• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 972
  • 70
  • 18
  • 15
  • 14
  • 13
  • 11
  • 8
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 1
  • Tagged with
  • 1071
  • 635
  • 599
  • 547
  • 344
  • 176
  • 155
  • 140
  • 127
  • 127
  • 118
  • 112
  • 100
  • 91
  • 90
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Estrutura de vizinhanças espaciais nos modelos autorregressivos e de médias móveis espaço-temporais STARMA / Spatial neighborhood structures in space-time autoregressive and moving average models STARMA

Esther Yanfei Jin 25 May 2017 (has links)
O objetivo deste trabalho é comparar as estruturas de vizinhanças espaciais ou matrizes de pesos espaciais da classe de modelos autorregressivos e de médias móveis espaço-temporais (STARMA). O modelo STARMA é empregado para descrever dados de séries temporais espacialmente localizados, ele é caracterizado pela dependência linear defasada tanto no espaço quanto no tempo. Foram realizadas simulações utilizando vários modelos de covariância espaço-temporal para comparar diferentes estruturas de construção da matriz de pesos espaciais com a finalidade de identificar a melhor matriz. As matrizes espaciais com pesos exponenciais apresentaram os melhores desempenhos de ajuste dos modelos STAR; e mostram uma estabilidade em relação à medida de ajuste. Por fim para ilustração, será ajustado um modelo STARMA para um conjunto de dados mensais do índice FIPEZAP de preço imobiliário de venda para apartamentos de dois dormitórios de seis cidades metropolitanas de São Paulo. / The objective of this work is to compare spatial neighborhoods structures, or the same as spatial weights matrices of the class of space-time autoregressive and moving average models STARMA. The STARMA model is used to describe spatially localized time series datas, it is characterized by the linear dependence lagged both in space and time. Simulations were performed using several space-time covariance models to compare different structures of construction of the weight matrix with the purpose of identifying the best matrix. The spatial matrices with exponential weights presented the best adjustment performances of the STAR models ans showed a stability in relation to the adjustment measure. Finally, for illustration, a STARMA model will be adjusted for a set of monthly data of the FIPEZAP real estate price index for two bedroom apartments in six metropolitan cities of São Paulo.
212

Modelo integrado de mineração de dados para análise de séries temporais de preços de indicadores agroeconômicos. / Data mining model for analysis of prices indices Agroeconomic time series.

