• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 14
  • 6
  • Tagged with
  • 63
  • 44
  • 28
  • 25
  • 25
  • 24
  • 22
  • 17
  • 17
  • 16
  • 14
  • 14
  • 14
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

The mechanism mediating fast neurotransmitter release at the calyx of Held synapse / Der Mechanismus der schnellen Neurotransmitterfreisetzung an der Held

Wadel, Kristian 20 October 2008 (has links)
No description available.
52

Slowness learning

Sprekeler, Henning 18 February 2009 (has links)
In dieser Doktorarbeit wird Langsamkeit als unüberwachtes Lernprinzip in sensorischen Systemen untersucht. Dabei wird zwei Aspekten besondere Aufmerksamkeit gewidmet: der mathematischen Analyse von Slow Feature Analysis - einer Implementierung des Langsamkeitsprinzips - und der Frage, wie das Langsamkeitsprinzip biologisch umgesetzt werden kann. Im ersten Teil wird zunächst eine mathematische Theorie für Slow Feature Analysis entwickelt, die zeigt, dass die optimalen Funktionen für Slow Feature Analysis die Lösungen einer partiellen Differentialgleichung sind. Die Theorie erlaubt, das Verhalten komplizierter Anwendungen analytisch vorherzusagen und intuitiv zu verstehen. Als konkrete Anwendungen wird das Erlernen von Orts- und Kopfrichtungszellen, sowie von komplexen Zellen im primären visuellen Kortex vorgestellt. Im Rahmen einer technischen Anwendung werden die theoretischen Ergebnisse verwendet, um einen neuen Algorithmus für nichtlineare blinde Quellentrennung zu entwickeln und zu testen. Als Abschluss des ersten Teils wird die Beziehung zwischen dem Langsamkeitsprinzip und dem Lernprinzip der verhersagenden Kodierung mit Hilfe eines informationstheoretischen Ansatzes untersucht. Der zweite Teil der Arbeit befasst sich mit der Frage der biologischen Implementierung des Langsamkeitsprinzips. Dazu wird zunächst gezeigt, dass Spikezeit-abhängige Plastizität unter bestimmten Bedingungen als Implementierung des Langsamkeitsprinzips verstanden werden kann. Abschließend wird gezeigt, dass sich die Lerndynamik sowohl von gradientenbasiertem Langsamkeitslernen als auch von Spikezeit-abhängiger Plastizität mathematisch durch Reaktions-Diffusions-Gleichungen beschreiben lässt. / In this thesis, we investigate slowness as an unsupervised learning principle of sensory processing. Two aspects are given particular emphasis: (a) the mathematical analysis of Slow Feature Analysis (SFA) as one particular implementation of slowness learning and (b) the question, how slowness learning can be implemented in a biologically plausible fashion. In the first part of the thesis, we develop a mathematical framework for SFA and show that the optimal functions for SFA are the solutions of a partial differential eigenvalue problem. The theory allows (a) to make analytical predictions for the behavior of complicated applications and (b) an intuitive understanding of how the statistics of the input data are reflected in the optimal functions of SFA. The theory is applied to the learning of place and head-direction representations and to the learning of complex cell receptive fields as found in primary visual cortex. As a technical application, we use the theoretical results to develop and test a new algorithm for nonlinear blind source separation. The first part of the thesis is concluded by an information-theoretic analysis of the relation between slowness learning and predictive coding. In the second part of the thesis, we study the question, how slowness learning could be implemented in a biologically plausible manner. To this end, we first show that spike timing-dependent plasticity can under certain conditions be interpreted as an implementation of slowness learning. Finally, we show that both gradient-based slowness learning and spike timing-dependent plasticity lead to receptive field dynamics that can be described in terms of reaction-diffusion equations.
53

Signal transmission in stochastic neuron models with non-white or non-Gaussian noise

