1 |
Étude de la fonction du variant d'histone H2A.Z dans la régulation des cyclines G1-S du cycle cellulaire et dans la réponse aux stress cellulaires chez saccharomyces cerevisiaeCoulombe, Patrice January 2013 (has links)
La chromatine est l'assemblage du matériel génétique, l'ADN et de protéines appelées histones. En plus de leur fonction d'entreposage du génome, ces dernières régulent l'accessibilité de l'ADN aux divers facteurs de régulation. Le variant d'histone H2A.Z est incorporé autour des promoteurs réprimés chez Saccharomyces cerevisiae. Ce variant semble impliqué dans la préparation des gènes réprimés. Cette préparation permet une expression rapide de ces gènes selon les conditions régulant leur activation.
Bien qu'il soit essentiel à la viabilité chez les eucaryotes supérieurs, la délétion du gène HTZ1 n'est pas létale chez la levure. Celle-ci engendre cependant plusieurs phénotypes sévères, dont un ralentissement du cycle cellulaire et une sensibilité accrue à divers agents pharmacologiques. Par exemple, la caféine entraîne un arrêt en phase G1 chez le mutant. Cet arrêt correspond au point de contrôle du cycle cellulaire le plus important, le point de départ (START). Il est régulé de façon très stricte par la croissance et la taille des cellules. Lorsque toutes les conditions prolifératives sont réunies, une cascade positive active la cycline-kinase Cdc28 couplée à la cycline Cln3. Celles-ci phosphorylent l'inhibiteur (Whi5) du complexe de facteur de transcription responsable de l'induction des cyclines de la phase G1. Ce complexe, SBF, est normalement déjà lié aux promoteurs de ces cyclines et prépare le gène à une induction forte et rapide au moment opportun.
|
2 |
Etude du rôle de la voie eIF2α/ATF4 dans la régulation de l'expression des gènes de l'autophagie lors d'une carence en acides aminés / Study of the role of the channel eIF2α / ATF4 in the regulation of gene expression of autophagy in a deficiency in amino acidsB'chir, Wafa 23 October 2013 (has links)
Chez les mammifères, les carences nutritionnelles telles que les carences en acides aminés constituent un stress nutritionnel important. Pour faire face à ces situations, l'organisme dispose de processus adaptatifs tels que l'autophagie, régulés par de multiples voies de signalisation. Au niveau cellulaire, plusieurs voies de signalisation sont impliquées dans la régulation de ces processus adaptatifs qui permettent la survie cellulaire lors de différentes conditions de stress environnementaux y compris la carence en acides aminés. En particulie,r la voie eIF2α/ATF4 joue un rôle crucial dans l'adaptation des cellules à ces différents stress notamment en régulant la transcription de nombreux gènes cibles spécifiques. L'objectif de ce travail était donc de déterminer le rôle de la voie eIF2α/ATF4 dans la régulation de la transcription des gènes impliqués dans l'autophagie en réponse à carence en acides aminés. En utilisant p62 comme un modèle de travail, nous avons montré que la kinase GCN2 qui phosphoryle eIF2α et les facteurs de transcription ATF4 et CHOP jouent un rôle clé dans la régulation de la transcription d'un grand nombre de gènes impliqués dans le processus autophagique en réponse à une carence en acides aminés. Nous avons en particulier identifié 3 classes de gènes de l'autophagie selon leur dépendance à ATF4 et CHOP et la liaison de ces facteurs sur les éléments spécifiques de leurs promoteurs en fonction de l'intensité du stress. PLus généralement, nous avons démontré que ce mécanisme pouvait également être activé par la kinase PERK lors d'un stress du réticulum endoplasmique. Enfin, nous avons pu montrer que durant les 6 premières heures de la carence en acides aminés, la voie eIF2α/ATF4/CHOP n'est pas impliquée dans la diminition de la viabilité cellulaire. Cependant, lorsque la carence en acides aminés est prolongée (16-48h), CHOP joue un rôle clé dans la régulation de l'apoptose et dans la répression du processus autophagique en contrôlant la transcription des gènes cibles spécifiques. Ainsi, ce travail a permis de mettre en évidence qu'en cas de carence en acides aminés, la voie eIF2α/ATF4/CHOP joue un rôle clé dans le devenir de la cellule. En fonction de la durée et de l'intensité du stress, la régulation très coordonnée de ces mécanismes moléculaires va permettre successivement la survie de la cellule et ensuite l'apoptose. / In mammals nutritional deficiencies such as amino acid limitation are an important nutritional stress. To deal with these situations, the body has adaptive processes such as autophagy regulated by multiple signaling pathways. At the cellular level, several signaling pathways are involved in the regulation of these adaptive processes that allow cell survival in different conditions of environmental stress, including amino acid deficiency. In particular, the eIF2α/ATF4 pathways plays a crucial role in the adaptation of these cells to various stresses such as the transcriptional regulation of many specific target genes. The aim of this work was to identify the role of the eIF2α/ATF4 pathway in the stress-regulated transcription of mammalian autophagy genes. Using p62 as a working model, we have shown that the GCN2 eIF2α-kinase and ATF4 and CHOP transcription factors are required to increase transcription of a set of autophagy genes implicated in the formation, elongation and function of the autophagosome. We also identify 3 classes of autophagy genes according to their dependence on ATF4 and CHOP and the binding of these factors to specific promoter cis elements. Furthermore, different combinations of CHOP and ATF4 bindings to target promoters allow the trigger of a differential transcriptional response according to the stress intensity. Furthermore, we have demonstrated that the same mechanism can also be activated by ER stress through PERK eIF2α-kinase activation. We also show that during the first 6h of starvation, CHOP up-regulates a number of autophagy genes while cell viability is not affected. By contrast, when the amino acid starvation is prolonged (16-48h), we demonstrated that CHOP has a dual role in both limiting autophagy and inducing apoptosis through the transcriptional activation of specific target genes. Thus, this work establishes that following amino acid starvation, the eIF2α/ATF4 pathway plays a key role in the cell fate. Depnding on the duration and intensity of the stress, the highly coordinated regulation of these molecular mechanisms sequentially will allow the survival of the cell and subsequently apoptosis.
