Spelling suggestions: "subject:"théorie dess possibilité"" "subject:"théorie dess possibilita""
21 |
Techniques non-additives d'estimation de la densité de probabilitéNehme, Bilal 20 December 2010 (has links) (PDF)
Dans cette thèse, nous proposons une nouvelle méthode d'estimation non-paramétrique de la densité de probabilité. Cette méthode d'estimation imprécise combine la théorie de distribution de Schwartz et la théorie de possibilité. La méthode d'estimation que nous proposons est une extension de la méthode d'estimation à noyau. Cette extension est basée sur une nouvelle méthode de représentation de la notion de voisinage sur laquelle s'appuie l'estimation à noyau. Cette représentation porte le nom de noyau maxitif. L'estimation produite est de nature intervalliste. Elle est une enveloppe convexe d'un ensemble d'estimation de Parzen-Rosenblatt obtenus avec un ensemble de noyaux contenus dans une famille particulière. Nous étudions un certain nombre des propriétés théoriques liées à cette nouvelle méthode d'estimation. Parmi ces propriétés, nous montrons un certain type de convergence de cet estimateur. Nous montrons aussi une aptitude particulière de ce type d'estimation à quantifier l'erreur d'estimation liée à l'aspect aléatoire de la distribution des observations. Nous proposons un certain nombre d'algorithmes de faible complexité permettant de programmer facilement les mathodes que nous proposons.
|
22 |
Lexicographic refinements in possibilistic sequential decision-making models / Raffinements lexicographiques en prise de décision séquentielle possibilisteEl Khalfi, Zeineb 31 October 2017 (has links)
Ce travail contribue à la théorie de la décision possibiliste et plus précisément à la prise de décision séquentielle dans le cadre de la théorie des possibilités, à la fois au niveau théorique et pratique. Bien qu'attrayante pour sa capacité à résoudre les problèmes de décision qualitatifs, la théorie de la décision possibiliste souffre d'un inconvénient important : les critères d'utilité qualitatives possibilistes comparent les actions avec les opérateurs min et max, ce qui entraîne un effet de noyade. Pour surmonter ce manque de pouvoir décisionnel, plusieurs raffinements ont été proposés dans la littérature. Les raffinements lexicographiques sont particulièrement intéressants puisqu'ils permettent de bénéficier de l'arrière-plan de l'utilité espérée, tout en restant "qualitatifs". Cependant, ces raffinements ne sont définis que pour les problèmes de décision non séquentiels. Dans cette thèse, nous présentons des résultats sur l'extension des raffinements lexicographiques aux problèmes de décision séquentiels, en particulier aux Arbres de Décision et aux Processus Décisionnels de Markov possibilistes. Cela aboutit à des nouveaux algorithmes de planification plus "décisifs" que leurs contreparties possibilistes. Dans un premier temps, nous présentons des relations de préférence lexicographiques optimistes et pessimistes entre les politiques avec et sans utilités intermédiaires, qui raffinent respectivement les utilités possibilistes optimistes et pessimistes. Nous prouvons que les critères proposés satisfont le principe de l'efficacité de Pareto ainsi que la propriété de monotonie stricte. Cette dernière garantit la possibilité d'application d'un algorithme de programmation dynamique pour calculer des politiques optimales. Nous étudions tout d'abord l'optimisation lexicographique des politiques dans les Arbres de Décision possibilistes et les Processus Décisionnels de Markov à horizon fini. Nous fournissons des adaptations de l'algorithme de programmation dynamique qui calculent une politique optimale en temps polynomial. Ces algorithmes sont basés sur la comparaison lexicographique des matrices de trajectoires associées aux sous-politiques. Ce travail algorithmique est complété par une étude expérimentale qui montre la faisabilité et l'intérêt de l'approche proposée. Ensuite, nous prouvons que les critères lexicographiques bénéficient toujours d'une fondation en termes d'utilité espérée, et qu'ils peuvent être capturés par des utilités espérées infinitésimales. La dernière partie de notre travail est consacrée à l'optimisation des politiques dans les Processus Décisionnels de Markov (éventuellement infinis) stationnaires. Nous proposons un algorithme d'itération de la valeur pour le calcul des politiques optimales lexicographiques. De plus, nous étendons ces résultats au cas de l'horizon infini. La taille des matrices augmentant exponentiellement (ce qui est particulièrement problématique dans le