Fernando Elias Corrêa 27 November 2014 (has links)
Um dos principais setores da economia brasileira, o agronegócio envolve uma série de negociações dentro de toda a cadeia produtiva. Instituições de pesquisa como o CEPEA (Centro de Estudos Avançados em Economia Aplicada), da ESALQ/USP, coletam diariamente dados sobre diversos produtos agropecuários, gerando informações para agentes de diferentes categorias interessados no acompanhamento desses mercados, entre eles pesquisadores, produtores e formuladores de políticas públicas. O uso desses dados para realização de análises históricas integradas com análises atuais de mercado, porém, ainda é um desafio, dada a falta de uma padronização e a necessidade de identificação de técnicas computacionais adequadas. O objetivo desta tese é organizar as informações agroeconômicas consolidadas por meio de modelos de Data Mining e estatísticos para gerar análises integradas de relações entre as séries temporais, compreendendo produtos, mercados e o tempo, baseando-se nos dados obtidos pelo CEPEA em 7 anos de coleta diária de preços. As técnicas propostas para o modelo de análise integrada compreendem séries temporais para a projeção de trajetórias temporais e reconhecimento de padrões temporais. Especificamente para as trajetórias temporais, as técnicas utilizadas são de Matrizes de Correlações e Decomposição de Tucker e trajetórias, as quais permitem uma redução das matrizes e identificação de pontos relevantes no conjunto de dados. Já o reconhecimento de padrões nas séries temporais de grande volume de dados é obtido por meio de duas fases. Inicialmente, os dados são preparados utilizando-se as técnicas de redução de dimensionalidade e discretização. Posteriormente, é realizada a busca por motifs, que se utiliza de métricas de distâncias para encontrar similaridades entre as séries temporais ou entre sub partes de uma mesma série temporal para estas, destaca-se a aplicação do MINDIST e das distâncias euclidianas. Os resultados obtidos do modelo integrado são reportados em dois estudos de casos, sendo o primeiro sobre trajetórias temporais e o segundo, sobre identificação de padrões temporais. O conjunto de dados utilizado para ambos os casos foram preços comercialização de grãos no mercado interno do Brasil e valores negociados em Bolsa de valores de Chicago-EUA. / One of the main activities economy sector in Brazil is agribusiness and involves several negotiations within the entire supply chain. Researchers Centers, as example CEPEA (Center for Advanced Studies on Applied Economics) from ESALQ / USP, collect daily data of agricultural products, generating information for players and staff of several categories for these markets, including researchers, producers and governmental. These historical data of agricultural market is used to create integrated analyses. However, it is still a challenge deal with the data standard or which statistical techniques is appropriated in order to perform a data analysis. The aim of the thesis is to provide an Agrieconomics analyses by data mining and statistical models, analyzing the relationship between time series, products, markets and time, based on dataset from CEPEA over seven years of daily prices. In order to understand the behaviors and patterns of these time series, two case studies were produced. The first case study was temporal trajectories, the techniques used were Correlations Matrix, Tucker Decomposition and trajectories, which allow a reduction of the matrices and identification of relevant points in the data set. The second case study applied was the patterns identification, where the main idea was understand and highlight events that happens frequently over seven year of daily grain prices quotation in several products. In order to proceed the technique, the data are prepared using the dimensionality and discretization reduction. Next, the search for motifs is performed using metrics distance to find similarities in time series or between parts of the same time series, in special two time series was used, that are MINDIST and Euclidean distances. The results give a understanding of the dynamic of these grains time series, such as, Some important aspects were detect by applying the trajectories, first that the both products soybean and corn prices has opposites trajectories, it is possible to infer this products competes in fields for next crops. On the market analysis, the trajectory of Chicago Stock Market spread the behavior of the prices in Brazil domestic market, both trajectories are similar over the years.
213

Modelo integrado de mineração de dados para análise de séries temporais de preços de indicadores agroeconômicos. / Data mining model for analysis of prices indices Agroeconomic time series.