|
3 |
??tude de la fonction du variant d'histone H2A.Z dans la r??gulation des cyclines G1-S du cycle cellulaire et dans la r??ponse aux stress cellulaires chez saccharomyces cerevisiaeCoulombe, Patrice January 2013 (has links)
La chromatine est l'assemblage du mat??riel g??n??tique, l'ADN et de prot??ines appel??es histones. En plus de leur fonction d'entreposage du g??nome, ces derni??res r??gulent l'accessibilit?? de l'ADN aux divers facteurs de r??gulation. Le variant d'histone H2A.Z est incorpor?? autour des promoteurs r??prim??s chez Saccharomyces cerevisiae. Ce variant semble impliqu?? dans la pr??paration des g??nes r??prim??s. Cette pr??paration permet une expression rapide de ces g??nes selon les conditions r??gulant leur activation.
Bien qu'il soit essentiel ?? la viabilit?? chez les eucaryotes sup??rieurs, la d??l??tion du g??ne HTZ1 n'est pas l??tale chez la levure. Celle-ci engendre cependant plusieurs ph??notypes s??v??res, dont un ralentissement du cycle cellulaire et une sensibilit?? accrue ?? divers agents pharmacologiques. Par exemple, la caf??ine entra??ne un arr??t en phase G1 chez le mutant. Cet arr??t correspond au point de contr??le du cycle cellulaire le plus important, le point de d??part (START). Il est r??gul?? de fa??on tr??s stricte par la croissance et la taille des cellules. Lorsque toutes les conditions prolif??ratives sont r??unies, une cascade positive active la cycline-kinase Cdc28 coupl??e ?? la cycline Cln3. Celles-ci phosphorylent l'inhibiteur (Whi5) du complexe de facteur de transcription responsable de l'induction des cyclines de la phase G1. Ce complexe, SBF, est normalement d??j?? li?? aux promoteurs de ces cyclines et pr??pare le g??ne ?? une induction forte et rapide au moment opportun.
|
4 |
Twist proteins as oxidative and hypoxic stress regulators / Etude des facteurs oncogéniques Twist dans la régulation du stress oxydatif et hypoxiqueKolodziejski, Jakub 11 January 2016 (has links)
Les facteurs de transcription Twist1 et Twist2 (famille Twist) jouent un rôle majeur dans le développement embryonnaire et dans la progression tumorale. Leur potentiel oncogénique dérive directement de la combinaison de leurs nombreuses activités développementales. Les gènes Twist peuvent notamment, en induisant la transition épithélio-mésenchymateuse (EMT), promouvoir l’invasion des cellules cancéreuses et participer de ce fait aux processus métastatique. De plus, en bloquant l’activité des voies de signalisation Rb et p53, ils peuvent inhiber les deux principaux programmes de sauvegarde cellulaire que sont l’apoptose et la senescence. Enfin, ils sont également impliqués dans la résistance des cellules cancéreuses aux agents chimio-thérapeutiques. En plus de ces nombreuses activités, nos données préliminaires nous ont amené à considérer un rôle de Twist dans la réponse au stress. Les cellules cancéreuses doivent croitre dans un environnement en perpétuel changement qui génère de nombreux types de stress. Seules les cellules capables de s’adapter, peuvent survivre et acquérir de nouvelles capacités les rendant plus agressives. La résistance au stress fait donc partie intégrante de la progression tumorale. Nos travaux révèlent que Twist en induisant une résistance au stress, plus particulièrement métabolique, est un acteur essentiel de l’acquisition d’u phénotype agressif des cellules cancéreuses. Dans une première étude, nous avons montré que Twist module le stress oxydatif, une condition très fréquemment retrouvée dans les tumeurs. Ainsi, nos résultats indiquent que l’expression de Twist provoque une réduction du taux d’espèces réactives de l’oxygène (ROS) intracellulaire. Cette activité a pour conséquence directe d’induire une résistance accrue à l’apoptose déclenchée par divers traitements. Nous avons par la suite caractérisé cette activité et mis en évidence un programme génétique contrôlé par Twist impliquant divers facteurs possédant des propriétés anti-oxydantes. Dans un second temps, nous nous sommes intéressés à un autre type de stress métabolique, l’hypoxie. L’hypoxie définie par un taux insuffisant d’oxygène, est retrouvée dans la plupart des tumeurs solides du fait de l’absence ou de l’anomalité de la vascularisation. L’hypoxie mène à la stabilisation d’un facteur de transcription, HIF1α. Cette protéine est essentielle à l’adaptation hypoxique et contrôle l’expression de nombreux gènes impliqués dans le métabolisme du glucose, le transport de l’oxygène, l’angiogenèse ou l’apoptose. Dans les premiers temps d’hypoxie, l’effet d’adaptation induit par HIF1α est bénéfique pour les cellules. Cependant, si l’absence d’oxygène se prolonge, HIF1α, peut pousser les cellules vers la mort. Nos travaux démontrent que Twist est capable de rendre les cellules résistantes à une hypoxie prolongée. De plus, cette activité de protection contre le stress hypoxique agit via un effet paracrine. Enfin, nos données suggèrent que cet effet est médié par une interaction directe entre les protéines Twist et HIF1α. Au final, cette étude indique que l’expression de Twist dans les cellules cancéreuses, en conférant une résistance accrue à l’environnement hypoxique, joue un rôle essentiel dans l’adaptation au stress et à l’acquisition de nouveaux phénotypes agressifs. En résumé, L’objectif principal de ma thèse était de mettre en évidence de nouvelles propriétés cellulaires des oncogènes de la famille Twist. Nos résultats démontrent que Twist par ses capacités à contrôler le stress métabolique, permet à la cellule cancéreuse de mieux s’adapter et donc survivre dans un environnement en constante évolution. Nos travaux renforcent donc la notion de l’importance de ces facteurs dans la progression tumorale. / Twist1 and Twist2 are related transcription factors that play major roles both during embryonic development and in several pathologies, including cancer. Twists' oncogenic potential arises from a combination of their multiple functions in development. Notably, both Twist induce epithelial-to mesenchymal transition, thus promoting tumour invasiveness and possibly conferring to cells self-renewal properties. Furthermore, through disruption of both