• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 2
  • 1
  • Tagged with
  • 27
  • 26
  • 19
  • 17
  • 13
  • 13
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Automated lattice perturbation theory in the Schrödinger functional

Hesse, Dirk 02 November 2012 (has links)
Der Autor hat das pastor-Softwarepaket für automatisierte Gitterstörungstheorie im Schrödingerfunktional entwickelt. Das pastor-Paket besteht aus zwei Bausteinen, die die Erzeugung von Vertexfunktionen und Feynmandiagrammen übernehmen. Ausgehend von recht generischen Formulierungen der Gitterwirkungen für Fermionen und Gluonen, die dem Vertexgenerator in symbolischer Form übergeben werden, erzeugt dieser Feynmanregeln zu beliebiger Ordnung in der nackten Kopplung. Dabei kann sowohl ein triviales als auch ein Abelsches Hintergrundfeld verwendet werden. Die vom zweiten Teil von pastor, einem Code-Generator, erzeugten Programme greifen auf den Vertexgenerator zu und berechnen alle Terme der perturbativen Entwicklung für eine Klasse von Schrödingerfunktional-Observablen bis zur Einschleifenordnung. Verbesserungsterme der Ordnung a werden dabei berücksichtigt. Wir werden die für die Funktionen der beiden Teile von pastor relevanten Algorithmen detailliert beschrieben und die Korrektheit unserer Implementierung mit einer Reihe von Vergleichen mit perturbativen und nichtperturbativen Daten belegen. Wir werden darauf die Nützlichkeit von pastor Anhand einiger Beispiele aus dem Abgleich von Heavy Quark Effective Theory mit Quantenchromodynamik demonstrieren. Wir haben unter Anderem eine Einschleifenrechnung zweier Kandidaten für Observablen, die aller Voraussicht nach in Zukunft für den Abgleich verwendet werden, zügig und mit geringem Aufwand durchgeführt. Dies zeigt die Stärken eines Softwarepakets für automatisierte Störungsrechnungen. Unsere Resultate werden als nützliche Richtschnur für zukünftige nichtperturbative Berechnungen dienen. / The author developed the pastor software package for automated lattice perturbation theory calculations in the Schrödinger functional scheme. The pastor code consists of two building blocks, dealing with the generation of Feynman rules and Feynman diagrams respectively. Accepting a rather generic class of lattice gauge and fermion actions, passed to the code in a symbolic form as input, a low level part of pastor will generate Feynman rules to an arbitrary order in the bare coupling with a trivial or an Abelian background field. The second, high level part of pastor is a code generator whose output relies on the vertex generator. It writes programs that evaluate Feynman diagrams for a class of Schrödinger functional observables up to one loop order automatically, the relevant O(a) improvement terms are taken into account. We will describe the algorithms used for implementation of both parts of the code in detail, and provide cross checks with perturbative and non-perturbative data to demonstrate the correctness of our code. We demonstrate the usefulness of the pastor package through various applications taken from the matching process of heavy quark effective theory with quantum chromodynamics. We have e.g. completed a one loop analysis for new candidates for matching observables timely and with rather small effort, highlighting two advantages of an automated software setup. The results that were obtained so far will be useful as a guideline for further non-perturbative studies.
12