Corrêa, Fernando Elias 27 November 2014 (has links)
Um dos principais setores da economia brasileira, o agronegócio envolve uma série de negociações dentro de toda a cadeia produtiva. Instituições de pesquisa como o CEPEA (Centro de Estudos Avançados em Economia Aplicada), da ESALQ/USP, coletam diariamente dados sobre diversos produtos agropecuários, gerando informações para agentes de diferentes categorias interessados no acompanhamento desses mercados, entre eles pesquisadores, produtores e formuladores de políticas públicas. O uso desses dados para realização de análises históricas integradas com análises atuais de mercado, porém, ainda é um desafio, dada a falta de uma padronização e a necessidade de identificação de técnicas computacionais adequadas. O objetivo desta tese é organizar as informações agroeconômicas consolidadas por meio de modelos de Data Mining e estatísticos para gerar análises integradas de relações entre as séries temporais, compreendendo produtos, mercados e o tempo, baseando-se nos dados obtidos pelo CEPEA em 7 anos de coleta diária de preços. As técnicas propostas para o modelo de análise integrada compreendem séries temporais para a projeção de trajetórias temporais e reconhecimento de padrões temporais. Especificamente para as trajetórias temporais, as técnicas utilizadas são de Matrizes de Correlações e Decomposição de Tucker e trajetórias, as quais permitem uma redução das matrizes e identificação de pontos relevantes no conjunto de dados. Já o reconhecimento de padrões nas séries temporais de grande volume de dados é obtido por meio de duas fases. Inicialmente, os dados são preparados utilizando-se as técnicas de redução de dimensionalidade e discretização. Posteriormente, é realizada a busca por motifs, que se utiliza de métricas de distâncias para encontrar similaridades entre as séries temporais ou entre sub partes de uma mesma série temporal para estas, destaca-se a aplicação do MINDIST e das distâncias euclidianas. Os resultados obtidos do modelo integrado são reportados em dois estudos de casos, sendo o primeiro sobre trajetórias temporais e o segundo, sobre identificação de padrões temporais. O conjunto de dados utilizado para ambos os casos foram preços comercialização de grãos no mercado interno do Brasil e valores negociados em Bolsa de valores de Chicago-EUA. / One of the main activities economy sector in Brazil is agribusiness and involves several negotiations within the entire supply chain. Researchers Centers, as example CEPEA (Center for Advanced Studies on Applied Economics) from ESALQ / USP, collect daily data of agricultural products, generating information for players and staff of several categories for these markets, including researchers, producers and governmental. These historical data of agricultural market is used to create integrated analyses. However, it is still a challenge deal with the data standard or which statistical techniques is appropriated in order to perform a data analysis. The aim of the thesis is to provide an Agrieconomics analyses by data mining and statistical models, analyzing the relationship between time series, products, markets and time, based on dataset from CEPEA over seven years of daily prices. In order to understand the behaviors and patterns of these time series, two case studies were produced. The first case study was temporal trajectories, the techniques used were Correlations Matrix, Tucker Decomposition and trajectories, which allow a reduction of the matrices and identification of relevant points in the data set. The second case study applied was the patterns identification, where the main idea was understand and highlight events that happens frequently over seven year of daily grain prices quotation in several products. In order to proceed the technique, the data are prepared using the dimensionality and discretization reduction. Next, the search for motifs is performed using metrics distance to find similarities in time series or between parts of the same time series, in special two time series was used, that are MINDIST and Euclidean distances. The results give a understanding of the dynamic of these grains time series, such as, Some important aspects were detect by applying the trajectories, first that the both products soybean and corn prices has opposites trajectories, it is possible to infer this products competes in fields for next crops. On the market analysis, the trajectory of Chicago Stock Market spread the behavior of the prices in Brazil domestic market, both trajectories are similar over the years.
214

Prevendo inflação usando séries temporais e combinações de previsões

Araripe, Anderson Alencar de 10 October 2008 (has links)
Submitted by Anderson Araripe (araripe@fgvmail.br) on 2008-10-09T19:35:43Z No. of bitstreams: 1 Dissertação MFEE Anderson Araripe.pdf: 459660 bytes, checksum: ea500a1c6052ec696eeecbdba2f80150 (MD5) / Approved for entry into archive by Francisco Terra(francisco.terra@fgv.br) on 2008-10-10T13:07:38Z (GMT) No. of bitstreams: 1 Dissertação MFEE Anderson Araripe.pdf: 459660 bytes, checksum: ea500a1c6052ec696eeecbdba2f80150 (MD5) / Made available in DSpace on 2008-10-10T13:07:38Z (GMT). No. of bitstreams: 1 Dissertação MFEE Anderson Araripe.pdf: 459660 bytes, checksum: ea500a1c6052ec696eeecbdba2f80150 (MD5) / O propósito deste estudo é analisar a capacidade dos modelos econométricos ARMA, ADL, VAR e VECM de prever inflação, a fim de verificar qual modelagem é capaz de realizar as melhores previsões num período de até 12 meses, além de estudar os efeitos da combinação de previsões. Dentre as categorias de modelos analisados, o ARMA (univariado) e o ADL (bivariado e multivariado), foram testados com várias combinações de defasagens. Foram realizadas previsões fora-da-amostra utilizando 3 períodos distintos da economia brasileira e os valores foram comparados ao IPCA realizado, a fim de verificar os desvios medidos através do EQM (erro quadrático médio). Combinações das previsões usando média aritmética, um método de média ponderada proposto por Bates e Granger (1969) e média ponderada através de regressão linear múltipla foram realizadas. As previsões também foram combinadas com a previsão do boletim FOCUS do Banco Central. O método de Bates e Granger minimiza a variância do erro da combinação e encontra uma previsão com variância do erro menor ou igual à menor variância dos erros das previsões individuais, se as previsões individuais forem não viesadas. A conclusão é que, com as técnicas de séries temporais utilizadas, alguns modelos individuais fornecem previsões com EQM relativamente baixos. Destacando-se, dentre eles, os modelos VAR e VECM. Porém, com a combinação de previsões os EQM obtidos são menores do que os das previsões individuais usadas para combinação. Na maioria dos casos, a combinação de previsões com o boletim FOCUS também melhorou significativamente os resultados e forneceu previsões com EQM menores do que os das previsões individuais, destacando-se, dentre os métodos de combinações utilizados, a combinação via regressão linear múltipla.
215