cas de l'horizon infini), nous proposons un algorithme d'approximation qui se limite à la partie la plus intéressante de chaque matrice de trajectoires, à savoir les premières lignes et colonnes. Enfin, nous rapportons des résultats expérimentaux qui prouvent l'efficacité des algorithmes basés sur la troncation des matrices. / This work contributes to possibilistic decision theory and more specifically to sequential decision-making under possibilistic uncertainty, at both the theoretical and practical levels. Even though appealing for its ability to handle qualitative decision problems, possibilisitic decision theory suffers from an important drawback: qualitative possibilistic utility criteria compare acts through min and max operators, which leads to a drowning effect. To overcome this lack of decision power, several refinements have been proposed in the literature. Lexicographic refinements are particularly appealing since they allow to benefit from the expected utility background, while remaining "qualitative". However, these refinements are defined for the non-sequential decision problems only. In this thesis, we present results on the extension of the lexicographic preference relations to sequential decision problems, in particular, to possibilistic Decision trees and Markov Decision Processes. This leads to new planning algorithms that are more "decisive" than their original possibilistic counterparts. We first present optimistic and pessimistic lexicographic preference relations between policies with and without intermediate utilities that refine the optimistic and pessimistic qualitative utilities respectively. We prove that these new proposed criteria satisfy the principle of Pareto efficiency as well as the property of strict monotonicity. This latter guarantees that dynamic programming algorithm can be used for calculating lexicographic optimal policies. Considering the problem of policy optimization in possibilistic decision trees and finite-horizon Markov decision processes, we provide adaptations of dynamic programming algorithm that calculate lexicographic optimal policy in polynomial time. These algorithms are based on the lexicographic comparison of the matrices of trajectories associated to the sub-policies. This algorithmic work is completed with an experimental study that shows the feasibility and the interest of the proposed approach. Then we prove that the lexicographic criteria still benefit from an Expected Utility grounding, and can be represented by infinitesimal expected utilities. The last part of our work is devoted to policy optimization in (possibly infinite) stationary Markov Decision Processes. We propose a value iteration algorithm for the computation of lexicographic optimal policies. We extend these results to the infinite-horizon case. Since the size of the matrices increases exponentially (which is especially problematic in the infinite-horizon case), we thus propose an approximation algorithm which keeps the most interesting part of each matrix of trajectories, namely the first lines and columns. Finally, we reports experimental results that show the effectiveness of the algorithms based on the cutting of the matrices.
|
23 |
Reconnaissance de formes basée sur l'approche possibiliste dans les images mammographiques / Shape recognition based on possibilistic approach in mammographic imagesHmida, Marwa 09 December 2017 (has links)
Face à l'augmentation significative du taux de mortalité par cancer du sein chez les femmes ainsi que la croissance continue du nombre de mammographies réalisées chaque année, le diagnostic assisté par ordinateur devient de plus en plus impératif pour les experts. Dans notre travail de thèse, une attention particulière est accordée aux masses mammaires vu qu'elles représentent le signe de cancer du sein le plus couramment observé en mammographies. Néanmoins, ces images présentent un très faible contraste, ce qui fait que les frontières entre les tissus sains et les masses sont mal définies. C'est ainsi qu'il est difficile de pouvoir discerner avec précision ces masses et de leur définir un contour unique. En outre, la complexité et la grande variabilité des formes des masses mammaires rendent les tâches de diagnostic et de classification difficiles. Dans ce cadre, nous proposons un système d'aide au diagnostic dont le but est la segmentation de masses dans les régions d'intérêt et par la suite la classification de ces masses en deux catégories : bénignes et malignes. La première étape de segmentation est une étape assez délicate vu que les