure. Annealing of this core shell nanowire in high vacuum resulted in the formation of ZnO nanocanals. (iii) ZnS and ZnSe nano and microstructures were grown on Si substrates under high vacuum by thermal evaporation. The morphology, structural, optical properties and composition of these nano and microstructures were investigated by XRD, SEM, TEM, Raman, PL and XPS. The growth mechanism behind the formation of the different nanostructures has been explained on the basis of vapour-solid (VS) mechanism.
|
148 |
Bile Acid Based Supramolecular Gels, Semiconductor Nanocrystals And Soft Hybrid MaterialsChakrabarty, Arkajyoti 10 1900 (has links) (PDF)
Chapter 1. General Introduction
This chapter gives an introduction to supramolecular organo/hydrogels and the related bile acid chemistry touching upon the gelation properties of the bile acid derivatives. Diverse applications of the supramolecular gels are illustrated with several examples. In the concluding section of this chapter, a brief introduction on the semiconductor nanocrystals is provided. Finally, the content of the thesis is outlined.
Chapter 2. Bile Acid Derived Novel Organo/hydrogelators
Part 1. Bile Acid Derived Organo/hydrogelators With a Basic Side Chain
Cationic analogues of bile acids which showed remarkable gelation properties in water were reported from our laboratory. This led us to investigate the aggregation behaviour of some of the lithocholic and deoxycholic acid derivatives having a basic side-chain.
Figure 1. Bile acid based organo/hydrogelators containing a basic side-chain.
In this part, an organogelator 1 and a hydrogelator 2 derived from parent bile acids have been described with respect to their gelation properties, morphology, thermal and mechanical stability of the gels. The organo/hydrogels were shown to be responsive to acid-base stimuli as the organogel formed only in the protonated state and the hydrogel formed in the neutral form of the tertiary amines. The xerogel fibres obtained from the organogel were found to be solid-like and stable up to 200 oC as confirmed by variable temperature polarizing optical microscopy. The non-fluorescent organogel was doped with a fluorescent dye (coumarin 153) to design a novel dye-organogel composite material which was investigated with laser scanning confocal fluorescence microscopy showing the dye molecules were uniformly deposited on the organogel fibres.
Part 2. Serendipitous Organogelation by Dimeric Bile Acid Esters
This section highlights our work on the organogelators based on a number of dimeric esters consisting of different bile acid units.
Figure 2. The three different dimeric bile acid esters as organogelators.
In this part, three bile acid derived dimeric esters (1, 2 and 3) were shown to possess organogelation properties in aromatic and halogenated aromatic solvents. We studied the morphological features and rheological properties of these organogels. Next, the organogel matrix was exploited to generate and stabilize gold nanoparticles and prepare AuNP/gel hybrid material.
Chapter 3. Cholate Hydrogels and Soft Gel-nanoparticle Hybrid Materials
Sodium cholate does not form gel in water under any condition as compared to other sodium salts of other bile acids such as sodium deoxycholate and lithocholate which show pH-dependent gelation behaviour.
Figure 3. Metal cholate hydrogels derived from sodium cholate and a variety of metal ions.
In this chapter, super hydrogelation of sodium cholate induced by a variety of metal ions (Ca2+, Cu2+, Co2+, Zn2+, Cd2+, Hg2+ and Ag+) is highlighted with respect to their morphology and mechanical strength/stability. The calcium cholate supramolecular system showed the presence of helically twisted nanofibres which were utilised in the synthesis of soft hybrid materials containing metal (Au and Ag) and metal sulphide (CdS, ZnS, HgS, etc.) nanoparticles.
Chapter 4. Cadmium Deoxycholate and Highly Luminescent CdSe Nanocrystals
Bile acid derivatives have very high chemical and thermal stability owing to the presence of a rigid steroidal nucleus. We explored the possibility of utilizing the bile salt derived from Cd as a metal complexes as precursor to high quality nanocrystals (NCs) which can only be accessed at high temperatures (>200 oC).
Figure 4. Synthesis of high quality CdSe NCs from cadmium deoxycholate.
In this chapter, the synthesis of high quality CdSe nanocrystals is discussed using a novel bile acid based precursor: cadmium salt of 7-deoxycholic acid, which has high thermal stability and can be conveniently used at very high temperatures (>300 oC) required for the synthesis of high quality nanocrystals. Syntheses were done both by ‘injection’ and ‘non-injection’ modes. The as-prepared nanocrystals have high photoluminescence quantum yield, multiple excitons, narrow size-distributions and zinc blende/wurtzite crystalline cores.
Appendix. Steroidal Thiols in Design of Novel Quantum dot (QD)/Gel Hybrid Materials
Bile acid derived steroidal thiols were reported to be efficient capping agents for silver and gold nanoparticles from our laboratory. So, we wanted to check whether they could stabilize the semiconductor nanocrystals as well.
Figure 5. Steroidal thiols as stabilizers of semiconductor quantum dots.