Graphs in perturbation theory

Borinsky, Michael 30 May 2018 (has links)
Inhalt dieser Arbeit ist eine Erweiterung der Hopfalgebrastruktur der Feynmangraphen und Renormierung von Connes und Kreimer. Zusätzlich wird eine Struktur auf faktoriell wachsenden Potenzreihen eingeführt, die deren asymptotisches Wachstum beschreibt und die kompatibel mit der Hopfalgebrastruktur ist. Die Hopfalgebrastruktur auf Graphen erlaubt die explizite Enumeration von Graphen mit Einschränkungen in Bezug auf die erlaubten Untergraphen. Im Fall der Feynmangraphen wird zusätzlich eine algebraische Verbandstruktur eingeführt, die weitere eindeutige Eigenschaften von physikalischen Quantenfeldtheorien aufdeckt. Der Differenzialring der faktoriell divergenten Potenzreihen erlaubt es asymptotische Resultate von implizit definierten Potenzreihen mit verschwindendem Konvergenzradius zu extrahieren. In Kombination ergeben beide Strukturen eine algebraische Formulierung großer Graphen mit Einschränkungen für die erlaubten Untergraphen. Diese Strukturen sind motiviert von null-dimensionaler Quantenfeldtheorie and werden zur Analyse ebendieser benutzt. Als reine Anwendung der Hopfalgebrastruktur wird eine hopfalgebraische Formulierung der Legendretransformation in Quantenfeldtheorien formuliert. Der Differenzialring der faktoriell divergenten Potenzreihen wird dazu benutzt zwei asymptotische Enumerationsprobleme zu lösen: Die asymptotische Anzahl der verbundenen Chorddiagramme und die asymptotische Anzahl der simplen Permutationen. Für beide asymptotischen Lösungen werden vollständige asymptotische Entwicklungen in Form von geschlossenen Erzeugendenfunktionen berechnet. Kombiniert werden beide Strukturen zur Anwendung an null-dimensionaler Quantenfeldtheorie. Zahlreiche Größen werden in den null-dimensionalen Varianten von phi^3, phi^4, QED, quenched QED and Yukawatheorie mit ihren kompletten asymptotischen Entwicklungen berechnet. / This thesis provides an extension of the work of Dirk Kreimer and Alain Connes on the Hopf algebra structure of Feynman graphs and renormalization to general graphs. Additionally, an algebraic structure of the asymptotics of formal power series with factorial growth, which is compatible with the Hopf algebraic structure, will be introduced. The Hopf algebraic structure on graphs permits the explicit enumeration of graphs with constraints for the allowed subgraphs. In the case of Feynman diagrams a lattice structure, which will be introduced, exposes additional unique properties for physical quantum field theories. The differential ring of factorially divergent power series allows the extraction of asymptotic results of implicitly defined power series with vanishing radius of convergence. Together both structures provide an algebraic formulation of large graphs with constraints on the allowed subgraphs. These structures are motivated by and used to analyze renormalized zero-dimensional quantum field theory at high orders in perturbation theory. As a pure application of the Hopf algebra structure, an Hopf algebraic interpretation of the Legendre transformation in quantum field theory is given. The differential ring of factorially divergent power series will be used to solve two asymptotic counting problems in combinatorics: The asymptotic number of connected chord diagrams and the number of simple permutations. For both asymptotic solutions, all order asymptotic expansions are provided as generating functions in closed form. Both structures are combined in an application to zero-dimensional quantum field theory. Various quantities are explicitly given asymptotically in the zero-dimensional version of phi^3, phi^4, QED, quenched QED and Yukawa theory with their all order asymptotic expansions.
13

Chiral fermions on the lattice

Chiarappa, Thomas 09 December 2004 (has links)
Das Ziel dieser Doktorarbeit ist die Berechnung, aus ersten Prinzipien, von Niedrigenenergiekonstanten (NEK), welche die chirale Störungsheorie (ChST) parametrisieren, durch Simulationen auf dem Gitter. Diese Arbeit ist eine Pilotstudie und will deshalb nicht zu definitiven und präzisen quantitativen Vorhersagen führen, sondern wir möchten qualitative Leitlinien für zukünftige genauere Erforschungen der epsilon-Entwicklung der ChST geben. Letztere ist ein Gebiet in dem die chirale Symmetrie wiederhergestellt ist und wo die Compton-Wellenlänge der leichtesten Mesonen grösser als die lineare Dimension des endlichen Volumens ist. Die epsilon-Region ist weiterhin durch die wichtige Rolle der topologischen Ladung, nu, charakterisiert, so dass die Untersuchung der mesonischen Zweipunkt-Korrelationsfunktionen in definierten topologischen Sektoren vorzunehmen ist. Aus diesem Grunde haben wir chirale Fermionen auf dem Gitter simuliert, wobei der overlap Formalismus für den Dirac Operator, mit dem gewöhnliches Wilson Dirac Operator als Kern, in der quenched Approximation genommen wurde. Wir demonstrieren dass der Sektor mit neutraler topologischer Ladung, nu = 0, numerisch sehr schwierig zu untersuchen ist, weil die Daten von erheblichen Spitzen beeinflusst werden, die aufgrund sehr kleiner, nicht verschwindender Eigenwerte herrühren. Diese Beobachtung findet eine Übereinstimmung in einer Studie der Random Matrix Theory (RMT), die besagt, dass man eine Statistik von mehr als 10000 Konfigurationen benötigt, falls man auf kleine Eigenwerte empfindlich reagierende physikalische Grössen, im triviale topologische Sektoren simulieren möchte. Weniger Probleme ergeben sich in dem nicht-trivialen Sektoren |nu| > 0: wir präsentieren deshalb unsere Ergebnisse aus dem topologisches Sektor nu = 1 und den Daten aus das Sektor mit nu = 2 nur als Gegenprobe. Wir zeigen die Existenz einer unteren Schranke für das physikalisches Volumen bei V > 1 fm zur vierten Potenz für die Gültigkeit der ChST, übereinstimmend mit einer vorherigen Beobachtung aus der RMT. Wir beschränken deshalb unsere Untersuchung auf ein grösseres Gitter, wo wir die Daten des axialen Korrelators mit den Vorhersagen der ChST in der Valenzquark-Approximation fitten und eine stabile Bestimmung der gequenchten Pionen-Zerfallskonstante, F, erhalten. Die skalaren und pseudoskalaren Korrelationsfunktionen sind durch mehrere NEK parametrisiert. Dadurch ist der Vergleich mit den Vorhersagen der ChST schwieriger, und deshalb präsentieren wir nur einige Abschätzungen, die mit der entsprechenden Literatur verglichen werden. Zum Schluss präsentieren wir mögliche Implementierungen von verbesserten Algorithmen für die Inversion des overlap Operators, die die Simulationkosten reduzieren. / The aim of this thesis is the computation of Low Energy Constants (LEC) which parameterise Chiral Perturbation Theory (ChPT) from a first principles analysis via lattice simulations. The thesis provides a pilot study and will not give definitive and precise quantitative predictions, but rather our aim is to provide qualitative hints for future accurate investigations of the epsilon-expansion of ChPT, where chiral symmetry is restored and the Compton wavelength of the lightest meson is larger than the linear size of the finite volume. One of the property characterising the epsilon-regime is the important role played by the topological charge, nu, leading to the investigation of the two-point meson correlation functions in distinct topological sectors. To this end, we simulate chiral fermions on the lattice adopting the overlap formalism for the Dirac operator in the quenched approximation, with the kernel provided by the usual Wilson Dirac operator. We demonstrate that the neutral topological sector, nu = 0, is very difficult to explore numerically, as the data are affected by large spikes due to the presence of very small, non-zero eigenvalues. This observation is in agreement with a study of Random Matrix Theory (RMT), which indicates that a statistic of more than 10000 configurations is required when physical quantities sensitive to small eigenvalues are investigated in the neutral topological sector. Therefore, we present our results corresponding to the topological sector nu = 1. Due to the modest statistic, we only use the nu = 2 data as a crosscheck. We find a lower bound on the physical volume V > 1 fm to the four for ChPT to be used, in agreement with a previous observation using RMT. Restricting our attention to a larger lattice, we fit the data of the axial correlation function with the predictions of quenched ChPT, obtaining a stable determination of the quenched pion decay constant, F. The scalar and pseudoscalar correlation functions are parameterised by a larger number of LEC, rendering the comparison with ChPT predictions much more difficult and hence we present only some estimates that are compared with other determinations in the literature. Finally, we present possible implementations of improved algorithms used in the ``inversion'''' of the overlap operator, whose aim is to reduce the computational cost of the simulations.
14

