• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 15
  • 9
  • 8
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Elektrodepozice tenkých tantalových vrstev z iontových roztoků a měření jejich elektrických vlastností / Electrodeposition of thin tantalum layers from ionic liquids and measurement of their electrical properties

Svobodová, Ivana January 2016 (has links)
The thesis is focused on the electrodeposition of tantalum from ionic solution 1-butyl-1- methylpyrrolidinium bis(trifluoromethylsulfonyl) imide, ([BMP]Tf2N) at 200°C and description of related transfer and kinetic phenomena on the interface between the ionic solution and working electrode. Furthermore, the electrodeposition of tantalum layers in different ionic solutions containing tantalum salts and especially in ([BMP]Tf2N) is introduced. In the last part of the thesis, results of cyclic voltammetry, surface analysis SEM and elemental analysis EDX are discussed. MIS (metal-insulator-semiconductor) structure was determined comprising porous anodic alumina as the insulator and semiconductive TaxOy on the top of the insulator. The electric conductivity of the MIS structures was studied by using amper-volt IV and CV characteristics. The results of the cyclic voltametry, impedance spectroscopy and chronoamperometry are discussed.
12

MODELING AND CHARACTERIZATION OF SOLID-STATE AND VACUUM HIGH-POWER MICROWAVE DEVICES

Xiaojun Zhu (8039564) 30 November 2023 (has links)
<p dir="ltr">High-power microwave (HPM) devices are generally vacuum-based devices that transform electron beam energy into microwaves with peak powers above 100 MW from 1-300 GHz. Solid-state HPM devices provide more compactness and greater reliability while consuming less power. Nonlinear transmission lines (NLTLs) provide a solid-state alternative to HPM generation by sharpening the input pulses from a pulse forming network to create output oscillations.</p><p dir="ltr">The first section of this dissertation evaluates and explores the feasibility of using nonlinear composites containing ferroelectric (e.g., Ba<sub>2/3</sub>Sr<sub>1/3</sub>TiO<sub>3</sub>, BST) and/or ferromagnetic (e.g., Ni<sub>1/2</sub>Zn<sub>1/2 </sub>Fe<sub>2</sub>O<sub>4</sub>, NZF) inclusions in a linear polymer host (polydimethylsiloxane, PDMS) to tune NLTL properties for HPM applications. Appropriately modelling and designing NLTLs using nonlinear composites require accurately characterizing their linear and nonlinear electromagnetic properties. We first studied the electromagnetic properties of the composites using theoretical, numerical, and experimental approaches. Incorporating these composite models and characterizations into NLTL simulations will be discussed.</p><p dir="ltr">Vacuum-based HPM devices, such as magnetrons and crossed-field amplifiers, generally operate in the space-charge-limited region, which corresponds to the maximum current possible for insertion into the device. This motivated studying the space-charge-limited current and electron flow in a two-dimensional (2D) planar diode with various crossed-magnetic fields using particle-in-cell (PIC) simulations. For non-magnetically insulated diodes (electrons emitted from the cathode can reach the anode), analytical and/or semi-empirical solutions are derived for electrons with nonzero monoenergetic initial velocity that agree well with PIC simulations. For magnetically insulated conditions, we developed new metrics using simulations and analytic theories to assess electron cycloidal and Brillouin flow to understand the implications of increasing injection current for 2D diodes. These analyses provide details on the operation of these devices at high currents, particularly virtual cathode operation, that may elucidate behavior near their limits of operation.</p>
13

Etude du transport de charges dans les polymères semi-conducteurs à faible bande interdite et de son impact sur les performances photovoltaïques / Study of charge transport in low band-gap semiconducting polymers and its impact on phototovoltaic performances