In this short report, we describe the efficient capping by bile acid derived thiols of group II-VI semiconductor nanocrystals/quantum dots (QDs) (CdS, CdSe). After synthesizing the thiol capped QDs, we tried to disperse the capped nanoparticles into the gel fibres. The hybrid gels showed the presence of nanoparticles inside the fibres as observed by transmission electron microscopy, although the photoluminescence of the QDs was very low in the gel matrix, which might be due to the inefficient surface passivation of the nanoparticles in the gel.
|
149 |
Robust Polymer Matrix Based on Isobutylene (Co)polymers for Efficient Encapsulation of Colloidal Semiconductor NanocrystalsShiman, Dmitriy I., Sayevich, Vladimir, Meerbach, Christian, Nikishau, Pavel A., Vasilenko, Irina V., Gaponik, Nikolai, Kostjuk, Sergei V., Lesnyak, Vladimir 01 April 2021 (has links)
We introduce new oxygen- and moisture-proof polymer matrixes based on polyisobutylene (PIB) and its block copolymer with styrene [poly(styrene-block-isobutylene-blockstyrene), PSt-b-PIB-b-PSt] for the encapsulation of colloidal semiconductor nanocrystals. In order to prepare transparent and processable composites, we developed a special procedure of nanocrystal surface engineering including ligand exchange of parental organic ligands to inorganic species followed by the attachment of specially designed short-chain PIB functionalized with an amino group. The latter provides excellent compatibility of the particles with the polymer matrixes. As colloidal nanocrystals, we chose CdSe nanoplatelets (NPLs) because they possess a large surface and thus are very sensitive to the environment, in particular in terms of their limited photostability. The encapsulation strategy is quite general and can be applied to a wide variety of semiconductor nanocrystals, as demonstrated on the example of PbS quantum dots. All obtained composites exhibited excellent photostability, being tested in a focus of a powerful white-light source, as well as exceptional chemical stability in a strongly acidic media. We compared these properties of the new composites with those of widely used polyacrylate-based materials, demonstrating the superiority of the former. The developed composites are of particular interest for application in optoelectronic devices, such as color-conversion light-emitting diodes, laser diodes, luminescent solar concentrators, etc.
|
150 |
Fabrication and analysis of CIGS nanoparticle-based thin film solar cellsGhane, Parvin 20 November 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Fabrication and analysis of Copper Indium Gallium di-Selenide (CIGS) nanoparticles-based thin film solar cells are presented and discussed. This work explores non-traditional fabrication processes, such as spray-coating for the low-cost and highly-scalable production of CIGS-based solar cells.
CIGS nanoparticles were synthesized and analyzed, thin CIGS films were spray-deposited using nanoparticle inks, and resulting films were used in low-cost fabrication of a set of CIGS solar cell devices. This synthesis method utilizes a chemical colloidal process resulting in the formation of nanoparticles with tunable band gap and size. Based on theoretical and experimental studies, 100 nm nanoparticles with an associated band gap of 1.33 eV were selected to achieve the desired film characteristics and device performances. Scanning electron microcopy (SEM) and size measurement instruments (Zetasizer) were used to study the size and shape of the nanoparticles. Electron dispersive spectroscopy (EDS) results confirmed the presence of the four elements, Copper (Cu), Indium (In), Gallium (Ga), and Selenium (Se) in the synthesized nanoparticles, while X-ray diffraction (XRD) results confirmed the tetragonal chalcopyrite crystal structure. The ultraviolet-visible-near infra-red (UV-Vis-NIR) spectrophotometry results of the nanoparticles depicted light absorbance characteristics with good overlap against the solar irradiance spectrum.
The depositions of the nanoparticles were performed using spray-coating techniques. Nanoparticle ink dispersed in ethanol was sprayed using a simple airbrush tool. The thicknesses of the deposited films were controlled through variations in the deposition steps, substrate to spray-nozzle distance, size of the nozzle, and air pressure. Surface features and topology of the spray-deposited films were analyzed using atomic force microscopy (AFM). The deposited films were observed to be relatively uniform with a minimum thickness of 400 nm. Post-annealing of the films at various temperatures was studied for the photoelectric performance of the deposited films. Current density and voltage (J/V) characteristics were measured under light illumination after annealing at different temperatures. It was observed that the highest photoelectric effect resulted in annealing temperatures of 150-250 degree centigrade under air atmosphere.
The developed CIGS films were implemented in solar cell devices that included Cadmium Sulfide (CdS) and Zinc Oxide (ZnO) layers. The CdS film served as the n-type layer to form a pn junction with the p-type CIGS layer. In a typical device, a 300 nm CdS layer was deposited through chemical bath deposition on a 1 $mu$m thick CIGS film. A thin layer of intrinsic ZnO was spray coated on the CdS film to prevent shorting with the top conductor layer, 1.5 μm spray-deposited aluminum doped ZnO layer. A set of fabricated devices were tested using a Keithley semiconductor characterization instrument and micromanipulator probe station. The highest measured device efficiency was 1.49%. The considered solar cell devices were simulated in ADEPT 2.0 solar cell simulator based on the given fabrication and experimental parameters. The simulation module developed was successfully calibrated with the experimental results. This module can be used for future development of the given work.
|
Page generated in 0.0399 seconds