The renormalised quark mass in the Schrödinger functional of lattice QCD

Kurth, Stefan 04 September 2002 (has links)
Diese Arbeit befasst sich mit störungstheoretischen Rechnungen zur renormierten Quarkmasse im Schrödinger-Funktional mit nicht verschwindendemHintergrundfeld. Als Grundlage der Rechnungen werden das Schroedinger-Funktional und seinegrundlegenden Eigenschaften erläutert. Auch die O(a)-Verbesserung, die zu einem schnelleren Erreichen des Kontinuumslimes fuehren soll, wird in diesem Zusammenhang dargestellt.Des weiteren wird erklärt, aufwelche Weise das Schrödinger-Funktional dazu dient, das Skalenverhaltenrenormierter Größen ueber einen grossen Energiebereich zuuntersuchen. Das Skalenverhalten sowohl der renormierten Kopplung als auchder renormierten Quarkmassen wird in diesem Schema durch Step-Scaling-Funktionenbeschrieben. Die Definition der renormierten Kopplung wird dargestellt,ebenso die Definition der renormierten Masse, die mit Hilfe derPCAC-Relation ueber den Axialvektorstrom und die Pseudoskalardichte erfolgt. Die Skalenabhängigkeit der renormierten Massewird auf die Skalenabhängigkeit der Renormierungskonstanten derPseudoskalardichte zurueckgefuehrt. Breiten Raum nimmt die Berechnung verschiedenerKorrelationsfunktionen bis zur Ein-Loop-Ordnung in Stoerungstheorie ein. Mit Hilfe der soermittelten Koeffizienten wird die kritische Quarkmasse, bei der die renormierte Masse verschwindet, in Ein-Loop-Naeherung berechnet,ebenso der Ein-Loop-Koeffizent der Renormierungskonstanten der Pseudoskalardichte. Mit Hilfe dieses Koeffizienten wird aus der bekanntenanomalen Dimension in Zwei-Loop-Ordnung im MS-bar-Schemadie anomale Dimension im Schrödinger-Funktional berechnet. Als weitere Anwendung der Störungstheorie werden verschiedene Diskretisierungsfehler bestimmt. Die kritische Quarkmasse in Ein-Loop-Ordnunggeht in den Zwei-Loop-Koeffizienten des Diskretisierungfehlers der Step-Scaling-Funktion der renormierten Kopplung ein, der durchdie Abweichung dieser Funktion von ihrem Kontinuumslimes definiert ist.Verschiedene Diskretisierungsfehler der Strommasse, die durch die PCAC-Relationmit unrenormiertem Axialvektorstrom und Pseudoskalardichte definiert ist, werdenin Ein-Loop-Ordnung berechnet. Ein wichtiger Diskretisierungsfehler derrenormierten Quarkmasse ist die Abweichung ihrer Step-Scaling-Funktion vomKontinuumslimes. Dieser Fehler ist in Ein-Loop-Ordnung bislang nur mitverschwindendem Hintergrundfeld bekannt und wird in dieser Arbeit mitnicht verschwindendem Hintergrundfeld berechnet. / The renormalised quark mass in the Schroedinger functional is studied perturbatively with a non-vanishing background field. The framework in which the calculations are done is the Schroedinger functional. Its definition and basic properties are reviewed and it is shown how to make the theory converge faster towards its continuum limit by O(a) improvement. It is explained how the Schroedinger functional scheme avoids the implications of treating a large energy range on a single lattice in order to determine the scale dependence of renormalised quantities. The description of the scale dependence by the step scaling function is introduced both for the renormalised coupling and the renormalised quark masses. The definition of the renormalised coupling in the Schroedinger functional is reviewed, and the concept of the renormalised mass being defined by the axial current and density via the PCAC-relation is explained. The running of the renormalised mass described by its step scaling function is presented as a consequence of the fact that the renormalisation constant of the axial density is scale dependent. The central part of the thesis is the expansion of several correlation functions up to 1-loop order. The expansion coefficients are used to compute the critical quark mass at which the renormalised mass vanishes, as well as the 1-loop coefficient of the renormalisation constant of the axial density. Using the result for this renormalisation constant, the 2-loop anomalous dimension is obtained by conversion from the MS-bar-scheme. Another important application of perturbation theory carried out in this thesis is the determination of discretisation errors. The critical quark mass at 1-loop order is used to compute the deviation of the coupling's step scaling function from its continuum limit at 2-loop order. Several lattice artefacts of the current quark mass, defined by the PCAC relation with the unrenormalised axial current and density, are computed at 1-loop order. An essential property of the renormalised quark mass being computed in this thesis at 1-loop order is the deviation of its step scaling function from the continuum limit, which was so far only known for the zero background field case.
15