Rb- and p53-driven pathways, Twist override two major oncogene-induced fail-safe programs, namely senescence and apoptosis, thereby promoting malignant conversion. Twist has also been reported to participate in acquisition of drug resistance and in promotion of neo-angiogenesis.Current knowledge of pleiotropic activities of Twist prompted us to postulate that these factors may be major regulators of stress response. Cancer cells survive and grow within a continuously changing environment that creates multiple stresses to which they must adapt in order to survive and strive. Such adaptations often give rise to the acquisition of an aggressive phenotype. Consistent with this hypothesis, we recently unveiled new activities of Twist proteins that are related to stress response. We have shown that Twist regulates response to oxidative stress, a condition exacerbated in cancer by stimuli such as inflammation, increased cellular metabolism and changes in tumour oxygenation. Our work has contributed to the understanding of molecular mechanisms through which Twist diminishes cellular ROS and thus participates in the escape from apoptosis and senescence. In the first part of my thesis, I worked on the antioxidant activity of Twist and described its molecular mechanisms.The second part of my work addressed the impact of Twist proteins on cellular response to hypoxia that is insufficient oxygen supply, frequently found in solid tumours. Cellular response to hypoxic stress relies on stabilization and activation of HIF1α, a key transcriptional mediator of the hypoxic response, regulating numerous genes involved in glucose metabolism, oxygen transport, angiogenesis, cell growth and apoptosis. HIF1α is beneficial for cancer cells in response to short hypoxic episodes, however its sustained activation in case of prolonged hypoxia may push cancer cells towards apoptosis. In this context, we have shown that Twist protects cancer cells from hypoxia-induced apoptosis. We have discovered HIF1α and Twist physically interact, suggesting a possible mechanistic basis for Twist's protective effect. These results led us to postulate that Twist plays a role in cellular response to hypoxia and thus participates in cancer cell adaptation and acquisition of aggressive phenotypes triggered by lack of oxygen.Our results reinforce the notion that Twist factors are major cellular stress modulators that might be important for adaptation of cancer cells to changing conditions in the process of tumour progression.
|
5 |
Stress cellulaire et modulation de l'activité des cytidines désaminases APOBEC3 / Cellular stress and modulation of APOBEC3 cytidine deaminases activityBouzidi, Mohamed Salah 29 September 2015 (has links)
Les protéines APOBEC3 (A3A-A3H) catalysent la désamination des cytidines (C) présentes sur l'ADN simple brin en thymidine (T). Cette activité cytidines désaminase a initialement été décrite comme impliquée dans la restriction des rétrovirus et de certains virus à ADN par leur capacité à induire de nombreuses mutations C->T, ou hypermutations, sur les génomes viraux. Il apparait néanmoins que leur activité n'est pas restreinte aux génomes viraux et que certaines A3 peuvent induire des mutations sur l'ADN mitochondrial (A3A, C, F, G et H) et nucléaire (A3A et A3B). Ainsi, l'impact somatique des A3 est désormais établi dans la formation de certains cancers, dont la majorité des mutations, portent signatures des APOBEC3. Aux vues de ces observations, nous nous sommes intéressés à la façon dont sont régulées ces enzymes dans le contexte du stress cellulaire viro-induit ou endogène. La première partie de nos travaux a porté sur la protéine A3DE, seul membre de la famille APOBEC3 ne possédant pas d'activité cytidine désaminase. De façon intéressante, il apparait qu'A3DE est surexprimée dans les cirrhoses infectées par le VHB, VHC ou co-infectées par le VHC et le VHB. Nous avons pu mettre en évidence qu'A3DE interagit et module l'activité d'A3F et d'A3G, deux cytidines désaminases exprimées dans le foie et impliquées dans la restriction du VHB. Dans un second temps, nous nous sommes intéressés à la caractérisation du potentiel génotoxique de la protéine A3B. Cette protéine, de par sa localisation strictement nucléaire, constitue la seule A3 à double domaine n'interagissant pas avec A3DE. Contrairement à A3A, A3B est faiblement active sur l’ADN nucléaire et n’induit pas de cassures de l’ADN double brin. Nous avons pu mettre en évidence par mutagénèse les régions de la protéine impliquées dans l’atténuation de la génotoxicité d’A3B par rapport à A3A et que cette atténuation est conservée chez les primates. Enfin, nous avons étudié le rôle et la régulation d’A3A dans le catabolisme. Nous avons mis en évidence que l’ADN mitochondrial cytoplasmique (ADNcymt) active la voie RIG-I/ARN polymérase III ce qui a pour effet d’induire la production d’IFN qui va activer l’expression d’A3A. A3A va ainsi jouer un rôle dans le catabolisme de l’ADNcymt et contribue à l'élimination de cette source de stress cellulaire, mais occasionnant par la même des dommages sur l’ADN nucléaire. Les A3 sont des enzymes fondamentales de la défense immunitaire innée et du catabolisme de l’ADN. Nous montrons qu’A3DE a pour fonction de moduler l’activité d’A3F et d’A3G tandis qu’A3B, possède un phénotype atténué chez tous les primates et s’avère moins génotoxique que’A3A. Cette dernière participe à la dégradation de l’ADN cytoplasmique, limitant ainsi l’inflammation. Néanmoins, A3A peut s’avérer dangereuse pour l’intégrité génomique et contribuer à l’émergence de cancers, notamment en cas d’inflammation chronique. / APOBEC3 proteins (A3A-A3H) catalyse the deamination of cytosine (C) to thymidine (T) on single stranded DNA. This activity, called cytidine deaminase, has initially been described as a mechanism involved in restriction against retroviruses and DNA viruses by massively inducing C->T mutations on viral genome : this phenomenon is called "hypermutations". Nevertheless, this activity is not virus-specific and some A3 can induce mutations on mitochondrial DNA (A3A, C, F, G, H) and nuclear DNA (A3A and A3B). Thus, the