Fall, Sadiara 12 April 2013 (has links)
Le transport de charges dans une série de copolymères à faible bande interdite basés sur l'alternance de motifs riches en électrons (thiophène, thiénothiophène) et d‘unités déficients en électrons (benzothiadiazole) et dans leurs mélanges avec un dérivé du fullerène (PCBM-C60) a été étudié. Les polymères sont différenciés par la structure moléculaire de leur coeur conjugué et par la nature, la position et la densité de leurs chaines latérales. Dans les polymères purs, la mobilité a été étudiée en fonction de la densité de charges par le biais de l’analyses de caractéristiques électriques de transistors à effet de champ et de dispositifs à un seul type de porteurs dont le courant est limité par la charge d’espace. En utilisant le modèle de transport de charges développé par Vissenberg et al., nous avons pu estimer le degré de désordre dans le film organique et corréler le transport de charge avec le degré d’ordre structural mesuré par la diffraction des Rayons-X. Ces polymères ont été conçus pour être utilisés dans la couche active des cellules solaires organiques. Grâce à l’étude du transport de charges dans les mélanges à différents ratios massiques polymères:fullerène, nous avons mis en évidence l’effet considérable de la structure moléculaire sur le ratio optimal polymère:fullerène. Aussi, nous avons pu montrer que la nature des chaînes latérales joue un rôle important dans l’obtention d’un chemin de percolation optimal à la conduction des électrons. / The charge transport in a series of low band-gap copolymers based on the alternation of electron-rich units (thiophene, thienothiophene) and electron-deficient units (benzothiadiazole) and in their blends with a fullerene derivative (PCBM-C60) is investigated. The polymers are differentiated by the molecular structure of the conjugated backbone and by the nature, position and density of alkyl side chains. In pristine polymer films, the hole mobility has been investigated as a function of charge carrier density by analyzing the electrical response of field-effect transistors and single carrier spacecharge- limited current devices. By using the charge transport model developed by Vissenberg et al., we could quantify the structural disorder for the different polymers and correlate their degree of anisotropy with structural data obtained by Grazing Incidence Wide Angle X-ray diffraction. These polymers have been used in the active layer of organic solar cells. The ambipolar chargetransport was investigated in the corresponding polymer:fullerene blends. The results show that the side chains play a major role on the polymer: fullerene interactions and controls the optimal weight ratio. Also, we have shown that the nature of the side chains has a strong impact in the optimal electron conducting pathways.
14

Charge transport and energy levels in organic semiconductors / Ladungstransport und Energieniveaus in organischen Halbleitern

Widmer, Johannes 25 November 2014 (has links) (PDF)
Organic semiconductors are a new key technology for large-area and flexible thin-film electronics. They are deposited as thin films (sub-nanometer to micrometer) on large-area substrates. The technologically most advanced applications are organic light emitting diodes (OLEDs) and organic photovoltaics (OPV). For the improvement of performance and efficiency, correct modeling of the electronic processes in the devices is essential. Reliable characterization and validation of the electronic properties of the materials is simultaneously required for the successful optimization of devices. Furthermore, understanding the relations between material structures and their key characteristics opens the path for innovative material and device design. In this thesis, two material characterization methods are developed, respectively refined and applied: a novel technique for measuring the charge carrier mobility μ and a way to determine the ionization energy IE or the electron affinity EA of an organic semiconductor. For the mobility measurements, a new evaluation approach for space-charge limited current (SCLC) measurements in single carrier devices is developed. It is based on a layer thickness variation of the material under investigation. In the \"potential mapping\" (POEM) approach, the voltage as a function of the device thickness V(d) at a given current density is shown to coincide with the spatial distribution of the electric potential V(x) in the thickest device. On this basis, the mobility is directly obtained as function of the electric field F and the charge carrier density n. The evaluation is model-free, i.e. a model for μ(F, n) to fit the measurement data is not required, and the measurement is independent of a possible injection barrier or potential drop at non-optimal contacts. The obtained μ(F, n) function describes the effective average mobility of free and trapped charge carriers. This approach realistically describes charge transport in energetically disordered materials, where a clear differentiation between trapped and free charges is impossible or arbitrary. The measurement of IE and EA is performed by characterizing solar cells at varying temperature T. In suitably designed devices based on a bulk heterojunction (BHJ), the open-circuit voltage Voc is a linear function of T with negative slope in the whole measured range down to 180K. The extrapolation to temperature zero V0 = Voc(T → 0K) is confirmed to equal the effective gap Egeff, i.e. the difference between the EA of the acceptor and the IE of the donor. The successive variation of different components of the devices and testing their influence on V0 verifies the relation V0 = Egeff. On this basis, the IE or EA of a material can be determined in a BHJ with a material where the complementary value is known. The measurement is applied to a number of material combinations, confirming, refining, and complementing previously reported values from ultraviolet photo electron spectroscopy (UPS) and inverse photo electron spectroscopy (IPES). These measurements are applied to small molecule organic semiconductors, including mixed layers. In blends of zinc-phthalocyanine (ZnPc) and C60, the hole mobility is found to be thermally and field activated, as well as increasing with charge density. Varying the mixing ratio, the hole mobility is found to increase with increasing ZnPc content, while the effective gap stays unchanged. A number of further materials and material blends are characterized with respect to hole and electron mobility and the effective gap, including highly diluted donor blends, which have been little investigated before. In all materials, a pronounced field activation of the mobility is observed. The results enable an improved detailed description of the working principle of organic solar cells and support the future design of highly efficient and optimized devices. / Organische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung. Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters. Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist. Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt. Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile.
15