C0-Semigroup Methods for Delay Equations

Stein, Martin 06 November 2008 (has links) (PDF)
In der Dissertation werden Werkzeuge zur Analyse von Wohlgestelltheit und Asymptotik von Integro-Differential- und Verzögerungsgleichungen entwickelt. Im ersten Teil der Arbeit (Kapitel 1 und 2) werden Methoden zur Bestimmung der Modulhalbgruppe (kleinste dominierende C0-Halbgruppe) einer C0-Halbgruppe zur Verfügung gestellt, die unter anderem auf Volterra-Halbgruppen (die aus Integro-Differentialgleichungen hervorgehen) und Evolutionshalbgruppen (Rückkopplungsgleichungen mit Zeitverzögerung, Transport in Netzwerken) angewendet werden. Im Mittelpunkt des zweiten Teils (Kapitel 3 und 4) steht ein Integro-Differentialgleichungstyp, der Schwingungsphänomene von Tragswerksflächen im Unterschallbereich beschreibt. Das besondere dieser Gleichung ist das Auftreten der Zeitableitung der gesuchten Funktion im Integralterm. Es werden eine Reihe von Wohlgestelltheitskriterien hergeleitet, welche Wohlgestelltheit der Gleichung liefern, ohne das es möglich ist, durch partielle Integration die Zeitableitung im Integralterm zu beseitigen und dadurch die Gleichung auf einen bekannten Integro-Differentialgleichungstyp zurückzuführen. Die entwickelten Methoden eignen sich auch für die Herleitung neuer Wohlgestelltheitskriterien für andere Verzögerungsgleichungen. Entsprechende Resultate werden in Kapitel 4 hergeleitet. / In the dissertation tools for the analysis of well-posedness and asymptotic behaviour of integro-differential equations and delay equations are developed. In the first part (chapter 1 and 2) methods for the determination of the modulus semigroup (smallest dominating C0-semigroup) of a C0-semigroup are provided and applied to various examples such as Volterra semigroups and evolution semigroups and transport evolution equations in networks. The main interest of the second part (chapter 3 and 4) is a type of an integro-differential equation which occurs in the modelling of the flutter of airfoils at subsonic speed. The remarkable property of the equation is the time derivative of the sought function in the integral term. A number of well-posedness criteria are proved for which integration by parts is not possible. The developed methods are also suitable for the derivation of new well-posedness results for other delay semigroups. Corresponding criteria are presented in chapter 4.
16

Electronic Structure of Selected Materials by Means of the QSGW Method within the LAPW+LO Framework