impact of those proteins on cancer formation is now established in cancers where mutations mostly show an APOBEC3 signature. In view of those considerations, we decided to study how those enzymes are regulated in the context of a viral cellular stress or an endogenous cellular stress. The first part of our work is focused on A3DE, the only APOBEC3 lacking a cytidine deaminase activity. Interestingly, A3DE is upregulated in cirrhotic livers infected by HBV, HCV or coinfected with HBV & HCV. We show that A3DE inhibits A3F & A3G activity by interacting with those HBV restriction involved A3. Then, we studied the attributes of the genotoxicity potential of A3B. This protein, by his strictly nuclear localization, constitutes the only double domain A3 which is not regulated by A3DE. Unlike A3A, A3B is weakly active on nuclear DNA and does not induce double strand breaks. We determine by directed mutagenesis the clusters of A3B involved in genotoxicity attenuation compared with A3A. We also show that this attenuation is conserved among primates. Finally, we investigated the role and regulation of A3A in the context of DNA catabolism. We proved that mitochondrial cytoplasmic DNA (mtcyDNA) triggers the RIG-I/DNA polymerase III pathway, which induces IFN production leading to A3A expression. So A3A will be involved in mtcyDNA catabolism and contribute to the clearance of this stress signal, but will also induce double strand breaks on nuclear DNA. A3 are major enzymes of the innate immune response and DNA catabolism. We show that A3DE modulates A3F and A3G activity while A3B is attenuated among primates and is less genotoxic than A3A. A3A participates to cytoplasmic DNA catabolism and limits inflammation. Nevertheless, A3A could be dangerous for the genomic integrity and contributes to cancer, especially in cases of chronic inflammation.
|
6 |
Régulateurs traductionnels de l'expression génique de la différenciation et du stress cellulaire / Translational regulation during the differentiation and cellular stressHantelys, Fransky 20 February 2017 (has links)
La cellule est susceptible de modifier l'expression de ces gènes en fonction de son environnement. Dans les cellules eucaryotes, la régulation de l'expression de ces gènes se présente dans plusieurs étapes. Cette régulation peut intervenir dès la transcription de l'ADN jusqu'au devenir des transcrits. La régulation post-transcriptionnelle tient un rôle déterminant dans la synthèse protéique. Elle regroupe l'ensemble des contrôles qui s'exercent sur les transcrits. Cette régulation est induite en réponse à différents stimuli comme la différenciation ou lors de stress cellulaires. En situation de stress, la traduction canonique dépendante de la coiffe est bloquée, à l'exception de certains ARNm essentiels pour assurer la survie des cellules. De ce fait, les cellules mettent en place un mécanisme alternatif afin de continuer la traduction. Un des mécanismes de traduction, implique le site d'entrée interne du ribosome ou IRES (Internal Ribosome Entry Site). L'IRES est une séquence en structure secondaire dans la partie 5' non-traduite de certains ARNm. Il existe des facteurs responsables de leur activation appelés ITAF ou IRES-transacting factor, permettant le recrutement des ribosomes pour initier la traduction. Les protéines pouvant se lier aux ARN sont les acteurs majeurs de l'activation des IRES. Mon travail de thèse est d'étudier les régulateurs post-transcriptionnels en réponse à différents stimuli par le biais de la traduction IRES-dépendante. Dans la première partie de mon projet, nous avons montré la régulation de la traduction via l'activation de l'IRES du FGF1 et ce de manière promoteur-dépendante au cours de la différenciation des myoblastes. Grâce à la technique de résonance plasmonique de surface (SPR) nous avons découvert deux protéines p54nrb/NONO et hnRNPM en tant qu'ITAF capables de former un complexe pour activer l'IRES du FGF1 durant la différenciation des myoblastes. Dans la deuxième partie de ma thèse, nous avons démontré l'existence de l'IRES du VEGFD durant un choc thermique dans les cellules cancéreuses. Nous avons aussi découvert que cette activation est médiée par un ITAF qui est la nucléoline, jamais démontrée auparavant comme ITAF de l'IRES du VEGFD. D'après nos résultats, le stress thermique induit la délocalisation de la nucléoline du noyau vers le cytoplasme pour changer la conformation de l'IRES du VEGFD afin de continuer sa traduction. Dans la troisième partie de mon projet, j'ai étudié de manière générale la régulation des gènes angiogéniques et lymphangiogéniques. L'ensemble des données montre que ces gènes sont majoritairement régulés au niveau traductionnel dans les cardiomyocytes en condition hypoxique. En étudiant les IRES angiogéniques et lymphangiogéniques, nos résultats montrent l'activation de ces IRES à différents temps au cours de l'hypoxie précoce. Dans la même condition, nous avons découvert la protéine vasohibin-1 comme ITAF hypoxique et spécifique de l'IRES du FGF1 dans les cardiomyocytes. En conclusion, nous avons découvert différents ITAF spécifiques à un IRES et en fonction du stress. P54nrb/NONO, hnRNPM sont des ITAF de l'IRES du FGF1 durant la différenciation cellulaire et la vasohibine-1 en hypoxie dans les cardiomyocytes. La nucléoline permet d'activer un IRES du VEGFD en réponse au choc thermique. / In cell, gene expression can be modified depending on the cellular microenvironment. Regulation of gene expression occurs at different levels, ranging from the transcription of the DNA to the mRNA. Among the post- transcriptional regulation, the control of translation plays a crucial role. In particular, the translational regulation occurs in response to different stimuli such as cell differentiation or cell stress. In stress condition, the canonical cap-dependent translation is blocked, excepted some mRNAs that are translated by alternative mechanisms. One of these mechanisms involves the structural elements of the mRNAs, the IRES (Internal Ribosome Entry Sites). The IRES activation involves some factors called ITAFs (IRES trans-acting factors), which allow the