• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 9
  • 9
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PHOTOVOLTAIC ENERGY POTENTIAL FOR NON- RESIDENTIAL BUILDINGS IN VISBY

Ma, Yizheng January 2021 (has links)
Gotland is a pilot area for Sweden to achieve carbon neutrality, which means that achieve a 100% sustainable energy supply is significant for Gotland energy development. Gotland has good sunshine conditions and solar radiation, but the development of solar energy is relatively slow. In order to prove that Visby, the largest city in Gotland, has good solar energy potential, this paper aims to investigate the PV potential for non-residential buildings in Visby by modelling the installation of roof solar panels on representative non- residential buildings (Visby Galleria, surrounding buildings in Stenhuggarvägen) through quantitative research methods. From the final result of the modelling, the solar energy potential per square meter of Visby's non-residential buildings is 121kWh, and the total solar electricity generation potential is 708 GWh. The research results show that Visby's non-residential buildings have high solar power potential, and it can be used as one of the methods to achieve a 100% sustainable energy supply.
2

Market Acceptance of Renewable Energy Technologies for Power Generation

Elizabeth A Wachs (9181997) 29 July 2020 (has links)
The perception of climate change as an emergency has provided the primary impetus to a transition from conventional fossil-based energy sources to renewables. The use of renewable energy sources is essential to sustainable development, since it is the only way that quality of life can remain high while greenhouse gas emissions are cut. Still, at the time of writing, renewables contribute a small part of the total primary energy use worldwide. Much research has gone into understanding barriers to the full-scale adoption of renewable energy sources. Still, many of the tools used have focused primarily on optimal paths, which are useful in the long-term but problematic in non-equilibrium markets. In the shorter term, behavior is thought to be more governed by existing institutions and commitments until those frameworks can be changed. This means that understanding people's attitudes towards renewables is key towards understanding how adoption will take place and how best to incentivize such action. Particularly, decisions are made by investors, who serve as intermediaries between what customers/public want and the existing institutions (what is possible). Understanding their responses to the current state of affairs as well as perturbations in the form of policy changes is important in order to effect change or make sure that policies will work as intended. <br> <br> First, the shifting demand landscape is considered, specifically in Indiana cities. Heating is shrinking as a driver of primary energy use over time due to climate change, while transport increases relatively. Electricity demand continues to increase, and the potential for electrification of transport can add to this potential. This led to a focus on the electricity sector for further work. Noticing that adoption lags public support led to a comparison of levelized cost of electricity and net present value metrics for 18 dominant technologies in two power markets in the US. Capacity markets and solar renewable energy credits lead to differences between cost and net present value in PJM, making natural gas the most attractive technology there. Noting the difference in electricity price between the two markets also provides a caution regarding the employment of carbon pricing in PJM, since that is an additional cost to the consumer who is already paying twice to fossil based generation in that region, once for energy provision and once for reliability. <br> <br> Individual technologies represent only part of the question, however, since generation capacity is added to bolster existing supplies. In order to study the portfolio, historical risk is considered along with levelized costs to identify optimal portfolios in CAISO and PJM. Then electricity is treated as a social good, and a sustainability profile was built for each technology balancing current equity and risks to future generations. This allowed quantification and identification of barriers to market acceptance of renewables, but it also led to a recognition of where useful metrics are still lacking. For example the use of land provides an important barrier to the adoption of renewables, and is a potent potential barrier for future acceptance. It is not well understood, however, which led to a critical review of existing technologies. <br> <br> The work in this dissertation provides one of the first mixed methods attempts to assess energy demand for cities including the end use of cooling. It provides a simple model that demonstrates the importance of capacity markets in determining the profitability of different energy technologies. It provides a guide to the emerging issue of land use by energy systems, a key consideration for the study of the food-energy-water nexus. It is the first use of portfolio optimization for sustainability studies. This is an important methodological tool since it allows a comprehensive sustainability analysis while providing a sense of the difference between immediate and future risks. The tool also allows users to diagnose which technologies are incentivized and which are deterred by market factors, as well as the strength of the deterrence. This is helpful for policy makers in understanding how incentives should be structured.
3