Salas-Illanes, Nora 20 March 2019 (has links)
Materialien formen die moderne Welt: Sie umgeben uns in unserem alltäglichen Leben. Unser Ziel ist die Materialeigenschaften nach unseren Bedürfnissen maßzuschneidern. Viele Materialeigenschaften wie Bandücken und Elektronendichteverteilung werden durch elektronische Zustände bestimmt. Die meisten Vorhersagen in Bezug auf Materialien entstammen der Dichtefunktionaltheorie (DFT). Diese Theorie ermittelt Grundzustandseigenschaften und kann jedoch keine Energien von angeregten Zuständen liefern. Um angeregte Zusände zu beschreiben, bedarf es daher einer höherstufigen Theorie: die Vielteilchen-Störungstheorie (MBPT) . Im Rahmen von MBPT ist das üblichste Verfahren die GW-Näherung (GWA), worin Elektronen als Quasiteilchen (QP) beschrieben werden. Der Energieunterschied zwischen einem nicht-wechselwirkenden Teilchen und einem QP ist die Selbstenergie. In GWA ergibt sich die Selbsenergie als Produkt aus die Einteilchen-Greenfunktion, G, und die abgeschirmte Coulomb-Wechselwirkung, W, und führt zu der wahren Anregungsenergie von QP. Diese Doktorarbeit beinhaltet die Implementierung von selbstkonsistentem Quasiteilchen-GW (QSGW) im exciting Code. Dieses Software-Paket benutzt die Linearized-Augmented-Plane-Wave-Methode (LAPW), welche alle Elektronen gleichberechtigt behandelt. Beginnend mit DFT optimiert die QSGW-Methode den Einteilchen-Hamiltonoperator durch eine selbstkonsistente Suche eines optimierten Austausch-Korrelationspotentials. Am Ende des iterativen Prozesses liefert die QSGW-Methode Eigenfunktionen und Eigenwerte der QP. Wir präsentieren mit QSGW ermittelte elektronische Strukturen von neun kristallinen Festkörpern. Wir präsentieren die zugehörigen Bandstrukturen und Zustandsdichtediagramme und vergleichen anhand dieser die QSGW-Ergebnisse mit Ergebnissen von DFT und G0W0. Zusätzlich untersuchen wir die elektronische Ladungsdichte und Wellenfunktion in ausgewählten Materialien. / Materials shape the modern world: they appear everywhere in our daily life. We investigate what governs the material's properties, in order to tailor them to meet our needs. Properties, e.g., bandgaps, and electronic density distribution are determined by the electronic structure. Most predictions on materials follow from computational physics, in particular density-functional theory (DFT). This scheme returns ground-state properties, but it fails to provide excited-state energies. To find the latter, we have to recourse to a higher degree of theory, namely many-body perturbation theory (MBPT). Within MBPT, the most popular framework is the GW approximation (GWA) which describes electrons as quasiparticles (QP). The difference in energy between a non-interacting particle and a QP is called the self-energy. In GWA, the product of the Green function G and W, the screened Coulomb interaction, returns the self-energy. GWA is in principle self-consistent, but is mostly implemented as a perturbative correction to DFT results, known as G0W0. Unfortunately, the electronic structure given by G0W0 depends on the initial DFT results. This PhD project consists in the implementation of the self-consistent quasiparticle GW (QSGW) in the exciting code. This software package uses the all-electron linearized augmented planewave (LAPW) method, treating every electron on equal footing. Starting from DFT, the QSGW method (based in the GWA) optimizes the one-particle Hamiltonian through a self-consistent search for an optimized exchange-correlation potential. At the end of the iterative process, the QSGW method provides eigenfunctions and eigenvalues of the QPs. Considering nine crystalline solids, we present their electronic structure by means of QSGW. We present the bandstructures and density of state diagrams, comparing QSGW results to DFT and G0W0 results. In addition, we study the electronic charge density and wavefunction in selected materials.
17

C0-Semigroup Methods for Delay Equations

Stein, Martin 28 January 2008 (has links)
In der Dissertation werden Werkzeuge zur Analyse von Wohlgestelltheit und Asymptotik von Integro-Differential- und Verzögerungsgleichungen entwickelt. Im ersten Teil der Arbeit (Kapitel 1 und 2) werden Methoden zur Bestimmung der Modulhalbgruppe (kleinste dominierende C0-Halbgruppe) einer C0-Halbgruppe zur Verfügung gestellt, die unter anderem auf Volterra-Halbgruppen (die aus Integro-Differentialgleichungen hervorgehen) und Evolutionshalbgruppen (Rückkopplungsgleichungen mit Zeitverzögerung, Transport in Netzwerken) angewendet werden. Im Mittelpunkt des zweiten Teils (Kapitel 3 und 4) steht ein Integro-Differentialgleichungstyp, der Schwingungsphänomene von Tragswerksflächen im Unterschallbereich beschreibt. Das besondere dieser Gleichung ist das Auftreten der Zeitableitung der gesuchten Funktion im Integralterm. Es werden eine Reihe von Wohlgestelltheitskriterien hergeleitet, welche Wohlgestelltheit der Gleichung liefern, ohne das es möglich ist, durch partielle Integration die Zeitableitung im Integralterm zu beseitigen und dadurch die Gleichung auf einen bekannten Integro-Differentialgleichungstyp zurückzuführen. Die entwickelten Methoden eignen sich auch für die Herleitung neuer Wohlgestelltheitskriterien für andere Verzögerungsgleichungen. Entsprechende Resultate werden in Kapitel 4 hergeleitet. / In the dissertation tools for the analysis of well-posedness and asymptotic behaviour of integro-differential equations and delay equations are developed. In the first part (chapter 1 and 2) methods for the determination of the modulus semigroup (smallest dominating C0-semigroup) of a C0-semigroup are provided and applied to various examples such as Volterra semigroups and evolution semigroups and transport evolution equations in networks. The main interest of the second part (chapter 3 and 4) is a type of an integro-differential equation which occurs in the modelling of the flutter of airfoils at subsonic speed. The remarkable property of the equation is the time derivative of the sought function in the integral term. A number of well-posedness criteria are proved for which integration by parts is not possible. The developed methods are also suitable for the derivation of new well-posedness results for other delay semigroups. Corresponding criteria are presented in chapter 4.
18