étapes postérieures à savoir la caractérisation et la classification y sont dépendantes. En effet, une mauvaise segmentation peut entrainer une mauvaise prise de décision. Un tel cas peut survenir en raison de l'incertitude et l'imprécision émanant de l'image mammographique. C'est pour cette raison que nous proposons une définition de contours flous permettant de prendre en compte ces types d'imperfections. Ces contours flous sont introduits dans l'énergie d'un contour actif pour modifier son mouvement et aboutir à une délimitation exacte des masses. Une fois les régions d'intérêt sont segmentées, nous présentons une méthode de classification de masses basée sur la théorie des possibilités qui permet de modéliser les ambigüités inhérentes aux connaissances exprimées par l'expert. En outre, cette méthode utilise essentiellement les descripteurs de forme pour caractériser les masses et décider de leur degré de gravité vu que la forme des masses constitue un bon indicateur de gravité.La validation et l'évaluation de ces deux méthodes sont réalisées en utilisant les régions d'intérêt contenant des masses extraites de la base MIAS. Les résultats obtenus sont très intéressants et les comparaisons effectuées ont mis en évidence leurs performances. / In view of the significant increase in breast cancer mortality rate among women as well as the continuous growth in number of mammograms performed each year, computer-aided diagnosis is becoming more and more imperative for experts. In our thesis work, special attention is given to breast masses as they represent the most common sign of breast cancer in mammograms. Nevertheless, mammographic images have very low contrast and breast masses possess ambiguous margins. Thus, it is difficult to distinguish them from the surrounding parenchymal. Moreover, the complexity and the large variability of breast mass shapes make diagnostic and classification challenging tasks.In this context, we propose a computer-aided diagnosis system which firstly segments masses in regions of interests and then classifies them as benign or malignant. Mass segmentation is a critical step in a computer-aided diagnosis system since it affects the performance of subsequent analysis steps namely feature analysis and classification. Indeed, poor segmentation may lead to poor decision making. Such a case may occur due to two types of imperfection: uncertainty and imprecision. Therefore, we propose to deal with these imperfections using fuzzy contours which are integrated in the energy of an active contour to get a fuzzy-energy based active contour model that is used for final delineation of mass.After mass segmentation, a classification method is proposed. This method is based on possibility theory which allows modeling the ambiguities inherent to the knowledge expressed by the expert. Moreover, since shape and margin characteristics are very important for differentiating between benign and malignant masses, the proposed method is essentially based on shape descriptors.The evaluation of the proposed methods was carried out using the regions of interest containing masses extracted from the MIAS base. The obtained results are very interesting and the comparisons made have demonstrated their performances.
|
24 |
Modèles de langage ad hoc pour la reconnaissance automatique de la parole / Ad-hoc language models for automatic speech recognitionOger, Stanislas 30 November 2011 (has links)
Les trois piliers d’un système de reconnaissance automatique de la parole sont le lexique,le modèle de langage et le modèle acoustique. Le lexique fournit l’ensemble des mots qu’il est possible de transcrire, associés à leur prononciation. Le modèle acoustique donne une indication sur la manière dont sont réalisés les unités acoustiques et le modèle de langage apporte la connaissance de la manière dont les mots s’enchaînent.Dans les systèmes de reconnaissance automatique de la parole markoviens, les modèles acoustiques et linguistiques sont de nature statistique. Leur estimation nécessite de gros volumes de données sélectionnées, normalisées et annotées.A l’heure actuelle, les données disponibles sur le Web constituent de loin le plus gros corpus textuel disponible pour les langues française et anglaise. Ces données peuvent potentiellement servir à la construction du lexique et à l’estimation et l’adaptation du modèle de langage. Le travail présenté ici consiste à proposer de nouvelles approches permettant de tirer parti de cette ressource.Ce document est organisé en deux parties. La première traite de l’utilisation des