Ajuste de modelos e comparação de séries temporais para dados de vazão específica em microbacias pareadas / Fitting of models and comparison of time series for specific flow data in paired catchments

Marcus Vinicius Silva Gurgel do Amaral 15 July 2014 (has links)
A crescente preocupação com o meio ambiente pressiona a sociedade como um todo para a uma mudança rumo a hábitos mais sustentáveis. No setor produtivo, o impulso se dá pelo desenvolvimento de técnicas mais eficientes de produção, embasados em pesquisas e experimentos de campo. No setor florestal, além da preocupação com a técnicas de manejo e com o solo, o principal recurso a ser preservado é a água. Por meio do monitoramento de rios em bacias hidrográficas, séries históricas são coletadas, possibilitando o uso da teoria de séries temporais para ajuste de modelos pela metodologia Box e Jenkins. Em casos de monitoramentos de microbacias pareadas, existe a possibilidade de se comparar séries temporais, como descrito no presente trabalho. Em duas microbacias pareadas localizadas na região centro-leste do estado do Paraná, em uma fazenda no município de Telêmaco Borba, dados correspondendo a duas séries temporais distintas de vazão específica foram coletados. Devido a presença de falhas nos conjuntos de dados, uma metodologia para imputação foi utilizada de duas maneiras diferentes, possibilitando a posterior comparação das duas séries temporais pela metodologia de séries temporais. De acordo com os resultados, verifica-se que ambas as séries são diferentes tanto para o teste de comparação das funções de autocorrelação, quanto para o teste de comparação de séries temporais proposto por Silva, Ferreira e Sáfadi (2000). Portanto, segundo a caracterização dos estudos em microbacias pareadas, pode-se constatar que o manejo florestal empregado nos dois locais influenciam de forma diferente no comportamento da variável avaliada. / The growing concern for the enviroment presses society as a whole for a change towards sustainable habits. Regarding the production systems, more efficient production techniques based on research and field experiments are needed. As for forestry, besides the concern with management techniques and with soil preparation, the main resource to be preserved is water. Time series are collected by monitoring rivers in drainage basins, making possible the use of time series theory for fitting models based on Box and Jenkins methodology. When studying paired drainage basins, it is possible to compare time series, as described in this work. Two time series consisting of specific flow data were collected in a farm situated in the municipality of Telêmaco Borba, Eastern Paraná state, in two paired drainage basins. Because there were missing data, imputation techniques were used, making it possible to compare the two time series. Results showed that the time series are different for the comparison of the autocorrelation test and the time series comparison test proposed by Silva, Ferreira e Sáfadi (2000). Therefore, according to studies involving paired drainage basins, different forest management techniques influence differently the behavior of the response variable in the different drainage basins.
216

Aplicação de redes neurais artificiais na análise de séries temporais econômico-financeiras / Artificial neural networks application in financial-economic time series analysis