On the Applicability of the Weak Coupling Expansion for Time-Moments of Heavy Quark Correlators

Chimirri, Leonardo 27 November 2023 (has links)
Die Simulation von diskretisier QCD hat sich zu einem sehr erfolgreichen Verfahren entwickelt, um nicht-perturbativen Berechnungen durchzuführen. In dieser Arbeit untersuchen wir im Detail die Zeit-Momente schwerer Quark-Korrelatoren mit hoher Präzision. Diese werden verwendet, um die QCD-Kopplung durch den Vergleich von Gitter- und Störungsberechnungen zu extrahieren. Dabei müssen diese Observablen von Energien dominiert werden, bei denen beide Methoden angewendbar sind. Genaue Abschätzungen der systematischen Unsicherheiten ist notewendig, da dies Auswirkungen auf Berechnungen von, z.B., Higgs-Zerfällen zu b-Quarks oder Gluonen und Z-Bosonen-Partialbreiten haben. Wir führen eine quenched Untersuchung der Zeitmomente durch, um im großen Volumen mit L=2fm und T=6fm mit offenen Randbedingungen, Gitterabständen von bis ca. 0.01 fm zu erreichen. Wir berechnen Momente und dabei die Kopplung und den Trunkierungsfehler für wechselnde Energie von 0.8 bis 3.5 Mal die charm Masse. Um die großen Diskretisierungseffekte zu kontrollieren, verwenden wir ein nicht-perturbativ verbessertes Wilson-Clover-Fermionen-Dublett mit einem twisted mass Term. Neben der Kopplung untersuchen wir auch ihren Verlauf bis zur unendlichen Energie, kodiert im Lambda-Parameter, und die darin enthaltenen Trunkierungsfehler. Der extrahierte Lambda-Parameter bei Energieskalen von 2 Mal die Charmmasse weist, in Bezug auf step-scaling Ergebnisse, Abweichungen in der Größenordnung von 5% bis 10% auf. Eine Extrapolation bis zum Nullwert der Kopplung ist möglich, allerdings mit einer beträchtlichen Steigung. Weitverbreitete Variationen der perturbativen Renormierungsskala zur Abschätzung des Trunkierungsfehlers scheinen hier die tatsächliche Größe der Fehler zu unterschätzen. Bei der Verwendung der Störungstheorie hoher Ordnung auf den Skalen der Flavor-Physik für die Momente der Korrelatoren schwerer Quarks ist Vorsicht geboten, da große Trunkierungsfehler auftreten können. / The simulation of discretized QCD has become a very successful method to perform non-perturbative calculations. In this work we study in detail the time-moments of heavy quark correlators with high precision. These are used to extract the QCD coupling by comparing lattice and perturbative calculations. These observables must be dominated by energies at which both methods are applicable. Accurate estimates of the systematic uncertainties are needed as this has implications for calculations of, e.g., Higgs decays to b-quarks or gluons and Z-boson partial widths. We carry out a quenched investigation of the time-moments in order to achieve lattice spacings of down to approx. 0.01 fm in large volume, L=2fm and T=6fm, with open boundary conditions. We calculate moments and thereby the coupling and the truncation error for varying energy from 0.8 to 3.5 times the charm mass. To control the large discretization effects, we use a non-perturbatively enhanced Wilson-Clover fermion doublet with a twisted mass term. In addition to the coupling, we also study its evolution to infinite energy, encoded in the lambda parameter, and the truncation errors therein. The extracted lambda parameter at energy scales of 2 times the charm mass shows deviations in the order of 5% to 10% with respect to step-scaling results. Extrapolation to the zero value of the coupling is possible, but with a considerable slope. Widespread variations of the perturbative renormalization scale to estimate the truncation error seem to underestimate the actual size of the errors here. Care should be taken when using high-order perturbation theory on the scales of flavor physics for the moments of heavy quark correlators, as large truncation errors can occur.
19