internal recruitement of ribosomes to initiate translation. My thesis is to study the mechanisms of IRES-dependent translation regulation in response to different stimuli, and to identify ITAFs responsible for this regulation. In the first part of my project, we have shown that the translation controlled by the FGF1 mRNA IRES is activated. This activation depends on its own promoter during the early phase of murine myoblast differentiation. Through biomolecular interaction analysis technology by surface plasmon resonance coupled to mass spectrometry (BIA/MS), we identified two proteins, p54nrb/NONO and hnRNPM bound both to the IRES and the FGF1gene promoter. These two proteins are both ITAFs activators of IRES and activators of FGF1 promoter transcription, resulting in a coupling of transcription and translation responsible for the induction of the FGF1 expression during myoblast differentiation. In the second part of this thesis, we demonstrated the existence of an IRES within the VEGFD mRNA. This IRES is activated by heat shock in mammary murine carcinoma. BIA/MS technology has enabled us to identify nucleolin as ITAF responsible for this activation. SHAPE experiments revealed the presence of two alternative structures of VEGFD IRES. According to our results, the heat shock induced the relocation of nucleolin from the nucleus to the cytoplasm, suggesting its binding to the mRNA in the cytoplasm could stabilize the conformation of the mRNA VEGFD IRES and activate its translation. The third part of my thesis focused on translational regulation of lymphangiogenic and angiogenic genes into cardiomyocytes in hypoxic conditions. The data obtained by the semi-global approach Fluidigm indicate that only few genes are induced at the transcriptional level, while the majority of them, especially those which have the mRNA IRES, are activated at translational level in hypoxic cardiomyocytes. I have also shown that the mRNA IRES of factors (lymph)angiogenic VEGF and FGF are activated during early hypoxia. Through Technology BIA/MS, I identified a specific hypoxic ITAF of FGF1 IRES in cardiomyocytes: it is the vasohibin - 1 protein involved in angiogenesis and stress tolerance. So, my thesis has enabled to make progress in understanding the mechanisms of IRES-dependent translation regulation. In addition, I have demonstrated that in cardiomyocytes during hypoxia the gene expression is surprisingly regulated at translational level. My work led to the identification of several molecular actors responsible for the regulation of mRNA (lymph)angiogenic factors translation, which could play a key role in ischemic pathologies and in cancer, and provide new targets therapeutic.
|
7 |
Rôle de FOXO3 dans la régulation des phases précoces de la maladie de Huntington lors de la différenciation neuronale / Role of FOXO3 in the regulation of the early phases of Huntington's disease during neuronal differentiationVoisin, Jessica 29 September 2016 (has links)
FOXO3 est un facteur de transcription important pour la réponse au stress, la régulation de la différenciation et de la survie cellulaires qui a des effets neuroprotecteurs dans plusieurs modèles de maladies neurodégénératives, dont la maladie de Huntington (MH). Les effets neuroprotecteurs de FOXO3 sont réprimés dans la MH par une activité anormale de Ryk, un récepteur Wnt important pour la neurogenèse, par la liaison du domaine intracellulaire de Ryk à la ?-caténine, un co-facteur de FOXO3. L'objectif principal de ce travail est d'étudier les effets de la huntingtine mutée (mHTT) sur le répertoire des cibles directes humaines de FOXO3 à l'aide d'un modèle des phases développementales de la MH, à savoir des cellules souches neurales isogéniques issues de cellules souches pluripotentes induites. En formant un complexe tripartite avec la ?-caténine et FOXO3, Ryk agit comme un co-régulateur de FOXO3 en conditions normales ou pathologiques. L'analyse des cibles directes de FOXO3 montre une reprogrammation de ces cibles avec des pertes et des gains dans des voies de signalisation qui sont connues pour leur rôle dans la MH, notamment les voies de régulation de la prolifération cellulaire. Ces résultats montrent que la régulation des gènes par FOXO3 est fortement modifiée dans les cellules qui expriment la mHTT. Cela ouvre la voie à l'étude des mécanismes d'homéostase cellulaire sous contrôle de FOXO3 dans les neurones en différenciation et leur impact sur l'activité des neurones adultes. Plus largement, ces résultats permettent de mieux comprendre la dynamique moléculaire de la MH et les effets de reprogrammation moléculaire sur la différenciation et l'activité neuronale. / FOXO3 is an important transcription factor for stress response, the regulation of differentiation and cell survival that has neuroprotective effects in several models of neurodegenerative diseases, including Huntington’s disease (HD). The neuroprotective effects of FOXO3 in HD are repressed by abnormal signaling from the Wnt receptor Ryk by the binding of the intracellular domain of Ryk to the β-catenin, a cofactor of FOXO3.The aim of this work was to explore the effect of the mutant huntingtin (mHTT) on the repertoire of direct FOXO3 targets (F3Ts) using a model of developmental stage of HD, namely HD isogenic neural stem cells derived from Huntington’s Induced Pluripotent Stem cells. Forming a tripartite complex with β-catenin and FOXO3, Ryk acts as a co-regulator of FOXO3 in normal or pathological condition. Analysis of direct FOXO3 targets shows reprogramming of these targets with losses and gains in signaling pathways that are known to role in HD, including regulatory pathways of cell proliferation. These results show that gene regulation by FOXO3 is heavily modified in cells expressing the mutant huntingtin. Our findings open the way for a comprehensive study of cellular homeostasis mechanisms under the control of FOXO3 in neural differentiation and their impact on the activity of adult neurons. More broadly, these results provide insight into the molecular dynamics of MH and the effects of molecular reprogramming in differentiation and neuronal activity.
