• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 10
  • 9
  • 6
  • 5
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 149
  • 149
  • 149
  • 149
  • 47
  • 32
  • 26
  • 23
  • 16
  • 15
  • 14
  • 14
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Thermodynamic Investigation of Yttria-Stabilized Zirconia (YSZ) System

Asadikiya, Mohammad 06 November 2017 (has links)
The yttria-stabilized zirconia (YSZ) system has been extensively studied because of its critical applications, like solid oxide fuel cells (SOFCs), oxygen sensors, and jet engines. However, there are still important questions that need to be answered and significant thermodynamic information that needs to be provided for this system. There is no predictive tool for the ionic conductivity of the cubic-YSZ (c-YSZ), as an electrolyte in SOFCs. In addition, no quantitative diagram is available regarding the oxygen ion mobility in c-YSZ, which is highly effective on its ionic conductivity. Moreover, there is no applicable phase stability diagram for the nano-YSZ, which is applied in oxygen sensors. Phase diagrams are critical tools to design new applications of materials. Furthermore, even after extensive studies on the thermodynamic database of the YSZ system, the zirconia-rich side of the system shows considerable uncertainties regarding the phase equilibria, which can make the application designs unreliable. During this dissertation, the CALPHAD (CALculation of PHase Diagrams) approach was applied to provide a predictive diagram for the ionic conductivity of the c-YSZ system. The oxygen ion mobility, activation energy, and pre-exponential factor were also predicted. In addition, the CALPHAD approach was utilized to predict the Gibbs energy of bulk YSZ at different temperatures. The surface energy of each polymorph was then added to the predicted Gibbs energy of bulk YSZ to obtain the total Gibbs energy of nano-YSZ. Therefore, a 3-D phase stability diagram for the nano-YSZ system was provided, by which the stability range of each polymorph versus temperature and particle size are presented. Re-assessment of the thermodynamic database of the YSZ system was done by applying the CALPHAD approach. All of the available thermochemical and phase equilibria data were evaluated carefully and the most reliable ones were selected for the Gibbs energy optimization process. The results calculated by the optimized thermodynamic database showed good agreement with the selected experimental data, particularly on the zirconia-rich side of the system.
112

A Portable Generator Incorporating Mini-Tubular Solid Oxide Fuel Cells

Hyde, Andrew Justin January 2008 (has links)
Modern society has become reliant on battery powered electronic devices such as cell phones and laptop computers. The standard way of recharging these devices is by connecting to a reticulated electricity supply. In situations with no electricity supply some other recharging method is required. Such a possibility is a small, portable, generator based on fuel cell technology, specifically mini-tubular solid oxide fuel cells (MT-SOFC). MT-SOFCs have been developed since the 1990s but there is limited analysis, discussion or research on developing and constructing a portable generator based on MT-SOFC technology. Such a generator, running on a portable gas supply, requires combining the key aspects of cell performance, a heating and fuel reforming system, and cell manifolds. Cell design, fuel type, fuel flow rate, current-collection method and operating temperature all greatly affected MT-SOFCs performance. Segmenting the cathode significantly increased the power output. Maximum power density from an electrolyte supported MT-SOFC was 140 mW/cm2. The partial oxidation reactor (POR) developed provided the required heat to maintain the MT-SOFCs at an operating temperature suitable for generating electricity. The exhaust gas from the POR was a suitable fuel for MT-SOFCs, having sufficient carbon monoxide and hydrogen to generate electricity. Various manifold materials were evaluated including solid metal blocks and folded sheet metal. It was found that manifolds made from easily worked alumina fibre board decreased the thermal stresses and therefore the fracture rate of the MT-SOFCs. The final prototype developed comprised a partial oxidation reactor and MT-SOFCs mounted in alumina fibre board manifolds within a well-insulated enclosure, which could be run on LPG. Calculated efficiency of the final prototype was 4%. If all the carbon monoxide and hydrogen produced by the partial oxidation reactor were converted to electrical energy, efficiency would increase to 39%. Under ideal conditions, efficiency would be 78%. Efficiency of the prototype can be improved by increasing the fuel and oxygen utilisation ratios, ensuring heat from the exhaust gases is transferred to the incoming gases, and improving the methods for collecting current at both the anode and cathode.
113