Electronic and Photonic Properties of Metallic-Mean Quasiperiodic Systems

Thiem, Stefanie 24 February 2012 (has links) (PDF)
Understanding the connection of the atomic structure and the physical properties of materials remains one of the elementary questions of condensed-matter physics. One research line in this quest started with the discovery of quasicrystals by Shechtman et al. in 1982. It soon became clear that these materials with their 5-, 8-, 10- or 12-fold rotational symmetries, which are forbidden according to classical crystallography, can be described in terms of mathematical models for nonperiodic tilings of a plane proposed by Penrose and Ammann in the 1970s. Due to the missing translational symmetry of quasicrystals, till today only finite, relatively small systems or periodic approximants have been investigated by means of numerical calculations and theoretical results have mainly been obtained for one-dimensional systems. In this thesis we study d-dimensional quasiperiodic models, so-called labyrinth tilings, with separable Hamiltonians in the tight-binding approach. This method paves the way to study higher-dimensional, quantum mechanical solutions, which can be directly derived from the one-dimensional results. This allows the investigation of very large systems in two and three dimensions with up to 10^10 sites. In particular, we contemplate the class of metallic-mean sequences. Based on this model we focus on the electronic properties of quasicrystals with a special interest on the connection of the spectral and dynamical properties of the Hamiltonian. Hence, we investigate the characteristics of the eigenstates and wave functions and compare these with the wave-packet dynamics in the labyrinth tilings by numerical calculations and by a renormalization group approach in connection with perturbation theory. It turns out that many properties show a qualitatively similar behavior in different dimensions or are even independent of the dimension as e.g. the scaling behavior of the participation numbers and the mean square displacement of a wave packet. Further, we show that the structure of the labyrinth tilings and their transport properties are connected and obtain that certain moments of the spectral dimensions are related to the wave-packet dynamics. Besides this also the photonic properties are studied for one-dimensional quasiperiodic multilayer systems for oblique incidence of light, and we show that the characteristics of the transmission bands are related to the quasiperiodic structure. / Eine der elementaren Fragen der Physik kondensierter Materie beschäftigt sich mit dem Zusammenhang zwischen der atomaren Struktur und den physikalischen Eigenschaften von Materialien. Eine Forschungslinie in diesem Kontext begann mit der Entdeckung der Quasikristalle durch Shechtman et al. 1982. Es stellte sich bald heraus, dass diese Materialien mit ihren laut der klassischen Kristallographie verbotenen 5-, 8-, 10- oder 12-zähligen Rotationssymmetrien durch mathematische Modelle für die aperiodische Pflasterung der Ebene beschrieben werden können, die durch Penrose und Ammann in den 1970er Jahren vorgeschlagen wurden. Aufgrund der fehlenden Translationssymmetrie in Quasikristallen sind bis heute nur endliche, relativ kleine Systeme oder periodische Approximanten durch numerische Berechnungen untersucht worden und theoretische Ergebnisse wurden hauptsächlich für eindimensionale Systeme gewonnen. In dieser Arbeit werden d-dimensionale quasiperiodische Modelle, sogenannte Labyrinth-Pflasterungen, mit separablem Hamilton-Operator im Modell starker Bindung betrachtet. Diese Methode erlaubt es, quantenmechanische Lösungen in höheren Dimensionen direkt aus den eindimensionalen Ergebnissen abzuleiten und ermöglicht somit die Untersuchung von sehr großen Systemen in zwei und drei Dimensionen mit bis zu 10^10 Gitterpunkten. Insbesondere betrachten wir dabei quasiperiodische Folgen mit metallischem Schnitt. Basierend auf diesem Modell befassen wir uns im Speziellen mit den elektronischen Eigenschaften der Quasikristalle im Hinblick auf die Verbindung der spektralen und dynamischen Eigenschaften des Hamilton-Operators. Hierfür untersuchen wir die Eigenschaften der Eigenzustände und Wellenfunktionen und vergleichen diese mit der Dynamik von Wellenpaketen in den Labyrinth-Pflasterungen basierend auf numerischen Berechnungen und einem Renormierungsgruppen-Ansatz in Verbindung mit Störungstheorie. Dabei stellt sich heraus, dass viele Eigenschaften wie etwa das Skalenverhalten der Partizipationszahlen und der mittleren quadratischen Abweichung eines Wellenpakets für verschiedene Dimensionen ein qualitativ gleiches Verhalten zeigen oder sogar unabhängig von der Dimension sind. Zudem zeigen wir, dass die Struktur der Labyrinth-Pflasterungen und deren Transporteigenschaften sowie bestimmte Momente der spektralen Dimensionen und die Dynamik der Wellenpakete in Beziehung zueinander stehen. Darüber hinaus werden auch die photonischen Eigenschaften für eindimensionale quasiperiodische Mehrschichtsysteme für beliebige Einfallswinkel untersucht und der Verlauf der Transmissionsbänder mit der quasiperiodischen Struktur in Zusammenhang gebracht.
20