Droste, Felix 02 September 2015 (has links)
Die vorliegende Arbeit befasst sich mit dem Einfluss von nicht-weißem oder nicht-Gauß’schem synaptischen Rauschen auf die Informationsübertragung in stochastischen Neuronenmodellen. Ziel ist es, zu verstehen, wie eine Nervenzelle ein Signal in ihrer Pulsaktivität kodiert. Synaptisches Rauschen beschreibt hier den Einfluss anderer Nervenzellen, die nicht das interessierende Signal tragen, aber seine Übertragung durch ihre synaptische Wirkung auf die betrachtete Zelle beeinflussen. In stochastischen Neuronenmodellen wird diese Hintergrundaktivität durch einen stochastischen Prozess mit geeigneter Statistik beschrieben. Ist die Rate, mit der präsynaptische Pulse auftreten, hoch und zeitlich konstant, die Wirkung einzelner Pulse aber verschwindend gering, so wird das synaptische Rauschen durch einen Gauß’schen Prozess beschrieben. Oft wird zudem angenommen, dass das Rauschen unkorreliert (weiß) ist. In dieser Arbeit wird neuronale Signalübertragung in dem Fall untersucht, dass eine solche Näherung nicht mehr gerechtfertigt ist, d.h. wenn der synaptische Hintergrund durch einen stochastischen Prozess beschrieben werden muss, der nicht weiß, nicht Gauß’sch, oder weder weiß noch Gauß’sch ist. Mittels Simulationen und analytischer Rechnungen werden drei Szenarien behandelt: Zunächst betrachten wir eine Zelle, die nicht ein, sondern zwei Signale empfängt, welche zusätzlich durch synaptische Kurzzeitplastizität gefiltert werden. In diesem Fall muss der Hintergrund durch ein farbiges Rauschen beschrieben werden. Im zweiten Szenario betrachten wir den Fall, dass der Effekt einzelner Pulse nicht mehr als schwach angenommen werden kann. Das Rauschen ist dann nicht mehr Gauß’sch, sondern ein Schrotrauschen. Schließlich untersuchen wir den Einfluss einer präsynaptischen Population, deren Feuerrate nicht zeitlich konstant ist, sondern zwischen Phasen hoher und niedriger Aktivität, sogenannten up und down states, springt. In diesem Fall ist das Rauschen weder weiß noch Gauß’sch. / This thesis is concerned with the effect of non-white or non-Gaussian synaptic noise on the information transmission properties of single neurons. Synaptic noise subsumes the massive input that a cell receives from thousands of other neurons. In the framework of stochastic neuron models, this input is described by a stochastic process with suitably chosen statistics. If the overall arrival rate of presynaptic action potentials is high and constant in time and if each individual incoming spike has only a small effect on the dynamics of the cell, the massive synaptic input can be modeled as a Gaussian process. For mathematical tractability, one often assumes that furthermore, the input is devoid of temporal structure, i.e. that it is well described by a Gaussian white noise. This is the so-called diffusion approximation (DA). The present thesis explores neuronal signal transmission when the conditions that underlie the DA are no longer met, i.e. when one must describe the synaptic background activity by a stochastic process that is not white, not Gaussian, or neither. We explore three distinct scenarios by means of simulations and analytical calculations: First, we study a cell that receives not one but two signals, additionally filtered by synaptic short-term plasticity (STP), so that the background has to be described by a colored noise. The second scenario deals with synaptic weights that cannot be considered small; here, the effective noise is no longer Gaussian and the shot-noise nature of the input has to be taken into account. Finally, we study the effect of a presynaptic population that does not fire at a rate which is constant in time but instead undergoes transitions between states of high and low activity, so-called up and down states.
54

Die Bedeutung der Proteine 4.1G und 4.1N für den Aufbau und die Funktion glutamaterger Synapsen / The role of proteins 4.1G and 4.1N for the composition and function of glutamatergic synapses

Wolk, Friederike 09 July 2009 (has links)
No description available.
55

Synaptic vesicle recycling <i>in Vivo</i> / Das Recycling synaptischer Vesikel <i>in Vivo</i>

Denker, Annette 02 November 2011 (has links)
No description available.
56

Modeling the biophysical mechanisms of sound encoding at inner hair cell ribbon synapses / Modellierung der biophysikalischen Mechanismen der Schallkodierung an Bandsynapsen der inneren Haarzellen