données présentes sur le Web pour mettre à jour dynamiquement le lexique du moteur de reconnaissance automatique de la parole. L’approche proposée consiste à augmenter dynamiquement et localement le lexique du moteur de reconnaissance automatique de la parole lorsque des mots inconnus apparaissent dans le flux de parole. Les nouveaux mots sont extraits du Web grâce à la formulation automatique de requêtes soumises à un moteur de recherche. La phonétisation de ces mots est obtenue grâce à un phonétiseur automatique.La seconde partie présente une nouvelle manière de considérer l’information que représente le Web et des éléments de la théorie des possibilités sont utilisés pour la modéliser. Un modèle de langage possibiliste est alors proposé. Il fournit une estimation de la possibilité d’une séquence de mots à partir de connaissances relatives à ’existence de séquences de mots sur le Web. Un modèle probabiliste Web reposant sur le compte de documents fourni par un moteur de recherche Web est également présenté. Plusieurs approches permettant de combiner ces modèles avec des modèles probabilistes classiques estimés sur corpus sont proposées. Les résultats montrent que combiner les modèles probabilistes et possibilistes donne de meilleurs résultats que es modèles probabilistes classiques. De plus, les modèles estimés à partir des données Web donnent de meilleurs résultats que ceux estimés sur corpus. / The three pillars of an automatic speech recognition system are the lexicon, the languagemodel and the acoustic model. The lexicon provides all the words that can betranscribed, associated with their pronunciation. The acoustic model provides an indicationof how the phone units are pronounced, and the language model brings theknowledge of how words are linked. In modern automatic speech recognition systems,the acoustic and language models are statistical. Their estimation requires large volumesof data selected, standardized and annotated.At present, the Web is by far the largest textual corpus available for English andFrench languages. The data it holds can potentially be used to build the vocabularyand the estimation and adaptation of language model. The work presented here is topropose new approaches to take advantage of this resource in the context of languagemodeling.The document is organized into two parts. The first deals with the use of the Webdata to dynamically update the lexicon of the automatic speech recognition system.The proposed approach consists on increasing dynamically and locally the lexicon onlywhen unknown words appear in the speech. New words are extracted from the Webthrough the formulation of queries submitted toWeb search engines. The phonetizationof the words is obtained by an automatic grapheme-to-phoneme transcriber.The second part of the document presents a new way of handling the informationcontained on the Web by relying on possibility theory concepts. A Web-based possibilisticlanguage model is proposed. It provides an estition of the possibility of a wordsequence from knowledge of the existence of its sub-sequences on the Web. A probabilisticWeb-based language model is also proposed. It relies on Web document countsto estimate n-gram probabilities. Several approaches for combining these models withclassical models are proposed. The results show that combining probabilistic and possibilisticmodels gives better results than classical probabilistic models alone. In addition,the models estimated from Web data perform better than those estimated on corpus.
|
25 |
La prise en compte des incertitudes dans l’évaluation de la qualité environnementale des bâtiments tertiaires : démarche HQE® / taking account of uncertainties in the assessment of green tertiary buildings : french approach HQE®Alhamwi, Hussam 12 December 2012 (has links)
Le secteur de la construction est considéré comme un des facteurs principaux qui affectent la dépense énergétique et les émissions des gaz à effet de serre. Dès lors, la valorisation de la qualité environnementale des bâtiments constitue une réponse importante aux enjeux du développement durable. Dans ce contexte, notre recherche aborde le problème de l'incertitude inhérente aux démarches HQE®, notamment dans l'évaluation de la qualité environnementale des bâtiments tertiaires. Notre étude s'appuie sur la théorie des possibilités qui présente des atouts intéressants au regard de notre problématique, notamment sa capacité à modéliser l'expertise humaine et la présentation simple et unique des incertitudes et des imprécisions sur la base d'un volume limité