• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New Possibilities with Old Technique : a Feasibility Study of Absorption Cooling in Örebro District Cooling Network

Jönsson, Yvette, Magnusson, Erik January 2008 (has links)
<p>E.ON Värme in Örebro produces electricity and delivers heat and cooling to customers in the region. The Åby Plant operates as a combined heat and power (CHP) plant and runs mostly on different biofuels. A new boiler and turbine is projected for the plant and will start operating fully during year 2012. This creates new possibilities for the existing small scale district cooling production. The number of cooling subscribers is today low and the power output is approximately 7.7 MW but has a great potential of growing in the future. Higher electricity prices, due to the deregulated electricity market and growing environmental concerns motivate the use of district cooling. Cooling production at E.ON Värme in Örebro today comes from modified heat pumps with low efficiency and free cooling. The idea is to replace the heat pumps with either new compression cooling machines, absorption cooling machines (ACM) or a mixture of both. This thesis analyzes possible benefits with the use of heat driven cooling i.e. absorption cooling compared with conventional compression cooling.</p><p>Excess heat from electricity generation in CHP plants is often a problem during the warm period of the year. Normally most of the heat is distributed to industries and households for heating. However, during the summer, the demand for district heating is low which constrain electricity production. The absorption technique utilizes heat as fuel and increases electricity generation during warm periods. This together with a decrease in electricity consumption has positive effects on the environment since it reduces electricity produced in plants controlling margin production. Those plants are most often coal condense plants with high emissions of fossil CO2.</p><p>Most scientists believe that CO2 emissions from human activities are the main cause to the increasing greenhouse effect. The importance of reducing CO2 emissions is therefore high and is one of the motives for district cooling based on ACM that replaces small local electricity driven chillers. Since the Åby plant uses mostly biofuels the contribution of fossil CO2 is low.</p><p>ACM utilizes heat as fuel, therefore the positive effects related to ACM are fairly obvious when the electricity price and the demand for cooling are high. To analyze and optimize the energy system in Örebro, a model was created in the program MODEST, which is software developed at Linköping Institute of Technology. Optimizations with different cooling demands and electricity prices have been made. The cooling production mix is split up in two scenarios, a visionary scenario where no restrictions are considered and a restricted scenario with restricted ACM capacity. The results have been gathered and analyzed and supports the common statements about absorption cooling.</p><p>A simulation of the visionary scenario with unrestricted ACM capacity together with the highest cooling demand (20 MW) and the highest electricity prices (European prices), gave an annual decrease in global CO2 emissions of 9 400 tonnes compared to a scenario with only compression cooling machines. Furthermore, the system running cost was almost 9 MSEK lower on an annual basis. In the restricted scenario, a pay-off analysis shows that the additional costs due to ACM is covered by the lower system cost in less than 3 years when the electricity prices are as forecasted for 2012-2015. All the simulations where absorption cooling was a part of the energy system gave positive results both from an economical and environmental point of view.</p>
2

New Possibilities with Old Technique : a Feasibility Study of Absorption Cooling in Örebro District Cooling Network

Jönsson, Yvette, Magnusson, Erik January 2008 (has links)
E.ON Värme in Örebro produces electricity and delivers heat and cooling to customers in the region. The Åby Plant operates as a combined heat and power (CHP) plant and runs mostly on different biofuels. A new boiler and turbine is projected for the plant and will start operating fully during year 2012. This creates new possibilities for the existing small scale district cooling production. The number of cooling subscribers is today low and the power output is approximately 7.7 MW but has a great potential of growing in the future. Higher electricity prices, due to the deregulated electricity market and growing environmental concerns motivate the use of district cooling. Cooling production at E.ON Värme in Örebro today comes from modified heat pumps with low efficiency and free cooling. The idea is to replace the heat pumps with either new compression cooling machines, absorption cooling machines (ACM) or a mixture of both. This thesis analyzes possible benefits with the use of heat driven cooling i.e. absorption cooling compared with conventional compression cooling. Excess heat from electricity generation in CHP plants is often a problem during the warm period of the year. Normally most of the heat is distributed to industries and households for heating. However, during the summer, the demand for district heating is low which constrain electricity production. The absorption technique utilizes heat as fuel and increases electricity generation during warm periods. This together with a decrease in electricity consumption has positive effects on the environment since it reduces electricity produced in plants controlling margin production. Those plants are most often coal condense plants with high emissions of fossil CO2. Most scientists believe that CO2 emissions from human activities are the main cause to the increasing greenhouse effect. The importance of reducing CO2 emissions is therefore high and is one of the motives for district cooling based on ACM that replaces small local electricity driven chillers. Since the Åby plant uses mostly biofuels the contribution of fossil CO2 is low. ACM utilizes heat as fuel, therefore the positive effects related to ACM are fairly obvious when the electricity price and the demand for cooling are high. To analyze and optimize the energy system in Örebro, a model was created in the program MODEST, which is software developed at Linköping Institute of Technology. Optimizations with different cooling demands and electricity prices have been made. The cooling production mix is split up in two scenarios, a visionary scenario where no restrictions are considered and a restricted scenario with restricted ACM capacity. The results have been gathered and analyzed and supports the common statements about absorption cooling. A simulation of the visionary scenario with unrestricted ACM capacity together with the highest cooling demand (20 MW) and the highest electricity prices (European prices), gave an annual decrease in global CO2 emissions of 9 400 tonnes compared to a scenario with only compression cooling machines. Furthermore, the system running cost was almost 9 MSEK lower on an annual basis. In the restricted scenario, a pay-off analysis shows that the additional costs due to ACM is covered by the lower system cost in less than 3 years when the electricity prices are as forecasted for 2012-2015. All the simulations where absorption cooling was a part of the energy system gave positive results both from an economical and environmental point of view.
3