Decarbonising the Mining Industry: The Case of Dannemora Iron Ore Mine

Meyer, Felix January 2022 (has links)
The Swedish mining and minerals sector is one of the most prominent greenhouse gas emitters in the country. At the same time, it also provides Sweden and other nations with vast amounts of important metals and minerals, which are not easily replaced. However, in light of the increasing urgency to reduce global greenhouse gas concentrations, it is imperative that the combustion of fossil fuels is decreased. This quantitative case study uses a document review and interviews to investigate the prerequisites and technical potential for decarbonising the Dannemora iron ore mine in eastern Sweden. Furthermore, a comparative life cycle inventory based on methods from the Greenhouse Gas Protocol is performed in order to calculate potential savings of both energy and greenhouse gases from exchanging conventional underground mining equipment with more sustainable alternatives. Results show that emissions from underground activities in the Dannemora mine could potentially be reduced by up to 90 %, and energy consumption by up to 64 %. It was however also shown that no viable emission-free explosives currently exist that could safely replace conventional alternatives. Further research needs to be conducted in order to investigate the effects of Scope 3 emissions from the production of battery electric mining vehicles, as this would have an effect on overall GHG and energy savings.
4

Potential rooftop photovoltaic energy production calculation for Residential Buildings in Visby-----Case study about Gotlandshem

Li, Xiang January 2022 (has links)
Solar energy is one type of the most commonly used renewable energy sources. It can produce electricity and heat without creating any Greenhouse Gases (GHG). Sweden has set up the goal of 100% electricity generated by the renewable energy source by 2040 and chosen Gotland as a pioneer project for self-electricity supply by renewable energy sources by 2030. Taking the year 2017 as an example, the total electricity production of Gotland in 2017 was about 1080 GWh, a share of 621GWh imported from mainland Sweden, 457GWh produced by Gotland's local wind energy, 1.6GWh produced by local photovoltaic energy and a very small fraction produced by local hydropower. Gotland has a high potential for photovoltaic power. This quantitative research case study used data to collect and a building model to measure the potential electricity production by photovoltaic power at three locations in Visby, Höken, Castor and Skalbaggen. Further, an analysis of the current value of installing photovoltaic panels for a public housing company to increase the capacity of renewable energy to stimulate the target towards 100% electricity from renewable energy sources by 2040. The result indicated that the ratio of production/Consumption at Höken, Castor and Skalbaggen were 73%, 52% and 1000%. According to the calculation, the LCOE of Höken is around about 0.74 to 1.17 SEK/kWh. For Castor, it is from 0.73 to 1.16 SEK/ kWh due to the range of interest rates. For Skalbaggen, it is around 0.70 to 1.11 SEK/ kWh. However, since the current limitation from both technical and legislative sectors were not allowed to transfer electricity between the adjacent building. Further research is required on how to facilitate tenants' use of renewable electricity produced by public housing itself, as well as how to maximize the penetration of smart grids.
5

Analysis of the relationship between public transportation needs and group identities in rural communities

Gardella, Hanna January 2023 (has links)
With a high reliance on fossil fuels, the need to transition the transportation sector to clean energy is great. Traditional public transportation has been used to reduce congestion and emissions in urban spaces but faces implementation challenges in rural areas from settlements being spread out with low density populations. This study used a survey to look at different groups living in one rural community on Gotland, Stenkyrka, to identify how their needs differ depending on belonging to these groups, to answer the research question: What are the public transportation needs of different groups within Stenkyrka?   The survey received 50 responses, enabling the respondents to be grouped into those who have children, those who do not have children, and by age group, 25-30, 21-40, 41-50, 51-65, and over 65. The results show that people aged 31-40 are most likely to have younger children and appear to need more flexibility and frequent trips in a public transportation system, while people aged 41-50 are more likely to have older children and seem to need shorter trips along with convenience and flexibility. People over 65 value travel time and need flexibility but, while they are more likely to use public transportation than other groups, are not very likely to be drawn to or use more flexible public transportation options such as taxis or dial-a-ride services. Based on these results, it can be said that different groups in Stenkyrka have different needs and look for different solutions in public transportation. Suggestions for how to create a successful public transportation system in Stenkyrka was discussed to provide examples for how resident needs can affect the design of a transit system. In this case, a demand responsive transportation system that uses a variety of transportation options and goes to the places most often used by residents in the community is important to help ensure that all resident’s needs are met.
6