d'informations. Ce travail vise à associer une crédibilité à l'évaluation de la qualité environnementale du bâtiment en traitant des paramètres tant quantitatifs que qualitatifs. La modélisation des incertitudes permet aux concepteurs de mieux hiérarchiser les impacts des différents paramètres contribuant à l'amélioration de la qualité environnementale d'un bâtiment et d'identifier les informations qui nécessiteraient en priorité une instigation plus poussée afin de crédibiliser l'évaluation environnementale / It is well known that the construction sector is considered one of the main factors that affect the energy consumption and the emissions of greenhouse gases. Thus, the enhancement of the environmental quality of buildings is an important response to the challenges of sustainable development. In such context, this research discusses the problem of the uncertainty inherent in the French approach HQE®, particularly the assessment of the environmental quality of tertiary buildings. In fact, this study is based on possibility theory, which presents interesting advantages in terms of our problem, especially its ability to model human expertise or knowledge in addition to simple and unique presentation of uncertainties and inaccuracies on the basis of a limited amount of information. Moreover, this work aims to associate a credibility assessment of the environmental quality of buildings by handling two types of input parameters which are the quantitative and the qualitative ones. This uncertainty modeling offers the designers a better prioritization of the impacts of the different parameters, which thus contribute to the improvement of the environmental quality of a building, and identify the information that would require more instigation to enhance the credibility of the environmental assessment
|
26 |
Techniques non-additives d'estimation de la densité de probabilité / Non-additive techniques for probability density estimationNehme, Bilal 20 December 2010 (has links)
Dans cette thèse, nous proposons une nouvelle méthode d'estimation non-paramétrique de la densité de probabi lité. Cette méthode d'estimation imprécise combine la théorie de distribution de Schwartz et la théorie de possibilité. La méthode d'estimation que nous proposons est une extension de la méthode d'estimation à noyau. Cette extension est basée sur une nouvelle méthode de représentation de la notion de voisinage sur laquelle s'appuie l'estimation à noyau. Cette représentation porte le nom de noyau maxitif. L'estimation produite est de nature intervalliste. Elle est une enveloppe convexe d'un ensemble d'estimation de Parzen-Rosenblatt obtenus avec un ensemble de noyaux contenus dans une famille particulière. Nous étudions un certain nombre des propriétés théoriques liées à cette nouvelle méthode d'estimation. Parmi ces propriétés, nous montrons un certain type de convergence de cet estimateur. Nous montrons aussi une aptitude particulière de ce type d'estimation à quantifier l'erreur d'estimation liée à l'aspect aléatoire de la distribution des observations. Nous proposons un certain nombre d'algorithmes de faible complexité permettant de programmer facilement les méthodes que nous proposons / This manuscript, proposes a new nonparametric method for estimating the probability density function. This estimation method combines the Schwartz distribution theory and the possibility theory. It is an extension of the kernel density estimator that leads to imprecise estimation. It is based on a new method for modeling neighborhood. The interval valued estimate it produces is a convex envelope of the Parzen-Rosenblatt estimates obtained with kernels belonging to a coherent convex family. We propose some theoretical properties of this new method. Among these properties, we have shown a kind of convergence of this estimator. We also shown a particular aptitude of this estimator to quantify the error due to random variation in observation. We also propose very low complexity algorithms to compute the proposed methods.
|
27 |
Représentation et propagation de connaissances imprécises et incertaines: Application à l'évaluation des risques liés aux sites et sols pollués.Baudrit, Cédric 19 October 2005 (has links) (PDF)