Utvecklingen av marknadsvärdet för svenska ​​frekvenshållningsreserver 2024–2030 : En prognos för utvecklingen av marknadsvärdet för frekvenshållningsreserverna FCR-N, FCR-D upp och FCR-D ned på den svenska balansmarknaden mellan 2024 och 2030 / The Development of the Market Value of Swedish Frequency Containment Reserves 2024–2030 : A forecast for the development of the market value for the frequency containment reserves FCR-N, FCR-D up and FCR-D down in the Swedish balancing market between 2024 and 2030

Ludvig, Aldén, Gustav, Espefält, Gabriel, Gabro January 2024 (has links)
I takt med en ökad andel variabel förnybar elproduktion i Sveriges energimix blir elnätets flexibilitet allt viktigare för att upprätthålla en stabil elförsörjning. Detta arbete undersöker framtida prognoser för priser och volymer på de svenska frekvenshållningsreserverna FCR-N, FCR-D upp och FCR-D ned fram till år 2030. Prognoser för sådan utveckling är viktiga för elmarknadens aktörer och deras beslut att investera i flexibilitetsresurser. SARIMAX-modeller utvecklades baserade på historisk data och antaganden om framtida utvecklingar, vilka i sin tur grundades på en intervju med en branschexpert samt aktuella kartläggningar och rapporter. Resultaten visar på en markant nedåtgående pristrend. För FCR-N prognostiseras priserna sjunka med 367 % från 2024 till 2030, från 29 euro/MW till 5 euro/MW. FCR-D upp förväntas följa en liknande trend med ett prisfall på 325 %, från 20 euro/MW år 2024 till 4 euro/MW år 2030. Den kraftigaste prisnedgången prognostiseras för FCR-D ned, där priserna beräknas rasa med över 1900 % under samma period - från 61 euro/MW år 2024 till endast 3 euro/MW år 2030. Vad gäller volymer visar prognoserna på en relativt stabil utveckling kring upphandlingsplanerna, med en viss ökning för FCR-D ned på 44 % från 2024 till 2030. Den pågående etableringen av batterilager förutses ha stor påverkan genom att öka konkurrensen och pressa priserna nedåt. De låga prisnivåerna 2030 kan dock göra det utmanande att motivera investeringar enbart baserat på intäkter från FCR-marknader. Vidare diskuteras modellernas begränsningar samt behovet av framtida forskning kring batteriteknik, råvaruaspekter och avancerade simuleringsmodeller för att bättre förstå marknadsdynamiken. / As the share of variable renewable electricity production increases in Sweden's energy mix, the flexibility of the power grid becomes increasingly important to maintain a stable electricity supply. This study aims to forecast prices and volumes of the Swedish frequency containment reserves FCR-N, FCR-D up, and FCR-D down until 2030. Forecasts of such developments are important for electricity market participants and their decisions to invest in flexibility resources. SARIMAX models were developed based on historical data and assumptions about future developments, which in turn were based on an interview with an industry expert as well as current reports. The results indicate a significant downward price trend. For FCR-N, prices are forecasted to decrease by 367% from 2024 to 2030, dropping from 29 euros/MW to 5 euros/MW. FCR-D up is expected to follow a similar trend with a 325% price drop, from 20 euros/MW in 2024 to 4 euros/MW in 2030. The sharpest price decline is forecasted for FCR-D down, where prices are estimated to plummet by over 1900% during the same period - from 61 euros/MW in 2024 to only 3 euros/MW in 2030. Regarding volumes, the forecasts show a relatively stable development around the procurement plans, with a certain increase for FCR-D down by 44% from 2024 to 2030. The ongoing establishment of battery storage is expected to have a major impact by increasing competition and putting downward pressure on prices. However, the low price levels in 2030 may make it challenging to justify investments based solely on revenues from FCR markets. Furthermore, the limitations of the models are discussed, as well as the need for future research on battery technology, raw material aspects, and advanced simulation models to better understand market dynamics.

Page generated in 0.0441 seconds