CLIMATE CHANGE AND THE ELECTRICAL DISTRIBUTION GRIDS OF GOTLAND AND KLINTEHAMN

Brinkhurst, Sean January 2023 (has links)
Climate change represents a critical threat to electrical infrastructure. With reliance on electricity expected to increase in Sweden due to the transition from fossil fuel based energy to greener energy sources, it is important that the reliability of the electrical grid be upheld. This thesis studies the potential climate affected effects of extreme precipitation, annual average temperature change, water pooling after 100/500-year rains, and sea level rise. The RCP scenarios used for extreme precipitation and temperature change are RCP 4.5 and RCP 8.5. These climate effects will be studied in this thesis to understand and determine the extent of the climate effects on the electrical grid of Gotland and Klintehamn. The possible issues on infrastructure that can be exacerbated by these climate effects will be presented. This thesis will use spatial analysis to find results using GIS as a tool. GIS will be used to compare the various climate effects over the electrical grid data. Data was received from various sources, extreme precipitation and temperature change were sourced from SMHI, water pooling, and sea level rise were sourced with permission from Region Gotland. The electrical grid data for both Gotland and Klintehamn was received from GEAB, this data is considered nationally sensitive information therefore the location of this data is not shown. The results generally show that climate change, no matter the scenario presents a threat to the infrastructure. Although it should be noted as well that the scenario will impact the severity of the effects. RCP 8.5 will likely have more of an effect for both extreme precipitation and temperature than RCP 4.5. Water pooling is expected to have a greater effect on the &lt;20kV lines than on the 70kV infrastructure. Finally, sea level rise is expected to have a much greater effect from 2-meter sea level rise over the 1-meter sea level rise. The overarching theme found is that climate change will have impacts over the electrical grid.
7

Energy System Planning, Optimisation &amp; the Impacts of Climate Hazards: the Case-Study of Malmö Municipality in Sweden

Fabris, Julia January 2023 (has links)
Urban areas house most of the global population and are also responsible for large shares of global greenhouse gas emissions. Cities and municipalities thus play a significant role in modern society to achieve an energy transition to renewable energy sources and to adapt to climate change. Achieving such a transition is a difficult process due to the high energy density and complexity of urban multi-energy systems. This is further exacerbated by the adverse effect future climate hazards will likely have on urban infrastructure. Despite this, energy development and climate adaptation plans are often researched and drafted in a disjointed manner. In many instances, future energy strategies do not consider climate impacts, whereas climate adaptation tactics disregard energy production. This study proposed that such mutually exclusive analysis and decision-making increases the vulnerability of planned and optimised future urban energy systems. Investigating the Swedish municipality Malmö, the study focused on achieving a future energy transition in its electricity network and then considering potential climate change impacts. Current urban energy plans and capacity were used to forecast the renewable energy potential for 2030 in Malmö’s geographical area. This formed the basis for modelling an optimised hybrid renewable energy system for the municipality using HOMER Grid. Based on future climate data and Malmö’s climate adaptation plans, this system was then evaluated in terms of impacts from climate hazards. The results indicated that Malmö’s current energy plans would expose a large share of their energy infrastructure to risk of damage from climate hazards. Thus, the vulnerability of the optimised energy system is indeed heightened when disregarding climate change impacts in the planning phase. If climate change and energy transition strategies are developed conjointly, urban energy system resilience could likely be increased significantly.
8

Insuring the future : Improving the Insurance process by Identifying Risks in Battery Energy Storage Projects / Försäkrar framtiden : Förbättring av försäkrings processen genom Identifiering av risker i batteri energi lagrings projekt