Actuellement, les choix relatifs à la gestion des sites potentiellement pollués s'appuient, notamment,<br />sur une évaluation des risques pour l'homme et l'environnement. Cette évaluation est effectuée à l'aide de modèles qui simulent le transfert de polluant depuis une source de pollution vers une cible vulnérable, pour différents scénarii d'exposition. La sélection des valeurs des paramètres de ces modèles s'appuie autant que possible sur les données recueillies lors des investigations de terrain (phase de diagnostic de site). Or pour des raisons de délais et de coûts, l'information recueillie lors de cette phase de diagnostic est toujours incomplète; elle est donc entachée d'incertitude. De même, les modèles de transferts et d'exposition présentent également des incertitudes à intégrer dans les procédures. Cette notion globale d'incertitude doit être prise en compte dans l'évaluation du risque pour que les résultats soient utiles lors la phase décisionnelle.<br /><br />L'incertitude sur les paramètres peut avoir deux origines. La première provient du caractère aléatoire de l'information due à une variabilité naturelle résultant de phénomènes stochastiques. On parle alors d'incertitudes de variabilité ou d'incertitudes stochastiques. La seconde est liée au caractère imprécis de l'information lié à un manque de connaissance et qui résulte par exemple d'erreurs systématiques lors de mesures ou d'avis d'experts.<br />On parle alors d'incertitudes épistémiques. Dans le calcul de risque, ces deux notions sont souvent confondues alors qu'elles devraient être traitées de manière différente.<br /><br />L'incertitude en évaluation des risques a surtout été appréhendée dans un cadre purement probabiliste.<br />Cela revient à supposer que la connaissance sur les paramètres des modèles est toujours de nature aléatoire (variabilité). Cette approche consiste à représenter les paramètres incertains par des distributions de probabilité uniques et à transmettre l'incertitude relative à ces paramètres sur celle du risque encouru par la cible, en appliquant en général la technique dite Monte Carlo. Si cette approche est bien connue, toute la difficulté tient à une définition cohérente des distributions de probabilité affectées aux paramètres par rapport à la connaissance disponible. En effet dans un contexte d'évaluation des risques liés à l'exposition aux polluants, l'information dont on dispose concernant certains paramètres est souvent de nature imprécise. Le calage d'une distribution de probabilité unique sur ce type de<br />connaissance devient subjectif et en partie arbitraire. <br /><br />L'information dont on dispose réellement est souvent plus riche qu'un intervalle mais moins riche qu'une distribution de probabilité. En pratique, l'information de nature aléatoire est traitée de manière rigoureuse par les distributions de probabilité classiques. Celle de nature imprécise est traitée de manière rigoureuse par des familles de distributions de probabilité définies au moyen de paires de probabilités cumulées hautes et basses ou, à l'aide de théories plus récentes, au moyen de distributions de possibilité (aussi appelées intervalles flous) ou encore au moyen d'intervalles aléatoires utilisant les fonctions de croyance de Dempster-Shafer.<br /><br />Un des premiers objectifs de ce travail est de promouvoir la cohérence entre la manière dont on représente la connaissance sur les paramètres<br />des modèles du risque et la connaissance dont on dispose réellement. Le deuxième objectif est de proposer différentes méthodes pour propager l'information de nature aléatoire et l'information de nature imprécise à travers les modèles du risque tout en essayant de tenir compte des dépendances entre les paramètres. Enfin, ces méthodes alternatives ont été testées sur des cas synthétiques puis sur des cas réels simplifiés, notamment pour proposer des moyens de présenter les résultats pour une phase décisionnelle:<br /> - Calcul de dose : Transfert d'un polluant radioactif (le strontium) depuis le dépôt jusqu'à<br />l'homme, au travers de la consommation d'un aliment (le lait de vache).<br /> - Risque toxique après un déversement accidentel de trichloréthylène (TCE) au dessus d'une nappe d'eau (modèle semi analytique).<br /><br /> - Risque pour la santé liée aux sols pollués par des retombées de plomb.
|
28 |
Autour de la décision qualitative en théorie des possibilités / On the qualitative decision in a possibility theory frameworkSid-Amar, Ismahane 20 September 2015 (has links)