|
8 |
FONCTIONS UBIQUITINE-DEPENDANTES DE LA DEACETYLASE HDAC6Boyault, Cyril 01 December 2006 (has links) (PDF)
Avant le début de ma thèse, le laboratoire avait découvert et caractérisé HDAC6, une Histone Déacétylase atypique qui possède deux domaines déacétylases et peut interagir directement avec l'ubiquitine, grâce à son domaine ZnF-UBP. De plus, le laboratoire avait montré que HDAC6 interagit avec UFD3/PLAP, un régulateur du recyclage de l'ubiquitine, et p97/VCP, un orthologue murin de la chaperonne de levure Cdc48p. Cependant, aucune fonction biologique dans la voie d'ubiquitination des protéines n'était connue pour HDAC6. Nous avons tout d'abord observé que la surexpression de HDAC6 ralenti la dégradation des protéines poly-ubiquitinées, via son ZnF-UBP, son domaine de liaison à l'ubiquitine. Grâce à une série d'expériences, nous avons pu montrer que les complexes HDAC6-p97/VCP régulent directement la stabilité des protéines poly-ubiquitinées. L'accumulation intracellulaire de protéines poly-ubiquitinées peut être toxique pour les cellules si aucune réponse cellulaire n'est engagée. En réalité, une telle accumulation active le facteur de transcription Heat Shock Factor 1 (HSF1) afin de promouvoir la survie de la cellule. Grâce à ces considérations, nous avons découvert que HDAC6 contrôle la réponse cellulaire à l'accumulation de protéines poly-ubiquitinées et avons disséqué les mécanismes impliqués dans ce contrôle. Nous avons trouvé qu'en l'absence de stress, HDAC6 et HSF1 sont en complexes avec p97/VCP et HSP90. Cependant, lorsque la concentration intracellulaire en protéines poly-ubiquitinées augmente, comme lors d'une inhibition du protéasome, HDAC6 est re-larguée du complexe de manière ubiquitine et ZnF-UBP dépendante. Un tel re-largage permet ensuite à p97/VCP d'activer HSF1 et d'engager la cellule dans la réponse au stress.
|
9 |
Rôle fonctionnel des longs ARN non codants dans l'adaptation et la pluripotence des cellules souches en culture. / Functional roles of long non coding RNAs in pluripotency and adaptation of stem cells in culture.Bouckenheimer, Julien 16 December 2016 (has links)
Les applications des cellules souches pluripotentes humaines (CSP) dans le domaine biomédical sont particulièrement prometteuses, aussi bien au niveau expérimental qu’au niveau clinique. Leur utilisation comme source inépuisable de cellules permettant de tester et développer de nouvelles molécules thérapeutiques (notamment par modélisation de pathologies in vitro, criblage haut-débit et tests de cytotoxicité) s’ajoute à l’important potentiel qu’elles présentent en médecine régénérative et en thérapie cellulaire. Utilisables comme matériel biologique permettant de restaurer partiellement ou totalement un organe ou un tissu défaillant, il reste essentiel de vérifier l’intégrité génétique des lignées cellulaires utilisées afin de garantir une utilisation sécurisée pour le patient. Parmi les facteurs responsables de l’apparition d’anomalies génétiques chez les CSP, les conditions cultures jouent un rôle essentiel. Des techniques de culture inadaptées peuvent facilement provoquer l’émergence d’une instabilité génomique. Toute altération doit être détectée et documentée afin de pouvoir définir des critères d’acceptation préalable à leur utilisation clinique.Les CSP sont des cellules particulièrement sensibles au stress qui peut résulter de techniques de repiquage inappropriées. La dérive génétique qui découle de ce stress peut être précoce et apparaître dès les premiers passages des lignées cultivées. Notre équipe a pu tester de nombreuses méthodes de repiquage sur différentes lignées cellulaires pluripotentes. Nous avons notamment observé que des anomalies génétiques majeures caryotypiques (trisomies) et infra-caryotypiques (SNPs) ainsi que des changements phénotypiques (survie augmentée, acquisition de mobilité) apparaissaient rapidement suite à l’utilisation de techniques de repiquage basées sur l’utilisation d’enzyme de dissociation (TryPLE). Ces altérations apparaissent dans des lignées qui s’adaptent progressivement à la dissociation en cellules uniques (dissociation « single-cell ») provoquées par ces enzymes.Notre équipe étudie les conséquences cellulaires liées à ce phénomène d’adaptation des CSP provoquée par la dissociation « single-cell ». Grâce à des techniques de séquençage dernière génération (RNA-Seq), nous avons comparé les profils transcriptomiques de CSP repiquées par des techniques standard (comme le passage mécanique) et par des techniques basées sur la dissociation « single-cell » (comme le passage enzymatique par TryPLE). Cette comparaison a montré au niveau transcriptionnel une surexpression spectaculaire d’ARNs non codants appartenant à une classe récemment décrite : les longs ARNs non codants (lncRNAs).L’objectif principal de ce travail de thèse a été d’évaluer le niveau d’implication de ces lncRNAs dans le processus d’adaptation des CSP en culture, et leur rôle fonctionnel potentiel. Nous avons