Mauri Aparecido de Oliveira 07 December 2007 (has links)
Diversas metodologias são empregadas para realizar a análise de séries temporais, dentre as quais destaca-se o uso das redes neurais artificiais (RNA). Neste trabalho são utilizados quatro métodos para realizar previsão de séries temporais univariadas: os modelos ARIMAGARCH, RNA feedforward, RNA treinada com filtro de Kalman estendido (EKF) e RNA treinada com o filtro de Kalman unscented (UKF). Sendo que o uso de RNA-UKF é um avanço recente na área de sistemas de inteligência computacional. O uso de redes neurais treinadas com filtro de Kalman é uma metodologia que tem trazido bons resultados em uma ampla variedade de aplicações nas áreas comercial, militar e científica. Em 2002 aproximadamente 250 bilhões de dólares eram gerenciados em fundos de investimentos por modelos quantitativos (tais como lógica fuzzy, redes neurais, algoritmos genéticos, fractais e modelos de Markov). Desde 2006 estima-se que três em cada dez destes fundos utilizem estes modelos quantitativos. A capacidade das RNA em lidar com não linearidades é uma vantagem normalmente destacada quando são realizadas previsões de séries temporais. São apresentadas simulações de Monte Carlo que mostram a influência dos parâmetros dos modelos ARIMA-GARCH na predição de redes neurais artificiais do tipo feedforward, treinadas com o algoritmo de Levenberg-Marquardt. Pelos resultados obtidos verificou-se que a RNA feedforward realizou melhores previsões a medida que o parâmetro ligado a estacionariedade aumenta. Também é aplicada a teoria para construção de intervalos de predição (IP) e de confiança (IC) para RNA feedforward. As séries temporais analisadas são univariadas e compostas de dados reais do setor financeiro (Bradesco PN, Bradespar PN, Itausa PN e Itaú PN), setor de alimentos (Perdigão PN, Sadia PN, Saca da Soja de 60Kg e Saca de Açúcar de 50Kg), setor industrial (Marcopolo PN, Petrobrás PN, Embraer ON, Ripasa PN, Souza Cruz ON e Gerdau PN) e setor de serviços (Pão de Açúcar PN, Eletropaulo PNA, Eletrobras PNB, Brasil Telecom PN, Cesp PNA e Lojas Americanas PNA). Os resultados obtidos mostram que a RNA-UKF apresentou-se superior quando comparada com as técnicas concorrentes. / Many techologies has been applied to time series analysis, among these artifitial neural networks (RNA). In this work, four methods are used to univariate time series forecasting: ARIMA-GARCH, RNA feedforward, RNA trained using extended Kalman filter (EKF) and RNA trained using unscented Kalman filter (UKF). RNA-UKF is a recent method in computational intelligence field. The use of neural networks trained using Kalman filter is a methodology that has brought good results in a wide variety of applications such as commercial, military and scientific field. In 2002 approximately 250 billions of dollars were managed in investiment funds by quantitative models (such as fuzzy logic, neural networks, genetic algorithms, fractals and Markov models). Since 2006 it is estimated that three in ten investiment funds use these quantitative models. The RNA power to deal with non linearities is a highlited advantage when time series forecasting are performed. This work presents Monte Carlo simulations showing the ARIMA-GARCH parameters influence in the feedforward artifitial neural networks predictions, trained with Levenberg- Marquardt algorithm. According to the results, RNA feedforward performed best forecasts to the extent stacionarity parameter increase. Moreover, the theory for confidence (IC) e prediction (IP) intervals are applied to RNA feedforward. This work presents analysis to real data univariate time series from financial sector (Bradesco PN, Bradespar PN, Itausa PN and Itaú PN), food sector (Perdigão PN, Sadia PN, Soybean 60Kg and Sugar 50Kg), factory sector (Marcopolo PN, Petrobrás PN, Embraer ON, Ripasa PN, Souza Cruz ON and Gerdau PN) and service sector (Pão de Açúcar PN, Eletropaulo PNA, Eletrobras PNB, Brasil Telecom PN, Cesp PNA and Lojas Americanas PNA). The results showed RNA-UKF upper hand when compared with the competitors techniques.
217

Previsão de volatilidade no Brasil: RiskMetrics, GARCH, volatilidade implícita ou uma combinação desses modelos? Um estudo empírico