Chapochnikov, Nikolai 15 December 2011 (has links)
No description available.
57

Roles of α-neurexins in synapse stabilization and Ca<sup>2+</sup>-dependent endocrine secretion / Die Rolle von α-Neurexinen bei der Stabilisierung von Synapsen und bei Ca<sup>2+</sup>-abhängiger endokriner Sekretion

Dudanova, Irina 17 April 2007 (has links)
No description available.
58

Investigation of Neuronal Membrane Fusion Using Fluorescence Correlation Spectroscopy / Untersuchung der neuronalen Membranfusion mit der Fluoreszenz Korrelations Spektroskopie

Vennekate, Wensi 08 November 2012 (has links)
No description available.
59

Neuroligin-4: Einfluss auf die synaptische Übertragung exzitatorischer Neurone der Schicht IV des Barrel-Kortex / Neuroligin-4: Effect on synaptic transmission of excitatory neurons in layer IV of barrel-cortex

Olt, Stephen 20 November 2013 (has links)
Neuroligine (NL) sind vorwiegend postsynaptisch lokalisierte transmembrane Adhäsionsmoleküle, die in Wechselwirkung mit dem präsynaptisch lokalisierten Protein Neurexin eine wichtige Rolle in der Reifung und Funktion von Synapsen spielen. Es existieren verschiedene NL-Isoproteine (NL-1 – NL-4), die sich in ihrer Assoziation zu exzitatorischen und inhibitorischen Synapsen unterscheiden. Die funktionelle und klinische Relevanz der Neuroligine belegen beispielhaft Mutationen des Isotyps NL 4, welche mit neuropsychiatrischen Erkrankungen wie Autismus-Spektrum-Störungen assoziiert vorkommen. Anhand eines durch Ausschalten des human-orthologen NL-4-Gens generierten Mausmodells (NL 4 Knockout, NL 4 KO) konnte in vorhergehenden Studien die Bedeutung einer immunhistochemisch beobachteten Lokalisation von NL 4 an glycinergen Synapsen der Retina für die inhibitorische synaptische Übertragung nachgewiesen werden. Im Unterschied dazu konnte kein Zusammenhang zwischen einer in Schicht IV des Barrel-Kortex nachweisbaren Lokalisation von NL-4 mit inhibitorischen Synapsen hergestellt werden. Deshalb, und aufgrund der in Schicht IV dominierenden exzitatorischen Verschaltung von thalamischen Projektionen und den kolumnenassoziierten Rückverschaltungen aus dem Neokortex, lässt sich eine Interaktion von NL-4 mit exzitatorischen Synapsen in diesem Areal vermuten. Im Rahmen der vorliegenden Arbeit wurde anhand der NL-4-KO-Modellmaus der Frage nachgegangen, inwiefern NL-4 die exzitatorische synaptische Übertragung im Barrel-Kortex beeinflusst. Dafür wurden mit Hilfe der Patch-Clamp-Technik abgeleitete AMPA-Rezeptor-vermittelte exzitatorische postsynaptische Ströme (EPSC) von bedornten Sternzellen, Sternpyramiden- und Pyramidenzellen der Schicht IV ausgewertet und zwischen NL-4-Wildtyp- (NL 4-WT) und NL 4 KO-Neuronen verglichen. Dabei zeigten NL 4-KO-Neurone signifikant veränderte Parameter der EPSC-Kinetik. Die Abfallszeit war in NL 4 KO-Neuronen signifikant länger, das maximale Gefälle und die maximale Steigung signifikant flacher gegenüber NL-4-WT-Kontrollen. Diese Veränderungen sprechen für eine funktionelle Relevanz von NL-4 für die AMPA-Rezeptor-vermittelte synaptische Übertragung auf exzitatorische Neurone in Schicht IV des Barrel-Kortex. Das Muster der in NL-4-KO-Neuronen veränderten EPSC-Kinetik weist dabei auf eine Modulation der biophysikalischen AMPA-Rezeptoreigenschaften hin und könnte mit Veränderungen der synaptisch exprimierten AMPA-Rezeptor-TARP-Subtypen in Zusammenhang stehen, die über Proteine der postsynaptischen Dichte (wie PSD-95 und S SCAM) mit Neuroliginen interagieren.
60