Electronic and Photonic Properties of Metallic-Mean Quasiperiodic Systems

Thiem, Stefanie 24 January 2012 (has links)
Understanding the connection of the atomic structure and the physical properties of materials remains one of the elementary questions of condensed-matter physics. One research line in this quest started with the discovery of quasicrystals by Shechtman et al. in 1982. It soon became clear that these materials with their 5-, 8-, 10- or 12-fold rotational symmetries, which are forbidden according to classical crystallography, can be described in terms of mathematical models for nonperiodic tilings of a plane proposed by Penrose and Ammann in the 1970s. Due to the missing translational symmetry of quasicrystals, till today only finite, relatively small systems or periodic approximants have been investigated by means of numerical calculations and theoretical results have mainly been obtained for one-dimensional systems. In this thesis we study d-dimensional quasiperiodic models, so-called labyrinth tilings, with separable Hamiltonians in the tight-binding approach. This method paves the way to study higher-dimensional, quantum mechanical solutions, which can be directly derived from the one-dimensional results. This allows the investigation of very large systems in two and three dimensions with up to 10^10 sites. In particular, we contemplate the class of metallic-mean sequences. Based on this model we focus on the electronic properties of quasicrystals with a special interest on the connection of the spectral and dynamical properties of the Hamiltonian. Hence, we investigate the characteristics of the eigenstates and wave functions and compare these with the wave-packet dynamics in the labyrinth tilings by numerical calculations and by a renormalization group approach in connection with perturbation theory. It turns out that many properties show a qualitatively similar behavior in different dimensions or are even independent of the dimension as e.g. the scaling behavior of the participation numbers and the mean square displacement of a wave packet. Further, we show that the structure of the labyrinth tilings and their transport properties are connected and obtain that certain moments of the spectral dimensions are related to the wave-packet dynamics. Besides this also the photonic properties are studied for one-dimensional quasiperiodic multilayer systems for oblique incidence of light, and we show that the characteristics of the transmission bands are related to the quasiperiodic structure. / Eine der elementaren Fragen der Physik kondensierter Materie beschäftigt sich mit dem Zusammenhang zwischen der atomaren Struktur und den physikalischen Eigenschaften von Materialien. Eine Forschungslinie in diesem Kontext begann mit der Entdeckung der Quasikristalle durch Shechtman et al. 1982. Es stellte sich bald heraus, dass diese Materialien mit ihren laut der klassischen Kristallographie verbotenen 5-, 8-, 10- oder 12-zähligen Rotationssymmetrien durch mathematische Modelle für die aperiodische Pflasterung der Ebene beschrieben werden können, die durch Penrose und Ammann in den 1970er Jahren vorgeschlagen wurden. Aufgrund der fehlenden Translationssymmetrie in Quasikristallen sind bis heute nur endliche, relativ kleine Systeme oder periodische Approximanten durch numerische Berechnungen untersucht worden und theoretische Ergebnisse wurden hauptsächlich für eindimensionale Systeme gewonnen. In dieser Arbeit werden d-dimensionale quasiperiodische Modelle, sogenannte Labyrinth-Pflasterungen, mit separablem Hamilton-Operator im Modell starker Bindung betrachtet. Diese Methode erlaubt es, quantenmechanische Lösungen in höheren Dimensionen direkt aus den eindimensionalen Ergebnissen abzuleiten und ermöglicht somit die Untersuchung von sehr großen Systemen in zwei und drei Dimensionen mit bis zu 10^10 Gitterpunkten. Insbesondere betrachten wir dabei quasiperiodische Folgen mit metallischem Schnitt. Basierend auf diesem Modell befassen wir uns im Speziellen mit den elektronischen Eigenschaften der Quasikristalle im Hinblick auf die Verbindung der spektralen und dynamischen Eigenschaften des Hamilton-Operators. Hierfür untersuchen wir die Eigenschaften der Eigenzustände und Wellenfunktionen und vergleichen diese mit der Dynamik von Wellenpaketen in den Labyrinth-Pflasterungen basierend auf numerischen Berechnungen und einem Renormierungsgruppen-Ansatz in Verbindung mit Störungstheorie. Dabei stellt sich heraus, dass viele Eigenschaften wie etwa das Skalenverhalten der Partizipationszahlen und der mittleren quadratischen Abweichung eines Wellenpakets für verschiedene Dimensionen ein qualitativ gleiches Verhalten zeigen oder sogar unabhängig von der Dimension sind. Zudem zeigen wir, dass die Struktur der Labyrinth-Pflasterungen und deren Transporteigenschaften sowie bestimmte Momente der spektralen Dimensionen und die Dynamik der Wellenpakete in Beziehung zueinander stehen. Darüber hinaus werden auch die photonischen Eigenschaften für eindimensionale quasiperiodische Mehrschichtsysteme für beliebige Einfallswinkel untersucht und der Verlauf der Transmissionsbänder mit der quasiperiodischen Struktur in Zusammenhang gebracht.

Page generated in 0.0557 seconds