Santos, José Evaristo dos January 1997 (has links)
Made available in DSpace on 2013-04-18T20:58:49Z (GMT). No. of bitstreams: 1 1199900146.pdf: 2751587 bytes, checksum: 8fc9e06e357157f752e0e7f98940ee0f (MD5) Previous issue date: 1997 / O trabalho testa o poder de previsão da volatilidade futura, de cinco modelos: um modelo ingênuo, do tipo martingale, o modelo sugerido pelo JPMorgan em seu RiskMetrics™, o modelo GARCH-Generalized Autoregressive Conditional Heteroscedasticity, o modelo da volatilidade implícita e combinações de Risk:MetricsTM com volatilidade implícita e de GARCH com volatilidade implícita. A série estudada é a volatilidade para vinte e cinco dias, dos retornos diários do contrato futuro de Ibovespa, negociado na BM&F - Bolsa de Mercadorias e Futuros. Particularidades brasileiras são introduzidas na estimação dos parâmetros do modelo GARCH. O poder de previsão é testado com medidas estatísticas, envolvendo equações de perdas (loss functions) simétricas e assimétricas, e com uma medida econômica, dada pelo lucro obtido a partir da simulação da realização de operações hedgeadas, sugeridas pelas previsões de volatilidade. Tanto com base nas medidas estatísticas como na medida econômica, o modelo GARCH emerge como o de melhor desempenho. Com base nas medidas estatísticas, esse modelo é particularmente melhor em período de mais alta volatilidade. Com base na medida econômica, contudo, o lucro obtido não é estatisticamente diferente de zero, indicando eficiência do mercado de opções de compra do contrato futuro de Ibovespa, negociado na mesmaBM&F.
218

Fatores associados ao óbito por acidentes de trânsito no Brasil Uma série de estudos com dados secundários /

Nunes, Hélio Rubens de Carvalho January 2019 (has links)
Orientador: Maria Cristina Pereira Lima / Resumo: Introdução: Os acidentes de trânsito (AT) fazem aumentar a população que possui alguma deficiência e os anos potenciais de vida perdidos; causam dor e sofrimento aos familiares das vítimas e geram gastos aos sistemas de saúde e previdenciário dos países. Objetivo: O objetivo deste trabalho foi avaliar os fatores associados aos óbitos causados por AT no Brasil à partir de uma série de quatro estudos produzidos com dados secundários. Método: O estudo 1 apresenta sínteses da prevalência do ato de beber e dirigir (%BD) no Brasil após a promulgação da Lei Seca de 2008 (LS08), obtidas por modelos de meta-análise de efeitos aleatórios, à partir de estudos selecionados nas bases Scielo, Medline, Embase e Web of Science. O estudo 2 é um “Interrupted Time Series” (ITS) que avalia o impacto da LS08 sobre o número mensal de óbitos por AT no Brasil entre 2002 a 2015 por meio de um modelo de séries temporais com resposta Binomial Negativa. O estudo 3 é um ITS que avalia o impacto da LS08 sobre a mortalidade por AT nos 27 estados brasileiros por meio de modelos de séries temporais da classe ARIMA, ajustados para cada um dos estados. O estudo 4 apresenta uma revisão sobre aspectos de planejamento e validade dos resultados de estudos conduzidos sob o delineamento ITS, à partir do referencial teórico de Campbell e Stanley (1963), com exemplos de estudos ITS aplicados no trânsito. Resultados: As sínteses obtidas no estudo 1 mostram que, em um período de 12 meses, 26,8% dos motoristas dirigem so... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Introduction: Traffic accidents (TA) increase the population with disabilities and the potential years of life lost, cause pain and suffering to the families of the victims, and generate expenses for the health and social security systems of the countries. Objective: The objective of this study was to evaluate the factors associated with deaths caused by TA in Brazil from a series of four studies produced with secondary data. Method: Study 1 presents a summary of the prevalence of drinking and driving (% BD) in Brazil after the enactment of the 2008 Dry Law (LS08), obtained by random effects meta-analysis models, based on studies selected at Scielo , Medline, Embase and Web the Science. Study 2 is an "Interrupted Time Series" (ITS) that assesses the impact of LS08 on the monthly number of TA deaths in Brazil between 2002 and 2015 through a time series model with Negative Binomial response. Study 3 is an ITS that assesses the impact of LS08 on TA mortality in the 27 Brazilian states through time series models of the ARIMA class, adjusted for each state. Study 4 presents a review on aspects of planning and validity of the results of studies conducted under the ITS design, based on the theoretical reference of Campbell and Stanley (1963), with examples of ITS studies applied in traffic. Results: The syntheses obtained in study 1 show that, in a 12-month period, 26.8% of the drivers drive under the influence of alcohol, 8.9% of the drivers are caught under the influence of alcoho... (Complete abstract click electronic access below) / Doutor
219