ainsi dans un premier temps déterminé in silico quels lncRNAs étaient différentiellement exprimés dans les CSP adaptées, et après validation expérimentale par biologie moléculaire des candidats les plus prometteurs, nous avons utilisé des tests fonctionnels (notamment par RNA interférence (siRNA)) afin de déterminer le rôle de ces lncRNAs dans la machinerie cellulaire et la pluripotence des CSP. Autour de ce projet principal, nous avons essayé de comprendre les mécanismes régissant les changements phénotypiques et comportementaux provoquées par la dissociation « single-cell ». Nous avons notamment pu suggérer la mise en place d’un phénomène de transition épithélio-mésenchymateuse (EMT) chez des CSP dissociées. Enfin, l’attractivité que représente un sujet d’étude récent comme les lncRNAs et la disponibilité croissante de publications les concernant nous ont poussé à publier une revue approfondie ainsi qu’une méta-analyse sur l’implication des longs ARN non codants dans le développement précoce de l’embryon et dans les cellules souches pluripotentes. / The actual and future applications of human pluripotent stem cells (PSC) in the biomedical field are highly promising. Their use for the discovery of new therapeutic drugs through the development of high-throughput screening tests, cytotoxicity tests and in vitro disease modeling has been added to their tremendous interests in regenerative medicine and cellular therapy. As a source of biological material that can be used to restore partially or totally the lost functions of a damaged organ or tissue, or as a source of normal cells to study human development or test putative new drugs, their genomic integrity has to be thoroughly assessed. Therefore, an effective optimization of their culture conditions has to be considered, in order to control the absence of genomic instability and prevent their potential emergence. Any genetic or epigenetic alteration resulting from cell culturing must be detected in order to define and characterize acceptance criteria for scientific and medical purposes.PSC are particularly sensitive to stress resulting from unappropriated passaging techniques, which cause rapid genetic drift. Indeed, our team observed that many genomic abnormalities arise from aggressive single cell, enzymatic based, passaging methods, and that substantial phenotypical changes such as increased survival after cell dissociation and variation in cell shape can then occur.In order to understand the mechanisms governing the emergence of those adverse alterations, the team focused on the consequences resulting from the adaptation of PSC to single-cell dissociation. By using new generation sequencing techniques as RNA-Seq, we compared transcriptomics of PSC passaged by standard techniques (such as mechanical passaging) versus single-cell enzymatic dissociation (such as TRyPLE-based single-cell passaging). This comparison showed that the most striking difference in the gene expression pattern between adapted and non adapted cells concerned the dramatic overexpression of RNAs from a recently discovered class: long non-coding RNAs (lncRNAs).The aim of this thesis work was to determine to which extent some of these lncRNAs were functionally linked to adaptation of PSC. In order to address this matter, we first investigated in silico which lncRNAs were upregulated by single-cell dissociation, and after experimental validation of lncRNA candidates by molecular biology, we performed functional in vitro analysis (notably by siRNA-mediated loss of function) and sought their cellular localization in order to decipher their role in the cellular machinery and their level of implication. Beside this main project, other auxiliary projects were grafted. The observation of major changes in cell phenotype and behavior led to the investigation of the global mechanisms governing these modifications, underlining the potential role of epithelial-to-mesenchymal transition provoked by single-cell dissociation. Finally, the global attractiveness of lncRNAs and the emergence of exponential documentation concerning non-coding RNAs prompted the writing of an extensive review and meta-analysis concerning the implications of lncRNAs during embryo development and in pluripotent stem cells.
|
10 |
The contribution of NKG2D and its ligands to the pathophysiology of multiple sclerosisCarmena Moratalla, Ana 12 1900 (has links)
La sclérose en plaques (SP) est une maladie inflammatoire du système nerveux central (SNC) affectant plus de 2,5 millions de personnes dans le monde. Bien que son étiologie soit inconnue, de nombreuses données supportent la contribution des réponses immunitaires à la maladie. La présence de leucocytes au sein des lésions de démyélinisation est un marqueur neuropathologique de la SP. Les traitements actuels diminuent les exacerbations de la SP mais échouent à arrêter sa progression. Ainsi, il est essentiel d’identifier des nouvelles voies contribuant à la pathologie de la SP.