Modeling, simulation, and rational design of porous solid oxide fuel cell cathodes

Lynch, Matthew Earl 11 October 2011 (has links)
This thesis details research performed in modeling, simulation, and rational design of porous SOFC cathodes via development, extension, and use of the key tools to aid in the fundamental understanding and engineering design of cathode materials. Phenomenological modeling of triple phase boundary (TPB) reactions and surface transport on La₁₋ₓSrₓMnO₃ (LSM) was conducted, providing insight into the role of the bulk versus surface oxygen reduction pathway and the role of sheet resistance in thin-film patterned electrode measurements. In response to observation of sheet resistance deactivation, a modeling study was conducted to design thin-film patterned electrodes with respect to sheet resistance. Additionally, this thesis outlines the application of phenomenological chemical kinetics to describe and explain the performance and stability enhancements resulting from surface modification of La₁₋ₓSrₓCo₁₋yFeyO₃₋delta (LSCF) with a conformal LSM coating. The analysis was performed in close coordination with electrochemical experiments and transmission electron microscopy. Finally, the thesis describes conformal modeling of porous cathode microstructures using chemical kinetics and transport models. A novel application of conservative point defect ensembles was developed to allow simulations with complicated chemical surface kinetics to be efficiently coupled with bulk transport within the porous structure. The finite element method was employed to simulate electrochemical response conformal to sintered porous ceramic structures using actual 3D microstructural reconstructions obtained using x-ray microtomography. Mesh refinement, linear, and nonlinear reaction rate kinetics were employed to study the bulk versus surface oxygen reduction pathways and the effect of near-TPB nanostructure.
114

Bioethanol in der Hochtemperaturbrennstoffzelle

Breite, Manuela 09 April 2013 (has links) (PDF)
Ziel der Arbeit war die Nutzbarmachung von Bioethanol zur Wandlung in Strom und Wärme in einer Hochtemperaturbrennstoffzelle. Dazu waren neben der Entwicklung eines langzeitstabilen, effektiven Katalysators zur Synthesegaserzeugung und dessen Testung sowie der Übertragung gewonnener Erkenntnisse auf in einem Reformer einsetzbare Konzepte die Verifizierung kommerzieller Katalysatorsysteme für die partielle Oxidation von Ethanol notwendig. Außerdem ist für die Entwicklung eines ethanolbetriebenen SOFC-Systems eine pulsations- und ablagerungsfreie Verdampfung von unvergälltem und vergälltem Ethanol – welche nicht Stand der Technik ist – erforderlich, für die ein geeignetes Verdampferkonzept entwickelt und getestet wurde. Experimentell konnte die Betreibbarkeit eines SOFC-Systems mit Ethanol an einem für den Betrieb mit LPG ausgelegten System nachgewiesen werden.
115

Entwicklung degradationsstabiler Glaslote für keramische Hochtemperaturbrennstoffzellen