Modelos de séries temporais aplicados à análise prospectiva de concessão de crédito bancário / Time series models applied to forecast analysis of banking credit concessions

Kleber Giovelli Abitante 19 March 2007 (has links)
O presente trabalho teve por objetivo modelar as séries de concessão de crédito bancário às pessoas físicas, às pessoas jurídicas e para financiamento de atividades rurais, bem como realizar previsões a cerca dos comportamentos destas séries. A metodologia utilizada foi de Auto- Regressão Vetorial. A propriedade de co-integração entre as variáveis foi considerada no trabalho, sendo que foram estimados modelos de Auto-Regressão Vetorial com Correção de Erro – VEC. Os resultados mostram que o produto, a taxa de juros cobrada nos empréstimos, as exportações e as vendas no varejo podem auxiliar na geração de previsões satisfatórias das concessões de crédito às pessoas jurídicas e às pessoas físicas. Para o modelo de previsão das concessões de crédito para financiamento de atividades rurais, utilizaram-se variáveis referentes à produção de fertilizantes, vendas de tratores e colheitadeiras, produção de leite e produção de carnes bovina, suínas e de aves, sendo que as previsões geradas pelo modelo apresentaram performance adequada, dada a dificuldade da modelagem. / The aim of this study was to model the series of banking credit concessions to individuals, to firms and for rural activities financing, and to generate forecasts about the behavior of that series. The methodology used was the Vector Auto-Regression. The property of co-integration among the variables was considered, and were estimated Vector Auto-Regression models with Error Correction – VEC. The results shows that the product, the lending interest rate, the exportation and the retail sales can to help on the generation of satisfactory forecast of the banking credit concessions to firms and to individuals. Regarding the forecast model of the banking credit concessions for rural activities financing, was used variables about the fertilizers production, sales of tractors and harvesters machines, milk production and the production of meat of cattle, pork and chicken, and the forecasts generated by the model showed suitable perform, considering the modeling difficult.
220

Modelos de séries temporais aplicados à análise prospectiva de concessão de crédito bancário / Time series models applied to forecast analysis of banking credit concessions

Abitante, Kleber Giovelli 19 March 2007 (has links)
O presente trabalho teve por objetivo modelar as séries de concessão de crédito bancário às pessoas físicas, às pessoas jurídicas e para financiamento de atividades rurais, bem como realizar previsões a cerca dos comportamentos destas séries. A metodologia utilizada foi de Auto- Regressão Vetorial. A propriedade de co-integração entre as variáveis foi considerada no trabalho, sendo que foram estimados modelos de Auto-Regressão Vetorial com Correção de Erro – VEC. Os resultados mostram que o produto, a taxa de juros cobrada nos empréstimos, as exportações e as vendas no varejo podem auxiliar na geração de previsões satisfatórias das concessões de crédito às pessoas jurídicas e às pessoas físicas. Para o modelo de previsão das concessões de crédito para financiamento de atividades rurais, utilizaram-se variáveis referentes à produção de fertilizantes, vendas de tratores e colheitadeiras, produção de leite e produção de carnes bovina, suínas e de aves, sendo que as previsões geradas pelo modelo apresentaram performance adequada, dada a dificuldade da modelagem. / The aim of this study was to model the series of banking credit concessions to individuals, to firms and for rural activities financing, and to generate forecasts about the behavior of that series. The methodology used was the Vector Auto-Regression. The property of co-integration among the variables was considered, and were estimated Vector Auto-Regression models with Error Correction – VEC. The results shows that the product, the lending interest rate, the exportation and the retail sales can to help on the generation of satisfactory forecast of the banking credit concessions to firms and to individuals. Regarding the forecast model of the banking credit concessions for rural activities financing, was used variables about the fertilizers production, sales of tractors and harvesters machines, milk production and the production of meat of cattle, pork and chicken, and the forecasts generated by the model showed suitable perform, considering the modeling difficult.

Page generated in 0.0635 seconds