Kabir, Sabina, Sharan, Viveka Vishi January 2024 (has links)
This master thesis investigates the risks associated with Battery Energy Storage (BESS) projects to improve the insurance process for BESS projects in Sweden, aligning with the global shift towards renewable energy as mandated by the Paris Agreement. The primary objective of this report is to develop guidelines for small enterprises entering the BESS market, focusing on risk identification and stakeholder objectives to improve the insurance process. Some risks identified were a lack of knowledge and experience, unsatisfactory suppliers, and policy and regulatory uncertainties. Utilizing a system engineering approach, the study investigates the interactions and communication between stakeholders, including project developers, insurance brokers, and insurers. The research is conducted through interviews with these stakeholders and a comprehensive literature review. The findings highlight challenges in communication during the insurance process and identify key factors that project developers should consider to ensure smoother interactions, such as providing more detailed information about the requirements to receive insurance. The study reveals the unique challenges posed by the novelty of BESS technology in Sweden. It suggests that a standardized and improved insurance process for BESS projects can accelerate the adoption of renewable energy technologies. The study is delimited to the Swedish context, acknowledging that insurance market mechanisms and BESS technology implementations vary across different countries. The theoretical contributions include an analysis of insurance for BESS projects and an overview of the current insurance products available in the Swedish market. The practical contributions include a guideline for new BESS project developers with considerations they can take to ensure a smoother insurance process for their projects. / Denna masteruppsats undersöker de risker som är förknippade med projekt för batterienergilagringssystem (BESS) för att förbättra försäkrings processen för BESS-projekt i Sverige, i linje med den globala övergången till förnybar energi enligt Parisavtalet. Huvudmålet med denna rapport är att utveckla riktlinjer för småföretag som går in på BESS-marknaden, med fokus på riskidentifiering och intressenternas mål för att förbättra försäkrings processen. Några identifierade risker var bristande kunskap och erfarenhet, otillfredsställande leverantörer och osäkerheter i policy och regelverk. Genom att använda Systems Engineering undersöker denna studie interaktionerna och kommunikationen mellan intressenter, inklusive projektutvecklare, försäkringsmäklare och försäkringsbolag. Forskningen genomförs genom intervjuer med dessa intressenter och en omfattande litteraturstudie. Resultaten belyser utmaningar i kommunikationen under försäkrings processen och identifierar viktiga faktorer som projektutvecklare bör beakta för att säkerställa smidigare interaktioner, såsom att tillhandahålla mer detaljerad information om kraven för att få försäkring. Studien avslöjar de unika utmaningar som den nya BESS-tekniken medför i Sverige. Den föreslår att en standardiserad och förbättrad försäkrings process för BESS-projekt kan påskynda införandet av förnybar energiteknik. Studien är begränsad till den svenska kontexten och erkänner att försäkringsmarknadens mekanismer och BESS-teknikens tillämpningar varierar mellan olika länder. De teoretiska bidragen inkluderar en analys av försäkringar för BESS-projekt och en översikt över de nuvarande försäkringsprodukterna som finns tillgängliga på den svenska marknaden. De praktiska bidragen inkluderar riktlinjer för nya BESS-projektutvecklare med överväganden dekan ta för att säkerställa en smidigare försäkrings process för sina projekt.
9

Business Model Innovation for Energy Communities : A Cross-Comparative Analysis with the Business Model Canvas in the Swedish energy market / Affärsmodeller för energisamhällen : En jämförande studie med Business Model Canvas för svensk energimarknad