Charge transport and energy levels in organic semiconductors

Widmer, Johannes 02 October 2014 (has links)
Organic semiconductors are a new key technology for large-area and flexible thin-film electronics. They are deposited as thin films (sub-nanometer to micrometer) on large-area substrates. The technologically most advanced applications are organic light emitting diodes (OLEDs) and organic photovoltaics (OPV). For the improvement of performance and efficiency, correct modeling of the electronic processes in the devices is essential. Reliable characterization and validation of the electronic properties of the materials is simultaneously required for the successful optimization of devices. Furthermore, understanding the relations between material structures and their key characteristics opens the path for innovative material and device design. In this thesis, two material characterization methods are developed, respectively refined and applied: a novel technique for measuring the charge carrier mobility μ and a way to determine the ionization energy IE or the electron affinity EA of an organic semiconductor. For the mobility measurements, a new evaluation approach for space-charge limited current (SCLC) measurements in single carrier devices is developed. It is based on a layer thickness variation of the material under investigation. In the \"potential mapping\" (POEM) approach, the voltage as a function of the device thickness V(d) at a given current density is shown to coincide with the spatial distribution of the electric potential V(x) in the thickest device. On this basis, the mobility is directly obtained as function of the electric field F and the charge carrier density n. The evaluation is model-free, i.e. a model for μ(F, n) to fit the measurement data is not required, and the measurement is independent of a possible injection barrier or potential drop at non-optimal contacts. The obtained μ(F, n) function describes the effective average mobility of free and trapped charge carriers. This approach realistically describes charge transport in energetically disordered materials, where a clear differentiation between trapped and free charges is impossible or arbitrary. The measurement of IE and EA is performed by characterizing solar cells at varying temperature T. In suitably designed devices based on a bulk heterojunction (BHJ), the open-circuit voltage Voc is a linear function of T with negative slope in the whole measured range down to 180K. The extrapolation to temperature zero V0 = Voc(T → 0K) is confirmed to equal the effective gap Egeff, i.e. the difference between the EA of the acceptor and the IE of the donor. The successive variation of different components of the devices and testing their influence on V0 verifies the relation V0 = Egeff. On this basis, the IE or EA of a material can be determined in a BHJ with a material where the complementary value is known. The measurement is applied to a number of material combinations, confirming, refining, and complementing previously reported values from ultraviolet photo electron spectroscopy (UPS) and inverse photo electron spectroscopy (IPES). These measurements are applied to small molecule organic semiconductors, including mixed layers. In blends of zinc-phthalocyanine (ZnPc) and C60, the hole mobility is found to be thermally and field activated, as well as increasing with charge density. Varying the mixing ratio, the hole mobility is found to increase with increasing ZnPc content, while the effective gap stays unchanged. A number of further materials and material blends are characterized with respect to hole and electron mobility and the effective gap, including highly diluted donor blends, which have been little investigated before. In all materials, a pronounced field activation of the mobility is observed. The results enable an improved detailed description of the working principle of