Dans de nombreuses applications réelles, nous sommes souvent confrontés à des problèmes de décision: de choisir des actions et de renoncer à d'autres. Les problèmes de décision deviennent complexes lorsque les connaissances disponibles sont entachées d'incertitude ou lorsque le choix établi présente un risque.L'un des principaux domaines de l'Intelligence Artificielle (IA) consiste à représenter les connaissances, à les modéliser et à raisonner sur celles-ci. Dans cette thèse, nous sommes intéressés à une discipline inhérente à l'IA portant sur les problèmes de décision. La théorie de la décision possibiliste qualitative a élaboré plusieurs critères, selon le comportement de l'agent, permettant de l'aider à faire le bon choix tout en maximisant l'un de ces critères. Dans ce contexte, la théorie des possibilités offre d'une part un cadre simple et naturel pour représenter l'incertitude et d'autre part, elle permet d'exprimer les connaissances d'une manière compacte à base de modèles logiques ou de modèles graphiques. Nous proposons dans cette thèse d'étudier la représentation et la résolution des problèmes de la décision qualitative en utilisant la théorie des possibilités. Des contreparties possibilistes des approches standards ont été proposées et chaque approche a pour objectif d'améliorer le temps de calcul des décisions optimales et d'apporter plus d'expressivité à la forme de représentation du problème. Dans le cadre logique, nous avons proposé une nouvelle méthode, pour résoudre un problème de la décision qualitative modélisé par des bases logiques possibilistes, basée sur la fusion syntaxique possibiliste. Par la suite, dans le cadre graphique, nous avons proposé un nouveau modèle graphique, basé sur les réseaux possibilistes, permettant la représentation des problèmes de décision sous incertitude. En effet, lorsque les connaissances et les préférences de l'agent sont exprimées de façon qualitative, nous avons proposé de les représenter par deux réseaux possibilistes qualitatifs distincts. Nous avons développé un algorithme pour le calcul des décisions optimales optimistes qui utilise la fusion de deux réseaux possibilistes. Nous avons montré aussi comment une approche basée sur les diagrammes d'influence peut être codée d'une manière équivalente dans notre nouveau modèle. Nous avons en particulier proposé un algorithme polynomial qui permet de décomposer le diagramme d'influence en deux réseaux possibilistes. Dans la dernière partie de la thèse, nous avons défini le concept de la négation d'un réseau possibiliste qui pourra servir au calcul des décisions optimales pessimistes. / In many applications, we are often in presence of decision making problems where the choice of appropriate actions need to be done. When the choice is clear and the risks are null, the decision becomes easy to select right actions. Decisions are more complex when available knowledge is flawed by uncertainty or when the established choice presents a risk. One of the main areas of Artificial Intelligence (AI) is to model, represent and reason about knowledge. In this thesis, we are interested in an inherent discipline in AI which concerns decision making problems.The qualitative possibility decision theory has developed several criteria, depending on the agent behavior, for helping him to make the right choice while maximizing one of these criteria. In this context, possibility theory provides a simple and natural way to encode uncertainty. It allows to express knowledge in a compact way using logical and graphical models. We propose in this thesis to study the representation and resolution of possibilistic qualitative decision problems. Possibilistic counterparts of standard approaches have been proposed and each approach aims to improve the computational complexity of computing optimal decisions and to provide more expressiveness to the representation model of the problem. In the logical framework, we proposed a new method for solving a qualitative decision problem, encoded by possibilistic bases, based on syntactic representations of data fusion problems. Subsequently, in a graphical framework, we proposed a new graphical model for decision making under uncertainty based on qualitatif possibilistic networks. Indeed, when agent's knowledge and preferences are expressed in a qualitative way, we suggest to encode them by two distinct qualitative possibilistic networks. We developed an efficient algorithm for computing optimistic optimal decisions based on syntactic counterparts of the possibilistic networks fusion. We also showed how an influence diagram can be equivalently represented in our new model. In particular, we proposed a polynomial algorithm for equivalently decomposing a given possibilistic influence diagram into two qualitatif possibilistic networks. In the last part of the thesis, we defined the concept of negated possibilistic network that can be used for computing optimal pessimistic decisions.