Abdu, Sohel January 2024 (has links)
This thesis undertakes a thorough exploration of business models for energy communities, specifically tailored to the unique requirements of the Swedish energy sector. Its objective is to identify and evaluate global business models for energy communities, focusing on their applicability within Sweden's regulatory, market, and socio-cultural contexts. Utilizing the Business Model Canvas as an analytical framework, the study initially identifies twelve distinct business model archetypes, ranging from community-based energy generation to models grounded in circular economy principles. Subsequently, it assesses their viability within Sweden's innovative and sustainability-focused energy landscape. The research is based on a qualitative methodology, incorporating a systematic literature review and comparative analysis to understand the complex dynamics of energy communities. By examining the structure of the Swedish energy system, the study pinpoints key factors influencing the success of energy- community models in Sweden, including regulatory frameworks, technological infrastructure, economic and financial viability, community engagement, and environmental sustainability. The findings emphasize six business models that closely align with Swedish values and objectives, highlighting the significance of community involvement, sustainability, and innovation in transforming Sweden's energy sector. These models include community-based energy generation, residential energy self-consumption, shared community energy generation, electric mobility cooperatives, collective financial initiatives, and circular economy-based approaches. In conclusion, the thesis proposes an Integrated Sustainable Energy Community Model (ISECM) as a comprehensive futuristic energy community model to guide Sweden's transition towards a more decentralized, participative, and sustainable energy future. This model integrates sustainable energy production, smart urban mobility, resource recovery, and digital integration. Further recommending strategic initiatives for implementation such as developing community platforms, forging strategic partnerships, and establishing environmental and social metrics. The research contributes to both academic and practical discussions on sustainable energy transitions, offering a strategic framework for leveraging community-based models to achieve Sweden's environmental and energy goals. It calls for active engagement from government, industry, academia, and communities to unlock the potential of innovative business models in advancing Sweden's energy sustainability agenda. / Denna avhandling genomför en omfattande utforskning av affärsmodeller för energigemenskaper, särskilt anpassade till de unika kraven i den svenska energisektorn. Syftet är att identifiera och utvärdera globala affärsmodeller för energigemenskaper med fokus på deras tillämplighet inom Sveriges regelverk, marknadsdynamik och sociokulturella sammanhang. Med hjälp av Business Model Canvas som analytiskt ramverk kartlägger studien tolv distinkta affärsmodellsarketyper, från gemenskapsbaserad energiproduktion till modeller baserade på cirkulär ekonomi, och bedömer deras livskraft i Sveriges innovativa och hållbarhetsinriktade energilandskap. Forskningen är grundad i en kvalitativ metodik, inkluderande en systematisk litteraturgenomgång och jämförande analys för att förstå de mångfacetterade dynamikerna inom energigemenskaper. Genom att utforska strukturen i det svenska energisystemet identifierar studien nyckelfaktorer som påverkar framgången för modeller av energigemenskaper i Sverige, inklusive regelverk, teknologisk infrastruktur, ekonomisk och finansiell livskraft, gemenskapsengagemang och miljömässig hållbarhet. Resultaten belyser sex affärsmodeller som ligger i linje med svenska värderingar och mål, och betonar vikten av gemenskapsinvolvering, hållbarhet och innovation i omvandlingen av Sveriges energisektor. Dessa modeller inkluderar gemenskapsbaserad energiproduktion, självkonsumtion av energi i bostäder, delad gemenskapsenergiproduktion, kooperativ för elektrisk mobilitet, kollektiva finansiella initiativoch modeller baserade på cirkulär ekonomi. Som avslutning föreslår avhandlingen en Integrerad Hållbar Energi Gemenskaps Modell (ISEGM) som ett holistiskt framtida energigemenskap för att vägleda Sveriges övergång mot en mer decentraliserad, deltagande och hållbar energiframtid. Denna modell inkluderar hållbar energiproduktion, smart stadsrörlighet, återvinning av resurser och digital integration. Som vidare rekommenderar strategiska initiativ för implementering, såsom utveckling av gemenskapsplattformar, skapande av strategiska partnerskap och etablering av miljö- och sociala mätvärden. Forskningen bidrar till akademiska och praktiska diskussioner om hållbara energiövergångar, och erbjuder ett strategiskt ramverk för att utnyttja gemenskapsbaserade modeller för att uppnå Sveriges miljö- och energimål. Den uppmanar till aktivt engagemang från regeringen, industrin, akademin och gemenskaper för att förverkliga potentialen i innovativa affärsmodeller för att främja Sveriges hållbarhetsagenda inom energi.

Page generated in 0.1471 seconds