Stochastic Modelling of Calcium Dynamics

Friedhoff, Victor Nicolai 20 December 2023 (has links)
Calcium (Ca2+) ist ein in eukaryotischen Zellen allgegenwärtiger sekundärer Botenstoff. Durch Inositoltrisphosphat (IP3) ausgelöste Ca2+-Signale von IP3-Rezeptoren (IP3Rs) sind eines der universellsten Zell Signalübertragungssysteme. Ca2+ Signale sind fundamental stochastisch. Dennoch hat sich die Modellierung dieser Ca2+-Signale bisher stark auf deterministische Ansätze mit gewöhnlichen Differentialgleichungen gestützt. Diese wurden als Ratengleichungen etabliert und beruhen auf räumlich gemitteltem Ca2+ Werten. Diese Ansätze vernachlässigen Rauschen und Zufall. In dieser Dissertation präsentieren wir ein stochastisches Modell zur Erzeugung von Ca2+ Spikes in Form einer linearen Zustands-Kette. Die Anzahl offener Cluster ist die Zustandsvariable und Erholung von negativem Feedback wird berücksichtigt. Wir identifizieren einen Ca2+ Spike mit dem ersten Erreichen eines kritischen Zustands und sein Interspike Intervall mit der first-passage time (FPT) zu diesem Zustand. Dafür entwickeln wir einen allgemeinen mathematischen Rahmen zur analytischen Berechnung von FPTs auf solch einer Kette. Wir finden z.B. einen allgemein verringerten CV, der ein deutliches Minimum in Abhängigkeit der Zustandskettenlänge N aufweist. Dies nennen wir resonante Länge. Danach ergänzen wir positives Feedback und wenden das Modell auf verschiedene Zelltypen an. Es erfasst alle verfügbaren allgemeinen Beobachtungen zu Ca2+ Signalvorgängen. Es erlaubt uns Einblicke in den Zusammenhang von Agonistenstärke und Puffraten. Auch werden einzelne Ca2+ Spikes in Purkinje Neuronen, welche eine Rolle für Lernen und Erinnerung spielen, als stochastisches reaction-diffusion Model in einer 3D Dornenfortsatz Geometrie modelliert. Ataxia, eine Krankheit, die zum Verlust der Feinmotorik führt, wird auf defekte IP3R zurückgeführt, die abnormale Ca2+ Spikes erzeugen. Dieser Zustand wird ebenfalls untersucht und es wird ein Weg zur Wiederherstellung normaler Ca2+ Spikes vorgeschlagen. / Calcium (Ca2+) is a ubiquitous 2nd messenger molecule in all eukaryotic cells. Inositol trisphosphate (IP3)-induced Ca2+ signalling via IP3 receptors (IP3Rs) is one of the most universal signalling systems used by cells to transmit information. Ca2+ signalling is noisy and a fundamentally stochastic system. Yet, modelling of IP3-induced Ca2+ signalling has relied heavily on deterministic approaches with ordinary differential equations in the past, established as rate equations using spatially averaged Ca2+. These approaches neglect the defining features of Ca2+ signalling, noise and fluctuations. In this thesis, we propose a stochastic model of Ca2+ spike generation in terms of a linear state chain with the number of open clusters as its state variable, also including recovery from negative feedback. We identify a Ca2+ spike with reaching a critical state for the first time, and its interspike interval with the first passage time to that state. To this end, a general mathematical framework for analytically computing first-passage times of such a linear chain is developed first. A substantially reduced CV with a pronounced minimum, dependent on the chain length N, termed resonant length, are found. Positive feedback is then included into the model, and it is applied directly to various cell types. The model is fundamentally stochastic and successfully captures all available general observations on Ca2+ signalling. Also, we specifically study single Ca2+ spikes in spines of Purkinje neurons, assumed to be important for motor learning and memory, using MCell to simulate a reaction-diffusion system in a complex 3D Purkinje spine geometry. The model successfully reproduces experimentally findings on properties of Ca2+ spikes. Ataxia, a pathological condition resulting in, e.g., a loss of fine motor control, assumed to be caused by malfunctioning IP3Rs, is modelled and a possible way of recovery is suggested.

Page generated in 0.041 seconds