Rost, Axel 25 September 2013 (has links) (PDF)
Planare keramische Hochtemperaturbrennstoffzellen liefern aufgrund ihres hohen Wirkungsgrades sowie einer hohen Variabilität geeigneter Brennstoffe einen wertvollen Beitrag zur ressourcenschonenden Stromproduktion. Für einen sicheren Betrieb dieser Brennstoffzellen sind hermetisch dichte und elektrisch isolierende Dichtungen unabdingbar. Aufgrund ihrer chemischen Stabilität sowie der Anpassung relevanter Fügeeigenschaften wie Viskosität und thermischem Ausdehnungsverhalten eignen sich insbesondere teilkristalline Glaslote als Dichtungs- und Fügewerkstoffe für diese Aufgabe. Für einen zuverlässigen Langzeitbetrieb von Brennstoffzellensystemen ist neben der Anpassung der Fügeparameter ein umfassendes Verständnis der Alterungsprozesse von Glasloten im Fügeverbund unter Betriebsbedingungen hinsichtlich Gasdichtheit und elektrischem Iso-lationsvermögen von entscheidender Bedeutung. In grundlegenden Untersuchungen zeigt diese Arbeit auf, welche vielschichtigen Degradationsprozesse in teilkristallinen Glasloten unter simulierten Einsatzbedingungen ablau-fen. Durch geeignete Versuchsabläufe gelang es, diese Einflüsse hinsichtlich ihrer Auswirkungen auf Degradationsprozesse zu separieren und zu bewerten. Die daraus gewonnenen Erkenntnisse flossen in eine Glaslotentwicklung ein, mit der die Degradationsstabilität teilkristalliner Glaslote unter den gegebenen Einsatzbedingungen deutlich erhöht werden konnte. Besondere Berücksichtigung fand hierbei der Einfluss der Glaszusammensetzung auf Degradationsprozesse im Verbund mit den metallischen Fügepartnern sowie die Porenbildung in gesinterten glaskeramischen Gefügen unter brennstoffzellentypischen Betriebsbedingungen. Im Gesamtergebnis zeigt die vorliegende Arbeit, dass zur Erfüllung von Fügeaufgaben neben der Anpassung intrinsischer Glasloteigenschaften auch das langfristige Verhalten teilkristalliner Glaslote im Fügeverbund Berücksichtigung finden muss.
116

Quantitative characterization and modeling of the microstructure of solid oxide fuel cell composite electrodes

Zhang, Shenjia 23 August 2010 (has links)
Three-phase porous composites containing electrolyte (ionic conductor), electronic conductor, and porosity phases are frequently used for solid oxide fuel cell (SOFC) electrodes. Performance of such electrodes is microstructure sensitive. Topological connectivity of the microstructural phases and total length of triple phase boundaries are the key microstructural parameters that affect the electrode performance. These microstructural attributes in turn depend on numerous process parameters including relative proportion, mean sizes, size distributions, and morphologies of the electrolyte and electronic conductor particles in the powder mix used for fabrication of the composites. Therefore, improvement of the performance of SOFC composite electrodes via microstructural engineering is a complex multivariate problem that requires considerable input from microstructure modeling and simulations. This dissertation presents a new approach for geometric modeling and simulation of three-dimensional (3D) microstructure of three-phase porous composites for SOFC electrodes and provides electrode performance optimization guidelines based on the parametric studies on the effects of processing parameters on the total length and topological connectivity of the triple phase boundaries. The model yields an equation for total triple phase boundary length per unit volume (LTPB) that explicitly captures the dependence of LTPB on relative proportion of electrolyte and electronic conductor phases; volume fraction of porosity; and mean size, coefficient of variation, and skewness of electrolyte and electronic conductor particle populations in the initial powder mix. The equation is applicable to electrolyte and electronic conductor particles of any convex shapes and size distributions. The model is validated using experimental measurements performed in this research as well as the measurements performed by other researchers. Computer simulations of 3D composite electrode microstructures have been performed to further validate the microstructure model and to study topological connectivity of the triple phase boundaries in 3D microstructural space. A detailed parametric analysis reveals that (1) non-equiaxed plate-like, flake-like, and needle-like electrolyte and electronic conductor particle shapes can yield substantially higher LTPB; (2) mono-sized electrolyte and electronic conductor powders lead to higher LTPB as compared to the powders having size distributions with large coefficients of variation; (3) LTPB is inversely proportional to the mean sizes of electrolyte and electronic conductor particles; (4) a high value of LTPB is obtained at the lowest porosity volume fraction that permits sufficient connectivity of the pores for gas permeability; and (5) LTPB is not sensitive to the relative proportion of electrolyte and electronic conductor phases in the composition regime of interest in composite electrode applications.
117

Microstructure-based solid oxide fuel cell seal design using statistical mechanics