|
29 |
Méthodologie d’aide à la décision pour une gestion durable des risques d’origine naturelle en contexte incertain / Decision-support methodology for a sustainable management of natural hazard risk under uncertaintyEdjossan-Sossou, Abla Mimi 14 December 2015 (has links)
La gestion des risques d’origine naturelle est un défi stratégique majeur pour les collectivités territoriales en raison de l’impact négatif potentiel de ces risques sur leur développement. Dans la perspective d’une gestion durable de ces risques, l’élaboration de méthodes et d’outils d’aide à la décision multicritère pour l’évaluation de la durabilité des stratégies de gestion représente une thématique de recherche intéressante et d’actualité. Les principaux verrous scientifiques sous-jacents à cette thématique portent sur la nécessité de définir un cadre théorique pour l’évaluation de cette durabilité et la prise en compte d’incertitudes provenant de différentes sources (données d’entrée, choix méthodologiques, dynamique du contexte, etc.) susceptibles d'influer sur la qualité des résultats de l’évaluation et donc sur la prise de décision. D’où la nécessité d’une méthodologie pour la prise en compte des incertitudes dans le processus décisionnel afin de fournir des résultats les plus pertinents possibles aux décideurs. Pour lever ces verrous, cette thèse propose une méthodologie globale d’évaluation qui repose sur le concept de développement durable et intègre un ensemble de critères et indicateurs permettant de rendre compte des conséquences techniques, économiques, sociétales, environnementales et institutionnelles des stratégies de gestion. Les incertitudes sont quantifiées selon une approche probabiliste (Simulations Monte Carlo) ou possibiliste (théorie des possibilités) et propagées le long du processus d’évaluation par l’arithmétique de la théorie des intervalles. Elle propose également un simulateur pour évaluer les dommages liés aux inondations et permettre une estimation aussi bien déterministe qu’aléatoire de différents types de ces dommages à l’échelle d’une commune. Ces contributions ont été appliquées à une étude de cas sur la commune de Dieulouard où trois stratégies de gestion des risques liés aux inondations sont comparées (respect des prescriptions du plan de prévention des risques d’inondations pour la construction de tout nouveau bâtiment, réduction du niveau de l’aléa par la construction d’une digue, réduction de la vulnérabilité de tous les bâtiments en zone inondable par des dispositifs de protection individuelle). Les résultats permettent d’illustrer l’opérationnalité de la méthodologie de dégager des perspectives de recherche / Natural hazard risk management is a major strategic challenge for territorial authorities because of the potential adverse effects on their development that arise from the occurrence of such a kind of risks. With a view to sustainably managing these risks, the development of multicriteria decision-support methods and tools to evaluate the sustainability of risk management strategies is an interesting and topical research subject. The main underlying challenges of sustainability assessment are to define a theoretical framework that will enable assessing the sustainability, and to take into account inherent uncertainties that could derive from various sources (input data, methodological choices, dynamics of the context, etc.), and that could potentially influence the relevance of assessment results. Hence, there is a need to develop a methodology for handling uncertainties in the decision-making process in order to provide decision-makers with the most relevant results. The present research introduces an overall decision-support methodology for assessing the sustainability of risk management strategies that relies on the concept of sustainable development and includes a set of criteria and indicators for reporting on the technical, economic, societal, environmental as well as institutional outcomes of the strategies. Data uncertainties are quantified using probabilistic (Monte Carlo simulations) or possibilistic (possibility theory) approach, and are propagated along the evaluation process through interval arithmetic operations. Beyond that, a computational tool was designed to simulate, in a deterministic or uncertain way, various types of flood damages at a municipality scale. These contributions were applied to a case study regarding flood risk management in Dieulouard, which consists of comparing three management strategies (respecting constructive constraints for new buildings in hazard prone areas fixed by the flood risks prevention plan, constructing a dyke as a collective defence infrastructure, implementing individual protective measures for all buildings in hazard prone areas). This application demonstrates the practicality of the methodology, and highlights prospects for future works
|
30 |
Contribution à la réduction des pertes d'informations dans l'industrie du boisJover, Jeremy 13 December 2013 (has links) (PDF)
La conservation des informations dans les industries dont le processus de transformation est divergent a toujours induit d'importantes contraintes, et en particulier dans l'industrie du bois. Les solutions de traçabilité existant à l'heure actuelle ne permettent pas de conserver ces informations tout au long du cycle de vie du produit bois. L'objectif de cette thèse est de montrer la faisabilité de deux concepts contribuant à la conservation de l'information : le paradigme de matière communicante et le paradigme de Virtual Manufacturing. Avec le premier, il est possible de conserver les informations relatives à l'origine du produit par l'intermédiaire d'un marquage chimique appliqué à l'ensemble de la matière, lequel marquage sera identifié par Résonance Quadrupolaire Nucléaire. Dans le deuxième paradigme nous anticipons l'évaluation des caractéristiques des produits finaux en numérisant la matière et en virtualisant les opérations de transformation. Grâce à cela, il est possible de déterminer les caractéristiques des produits réels en prenant en compte l'imperfection des données et des décisions.
|
Page generated in 0.0772 seconds