organic solar cells and support the future design of highly efficient and optimized devices.:1. Introduction 2. Organic semiconductors and devices 2.1. Organic semiconductors 2.1.1. Conjugated π system 2.1.2. Small molecules and polymers 2.1.3. Disorder in amorphous materials 2.1.4. Polarons 2.1.5. Polaron hopping 2.1.6. Fermi-Dirac distribution and Fermi level 2.1.7. Quasi-Fermi levels 2.1.8. Trap states 2.1.9. Doping 2.1.10. Excitons 2.2. Interfaces and blend layers 2.2.1. Interface dipoles 2.2.2. Energy level bending 2.2.3. Injection from metal into semiconductor, and extraction 2.2.4. Excitons at interfaces 2.3. Charge transport and recombination in organic semiconductors 2.3.1. Drift transport 2.3.2. Charge carrier mobility 2.3.3. Thermally activated transport 2.3.4. Diffusion transport 2.3.5. Drift-diffusion transport 2.3.6. Space-charge limited current 2.3.7. Recombination 2.4. Mobility measurement 2.4.1. SCLC and TCLC 2.4.2. Time of flight 2.4.3. Organic field effect transistors 2.4.4. CELIV 2.5. Organic solar cells 2.5.1. Exciton diffusion towards the interface 2.5.2. Dissociation of CT states 2.5.3. CT recombination 2.5.4. Flat and bulk heterojunction 2.5.5. Transport layers 2.5.6. Thin film optics 2.5.7. Current-voltage characteristics and equivalent circuit 2.5.8. Solar cell efficiency 2.5.9. Limits of efficiency 2.5.10. Correct solar cell characterization 2.5.11. The \"O-Factor\" 3. Materials and experimental methods 3.1. Materials 3.2. Device fabrication and layout 3.2.1. Layer deposition 3.2.2. Encapsulation 3.2.3. Homogeneity of layer thickness on a wafer 3.2.4. Device layout 3.3. Characterization 3.3.1. Electrical characterization 3.3.2. Sample illumination 3.3.3. Temperature dependent characterization 3.3.4. UPS 4. Simulations 5.1. Design of single carrier devices 5.1.1. General design requirements 5.1.2. Single carrier devices for space-charge limited current 5.1.3. Ohmic regime 5.1.4. Design of injection and extraction layers 5.2. Advanced evaluation of SCLC – potential mapping 5.2.1. Potential mapping by thickness variation 5.2.2. Further evaluation of the transport profile 5.2.3. Injection into and extraction from single carrier devices 5.2.4. Majority carrier approximation 5.3. Proof of principle: POEM on simulated data 5.3.1. Constant mobility 5.3.2. Field dependent mobility 5.3.3. Field and charge density activated mobility 5.3.4. Conclusion 5.4. Application: Transport characterization in organic semiconductors 5.4.1. Hole transport in ZnPc:C60 5.4.2. Hole transport in ZnPc:C60 – temperature variation 5.4.3. Hole transport in ZnPc:C60 – blend ratio variation 5.4.4. Hole transport in ZnPc:C70 5.4.5. Hole transport in neat ZnPc 5.4.6. Hole transport in F4-ZnPc:C60 5.4.7. Hole transport in DCV-5T-Me33:C60 5.4.8. Electron transport in ZnPc:C60 5.4.9. Electron transport in neat Bis-HFl-NTCDI 5.5. Summary and discussion of the results 5.5.1. Phthalocyanine:C60 blends 5.5.2. DCV-5T-Me33:C60 5.5.3. Conclusion 6. Organic solar cell characteristics: the influence of temperature 6.1. ZnPc:C60 solar cells 6.1.1. Temperature variation 6.1.2. Illumination intensity variation 6.2. Voc in flat and bulk heterojunction organic solar cells 6.2.1. Qualitative difference in Voc(I, T) 6.2.2. Interpretation of Voc(I, T) 6.3. BHJ stoichiometry variation 6.3.1. Voc upon variation of stoichiometry and contact layer 6.3.2. V0 upon stoichiometry variation 6.3.3. Low donor content stoichiometry 6.3.4. Conclusion from stoichiometry variation 6.4. Transport material variation 6.4.1. HTM variation 6.4.2. ETM variation 6.5. Donor:acceptor material variation 6.5.1. Donor variation 6.5.2. Acceptor variation 6.6. Conclusion 7. Summary and outlook 7.1. Summary 7.2. Outlook A. Appendix A.1. Energy pay-back of this thesis A.2. Tables and registers / Organische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung. Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters. Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist. Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt. Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile.:1. Introduction 2. Organic semiconductors and devices 2.1. Organic semiconductors 2.1.1. Conjugated π system 2.1.2. Small molecules and polymers 2.1.3. Disorder in amorphous materials 2.1.4. Polarons 2.1.5. Polaron hopping 2.1.6. Fermi-Dirac distribution and Fermi level 2.1.7. Quasi-Fermi levels 2.1.8. Trap states 2.1.9. Doping 2.1.10. Excitons 2.2. Interfaces and blend layers 2.2.1. Interface dipoles 2.2.2. Energy level bending 2.2.3. Injection from metal into semiconductor, and extraction 2.2.4. Excitons at interfaces 2.3. Charge transport and recombination in organic semiconductors 2.3.1. Drift transport 2.3.2. Charge carrier mobility 2.3.3. Thermally activated transport 2.3.4. Diffusion transport 2.3.5. Drift-diffusion transport 2.3.6. Space-charge limited current 2.3.7. Recombination 2.4. Mobility measurement 2.4.1. SCLC and TCLC 2.4.2. Time of flight 2.4.3. Organic field effect transistors 2.4.4. CELIV 2.5. Organic solar cells 2.5.1. Exciton diffusion towards the interface 2.5.2. Dissociation of CT states 2.5.3. CT recombination 2.5.4. Flat and bulk heterojunction 2.5.5. Transport layers 2.5.6. Thin film optics 2.5.7. Current-voltage characteristics and equivalent circuit 2.5.8. Solar cell efficiency 2.5.9. Limits of efficiency 2.5.10. Correct solar cell characterization 2.5.11. The \"O-Factor\" 3. Materials and experimental methods 3.1. Materials 3.2. Device fabrication and layout 3.2.1. Layer deposition 3.2.2. Encapsulation 3.2.3. Homogeneity of layer thickness on a wafer 3.2.4. Device layout 3.3. Characterization 3.3.1. Electrical characterization 3.3.2. Sample illumination 3.3.3. Temperature dependent characterization 3.3.4. UPS 4. Simulations 5.1. Design of single carrier devices 5.1.1. General design requirements 5.1.2. Single carrier devices for space-charge limited current 5.1.3. Ohmic regime 5.1.4. Design of injection and extraction layers 5.2. Advanced evaluation of SCLC – potential mapping 5.2.1. Potential mapping by thickness variation 5.2.2. Further evaluation of the transport profile 5.2.3. Injection into and extraction from single carrier devices 5.2.4. Majority carrier approximation 5.3. Proof of principle: POEM on simulated data 5.3.1. Constant mobility 5.3.2. Field dependent mobility 5.3.3. Field and charge density activated mobility 5.3.4. Conclusion 5.4. Application: Transport characterization in organic semiconductors 5.4.1. Hole transport in ZnPc:C60 5.4.2. Hole transport in ZnPc:C60 – temperature variation 5.4.3. Hole transport in ZnPc:C60 – blend ratio variation 5.4.4. Hole transport in ZnPc:C70 5.4.5. Hole transport in neat ZnPc 5.4.6. Hole transport in F4-ZnPc:C60 5.4.7. Hole transport in DCV-5T-Me33:C60 5.4.8. Electron transport in ZnPc:C60 5.4.9. Electron transport in neat Bis-HFl-NTCDI 5.5. Summary and discussion of the results 5.5.1. Phthalocyanine:C60 blends 5.5.2. DCV-5T-Me33:C60 5.5.3. Conclusion 6. Organic solar cell characteristics: the influence of temperature 6.1. ZnPc:C60 solar cells 6.1.1. Temperature variation 6.1.2. Illumination intensity variation 6.2. Voc in flat and bulk heterojunction organic solar cells 6.2.1. Qualitative difference in Voc(I, T) 6.2.2. Interpretation of Voc(I, T) 6.3. BHJ stoichiometry variation 6.3.1. Voc upon variation of stoichiometry and contact layer 6.3.2. V0 upon stoichiometry variation 6.3.3. Low donor content stoichiometry 6.3.4. Conclusion from stoichiometry variation 6.4. Transport material variation 6.4.1. HTM variation 6.4.2. ETM variation 6.5. Donor:acceptor material variation 6.5.1. Donor variation 6.5.2. Acceptor variation 6.6. Conclusion 7. Summary and outlook 7.1. Summary 7.2. Outlook A. Appendix A.1. Energy pay-back of this thesis A.2. Tables and registers

Page generated in 0.0798 seconds