Milhans, Jacqueline Linda 15 November 2010 (has links)
Solid oxide fuel cells (SOFC) in a flat-plate configuration require a hermetic seal between the fuel and air sides of the electrodes, and this seal must withstand a variety of thermally-induced stresses over the lifetime of the cell. In this study, quantitative microstructure-property relationships are developed to predict optimum seal structures for mechanical properties and thermal expansion coefficient criteria. These relationships are used to create an inverse approach to characterizing the processing method from the desired microstructure. The main focus of the work concentrates on providing tools to enable macroscopic property predictions from the constituent properties using homogenization techniques based on the individual phase properties and microstructure morphology. The microstructure is represented by two-point correlation functions. Statistical continuum mechanics models were then employed and developed to predict the mechanical and thermal properties of the material. The models enable the prediction of elastic modulus and coefficient of thermal expansion of the multi-phase material. The inelastic mechanical behavior was also studied, indicating microstructure dependence. These models will aid in predicting the a proper seal microstructure (with desired elastic stiffness, coefficient of thermal expansion, and viscoelastic behaviors) based on a desired level of crystallization glass-ceramic materials.
118

Χαρακτηρισμός και έλεγχος ιδιοτήτων των μικτών οξειδίων στο σύστημα ZrO2-Y2O3-TiO2 (Cr2O3) καθώς και των κεραμομεταλλικών Ni/ZrO2-Y2O3-TiO2, ως υλικών ανόδου κελίου καυσίμου στέρεου ηλεκτρολύτη (SOFC) / Physical characterization and properties control of the ZrO2-Y2O3-TiO2 (Cr2O3) mixed oxides as well as the Ni/ZrO2-Y2O3-TiO2, cermets as anode materials of solid oxide fuel cell (SOFC)