NKG2D est un récepteur co-activateur de cellules effectrices qui participent à la surveillance immunitaire. Cependant, cette voie peut contribuer à l’inflammation et aux lésions tissulaires. Le blocage ou l’élimination du NKG2D réduit la gravité de la maladie dans des modèles animaux de SP. Dans la pathologie humaine, des lymphocytes T CD4+ et CD8+ NKG2D+ sont présents dans les lésions et élevés dans le sang périphérique des patients atteints de la forme cyclique de SP durant une poussée. Au moins un ligand du NKG2D (NKG2DL) est exprimé par des oligodendrocytes dans des lésions et les lymphocytes T CD8+ causent la mort in vitro des oligodendrocytes humains de façon NKG2D dépendante. On ignore encore si d’autres cellules neurales expriment des NKG2DL et sont susceptibles à la reconnaissance par le NKG2D.
Dans cette thèse, nous avons investigué la contribution de la voie NKG2D à la pathologie de la SP.
La première partie présente la caractérisation de l’expression des NKG2DL au sein du SNC. Nous avons trouvé des niveaux élevés de ULBP4, mais aucun autre ligand, dans les lésions et la matière blanche d’apparence normale chez des patients SP. Nous avons identifié des déclencheurs potentiels de l’expression de ULBP4 par les astrocytes. ULBP4 soluble est détecté dans le liquide céphalo-rachidien, et des essais fonctionnels ont démontré sa capacité à renforcer la sécrétion de cytokines inflammatoires par les lymphocytes T CD8+.
Dans la seconde partie, nous avons caractérisé les lymphocytes T exprimant NKG2D dans le sang de patients atteints des formes cycliques et progressives de la SP ainsi que chez des sujets témoins. Bien que nous ayons trouvé des proportions similaires, les lymphocytes T NKG2D+CD4+ de patients SP avaient un phénotype mémoire activé associé aux profils Th1 et Th1/Th17. Les lymphocytes T NKG2D+CD8+ étaient diminués chez les patients atteints de la forme cyclique. Cette population affichait une expression prédominante du granzyme B et manifestait des capacités de dégranulation envers les astrocytes exprimant ULBP4.
Finalement, les analyses d’imagerie en temps réel ont révélé un rôle pour NKG2D et son ligand ULBP4 dans les interactions durables entre les astrocytes et les lymphocytes T CD8+ humains. Nos travaux identifient un nouveau mécanisme dans le dialogue entre ces types cellulaires.
Globalement, ce projet de thèse présente une caractérisation en profondeur de la voie NKG2D dans la SP. De plus, il fournit de nouvelles preuves quant à l’implication de ULBP4 dans la pathophysiologie de la SP. De nouvelles investigations contribueront à élucider la validité de ULBP4 en tant que cible thérapeutique. / Multiple sclerosis (MS) is a neuroinflammatory disease of the central nervous system (CNS) that affects more than 2.5 million people worldwide. Despite its unknown etiology, numerous evidences point to aberrant immune responses that contribute to the typical tissue damage. Indeed, the presence of infiltrating immune cells within the characteristic focal demyelinating lesions is a pathological hallmark of MS. Current treatments, which target the immune system, generally control disease exacerbations, but have failed to stop progression. Therefore, it is essential to identify common immune pathways that contribute to MS pathology.
NKG2D is a co-activating receptor of immune cells that plays a critical role in immune surveillance. Nevertheless, aberrant NKG2D-mediated responses can contribute to inflammation and tissue damage. Various studies have implicated the NKG2D pathway in MS. NKG2D blocking or depletion reduced disease severity in various EAE models, a commonly used animal model of MS. In the human pathology, NKG2D+CD4+ and CD8+ T lymphocytes have been found in MS lesions and are upregulated in the peripheral blood of RRMS patients under relapse. Moreover, at least one NKG2DL has been observed in oligodendrocytes from MS lesions, which were found near CD8+ T lymphocytes. Furthermore, in vitro studies have demonstrated NKG2D-dependent killing of human oligodendrocytes by CD8+ T lymphocytes. Whether other neural cells express NKG2DL and can thus be susceptible to NKG2D-mediated recognition was still unknown.
In this thesis, we investigated further the contribution of the NKG2D pathway to the pathobiology of MS.
The first part of this project consisted in the evaluation of NKG2DL expression within the CNS. We found upregulated levels of ULBP4, and no other NKG2DL, in MS lesions and normal appearing white matter from MS patients. Moreover, we identified potential triggers observed in MS lesions that could impact on ULBP4 expression. Soluble ULBP4 was also found in the cerebrospinal fluid, and functional assays demonstrated its capacity to boost inflammatory cytokines secretion by CD8+ T lymphocytes.
In the second part, we performed a deep characterization of CD4+ and CD8+ T lymphocytes expressing NKG2D in blood samples from relapsing-remitting and progressive forms of MS as well as age and sex matched healthy controls. Despite finding similar proportions, NKG2D+CD4+ T lymphocytes from MS patients exhibited an activated memory phenotype associated with Th1 and Th1/Th17 responses. In contrast, NKG2D+CD8+ T lymphocytes were reduced in RRMS patients. This subset displayed a predominant granzyme B expression irrespective of the donors’ group, and exhibited degranulating capacities toward ULBP4-expressing astrocytes.
Finally, live imaging analysis revealed a role for NKG2D and its ligand ULBP4 in the establishment of long-lasting interaction between astrocytes and CD8+ T lymphocytes. This provides a new mechanism involved in the dialogue between these cell types.
Overall, this thesis project provides a deep characterization of the NKG2D pathway in relapsing-remitting and progressive MS patients. Moreover, it provides new evidence for the involvement of ULBP4, a specific NKG2DL, in the pathophysiology of MS. Further investigations will contribute to elucidate the validity of ULBP4 as a therapeutic target in MS.
|
Page generated in 0.0581 seconds