Σκαρμούτσος, Διονύσιος Σ. 24 June 2007 (has links)
Στα πλαίσια της αναζήτησης νέων µεθόδων παραγωγής ενέργειας υψηλής απόδοσης και φιλικής προς το περιβάλλον, ένα µεγάλο µέρος των ερευνητικών δραστηριοτήτων σε διεθνή κλίµακα έχει στραφεί στην ανάπτυξη της τεχνολογίας των κελίων καυσίµου στερεού ηλεκτρολύτη, SOFC’s (Solid Oxide Fuel Cell’s). Λόγω της φιλικότητάς τους προς το περιβάλλον τα SOFC’s µπορεί να εισαχθούν για χρήση και σε αστικές περιοχές, όπου παράλληλα µε την παραγόµενη ηλεκτρική ενέργεια, είναι δυνατόν να αξιοποιηθεί και η εκλυόµενη θερµική ενέργεια για θέρµανση χώρων, αυξάνοντας συνολικά την αποτελεσµατικότητά τους. Ένα από τα µειονεκτήµατα που εµφανίζονται κατά την µακρόχρονη λειτουργία ενός «State of the art» κελίου καυσίµου αποτελούµενο από Ni/YSZ-κεραµοµεταλλικό (άνοδος) – YSZ (ηλεκτρολύτη) – LaMnO3 περοβσκίτης (κάθοδος) – LaCrO3 περοβσκίτης (συνδέτης) είναι η υποβάθµιση της απόδοσής του, η οποία µεταξύ άλλων οφείλεται και στην αστάθεια της µικροδοµής του κεραµοµεταλλικού ηλεκτροδίου της ανόδου, λόγω συσσωµάτωσης της µεταλλικής φάσης. Στόχος της εργασίας ήταν η βελτίωση της ευστάθειας της µικροδοµής, καθώς και η διερεύνηση της δυνατότητας ελάττωσης του ποσοστού συµµετοχής της µεταλλικής φάσης στο κεραµοµεταλλικό υλικό του ηλεκτροδίου της ανόδου, χωρίς σηµαντική απώλεια σε ηλεκτρική αγωγιµότητα. Για τον σκοπό αυτό παρασκευάσθηκαν, χαρακτηρίσθηκαν και ελέγχθηκαν οι ιδιότητες µικτών κεραµικών οξειδίων επιλεγµένων συνθέσεων του τριµερούς συστήµατος ZrO2-Y2O3-TiO2 (η Cr2O3) καθώς και τα αντίστοιχα κεραµοµεταλλικά Ni/ZrO2-Y2O3-TiO2 µε προσθήκη 30,40 και 45 vol% Ni. Aπό τα αποτελέσµατα προέκυψε ότι σε θερµοκρασία πύρωσης 1400ºC σχηµατίζονται µικτά οξείδια µε την κυβική δοµή του πλέγµατος φθορίτη και συντελεστή θερµικής διαστολής αντίστοιχο του ηλεκτρολύτη (YSZ). Η ηλεκτρική τους αγωγιµότητα σε ατµόσφαιρα Ar+4%H2 είναι µικτού τύπου (ιοντική + ηλεκτρονιακή), όµως λόγω της χαµηλής απόλυτης τιµής στην θερµοκρασιακή περιοχή λειτουργίας του κελίου καυσίµου (900-1000ºC) δεν προσφέρονται για χρήση αυτούσια, ως κεραµικές άνοδοι. ΠΕΡΙΛΗΨΗ-ABSTRACT 6 Από πειράµατα διαβροχής στο σύστηµα Ni σε επαφή µε τα µικτά οξείδια προέκυψε ότι η παρουσία TiO2 βελτιώνει την συνάφεια και ως εκ τούτου την ισχύ του δεσµού στην διεπιφάνεια µετάλλου/κεραµικού. Η βελτίωση των διεπιφανειακών ιδιοτήτων έχει σαν αποτέλεσµα των ελάττωση του συντελεστού διαστολής των κεραµεταλλικών και την καλλίτερη µηχανική προσαρµογή τους στον ηλεκτρολύτη (YSZ).Επίσης, λόγω της µείωσης του ρυθµού συσσωµάτωσης των σωµατιδίων της µεταλλικής φάσης, οι τιµές της ηλεκτρικής αγωγιµότητας των κεραµοµεταλλικών παραµένουν σε υψηλά επίπεδα και µετά από µακροχρόνια παραµονή σε συνθήκες λειτουργίας (1000ºC, 1000h). Πρώτες ηλεκτροχηµικές µετρήσεις σε κελία καυσίµου µε κεραµοµεταλλική άνοδο, αποτελούµενη από επιλεγµένη σύνθεση µικτού οξείδίου του τριµερούς συστήµατος ως κεραµικής συνιστώσας, έδωσαν ενθαρρυντικά αποτελέσµατα αφήνοντας σηµαντικά περιθώρια για επίτευξη ικανοποιητικών επιδόσεων, µε βελτίωση του τρόπου κατασκευής. / Within the research framework for the development of alternative, friendly to the environment methods for the production of energy, significant effort is focusing on the SOFC’s (Solid Oxide Fuel Cell’s) technology. Due to their low pollutant emissions fuel cells can be applied inside civil areas were the electrical power can be used together with the thermal energy generated by the cell, increasing the total performance of the device. The “state of the art” fuel cell structure is the anode electrode (Ni/YSZ cermet), the electrolyte (YSZ), the cathode electrode (LaMnO3 perowskite) and the interconnector (LaCrO3 perowskite). One of the disadvantages of fuel cells is the performance degradation due to the instability of the YSZ/Ni anode electrode microstructure caused by metal phase sintering. This work aims to the improvement of microstructure stability as well as the possibility of reducing the amount of the metallic phase to the anode cermet without affecting its electrical properties. New ceramic materials of the ternary system ZrO2-Y2O3-TiO2 (or Cr2O3) were produced and characterized as well as their corresponding cermets Ni/ZrO2-Y2O3-TiO2 by the addition of 30,40 and 45 vol% Ni. After calcination at 1400ºC mixed oxides are formed having cubic fluorite crystal structure and similar thermal expansion properties to the YSZ ceramic oxide. The electrical conductivity in reducing atmosphere Ar+4%H2 is of electronic and ionic type but due to the low values in the working temperature range of a fuel cell (900-1000ºC) they cannot be used independently as anode materials. Wetting experiments of the system Ni in contact to those mixed oxides showed that TiO2 presence enhances the adherence and the bond strength at the metal ceramic interface. Improvement of the interfacial properties results to the decrease of cermets thermal expansion improving in this way the mechanical adjustment of the anode to the electrolyte. Also due to the decrease of the sintering tendency of the metallic phase particles, the electrical conductivity values remain at high values after long term annealing at high temperature (1000ºC, 1000h). Early electrochemical tests performed to fuel cells having a selected anode material showed encouraging results leaving space for improvement especially to the construction methods used in order to achieve satisfactory performance.
119

Kuro elementai ir jų panaudojimo galimybės, aprūpinant pastatų kompleksą energija / Fuel Cells and Their Application Possibilities for Buildings Complex Power Supply

Pakulytė, Giedrė 20 June 2006 (has links)
Human’s energy demand is growing and there is a necessity to solve questions of sustainable energetics, such as security of energy supply, energy efficiency and environment protection. Possible way of the solution of these problems is new and more efficient technologies and new energy sources. Fuel cells are one of the developing and environmentally clean technologies. This master’s report is dealing with cogeneration technologies and only fuel cells are analyzed thoroughly. Most usable type of fuel cells for decentralized power and heat generation is identified and its operating principles and properties are analyzed. Advantages and disadvantages of solid oxide fuel cells are given. Power of the fuel cell is chosen in the particular case, when energy demand of building complex of the hospital is analyzed. The fuel cell is integrated into the energy supply system with other equipment. There are made several alternatives to estimate the operation of the system technologically and economically. The simple pay back period and the net present value are used to estimate economical benefit of the system, when prices of energetic sources and fuel cells are varied. Finally, academic knowledge and calculation results are summarized and conclusions of the final report are given.
120

Development of SOFC anodes resistant to sulfur poisoning and carbon deposition

Choi, Song Ho 14 November 2007 (has links)
The surface of a dense Ni-YSZ anode was modified with a thin-film coating of niobium oxide (Nb2O5) in order to understand the mechanism of sulfur tolerance and the behavior of carbon deposition. Results suggest that the niobium oxide was reduced to NbO2 under operating conditions, which has high electrical conductivity. The NbOx coated dense Ni-YSZ showed sulfur tolerance when exposed to 50 ppm H2S at 700°C over 12 h. Raman spectroscopy and XRD analysis suggest that different phases of NbSx formed on the surface. Further, the DOS (density of state) analysis of NbO2, NbS, and NbS2 indicates that niobium sulfides can be considered as active surface phases in the H2S containing fuels. It was demonstrated that carbon formation was also suppressed with niobium oxide coating on dense Ni-YSZ in humidified CH4 (3% H2O) at 850ºC. In particular, under active operating conditions, there was no observable surface carbon as revealed using Raman spectroscopy due probably to electrochemical oxidation of carbon. Stable performances of functional cells consisting of Pt/YSZ/Nb2O5 coated dense Ni-YSZ in the fuel were achieved; there was no observable degradation in performance due to carbon formation. The results suggest that a niobium oxide coating has prevented carbon from formation on the surface probably by electrochemically oxidation of carbon on niobium oxide coated Ni-YSZ. On the other hand, computational results suggest that, among the metals studied, Mo seems to be a good candidate for Ni surface modification. Ni-based anodes were modified with Mo using wet-impregnation techniques, and tested in 50 ppm H2S-contaminated fuels. It was found that the Ni-Mo/CeO2 anodes have better sulfur tolerance than Ni, showing a current transient with slow recovery rather than slow degradation in 50 ppm H2S balanced with H2 at 700°C.

Page generated in 0.0956 seconds