Spelling suggestions: "subject:"then barn model"" "subject:"them barn model""
1 |
O efeito do material concreto e do modelo de barras no processo de aprendizagem significativa do conteúdo curricular de frações pelos alunos de 7º ano do ensino fundamentalGois, Renata Cláudia 17 October 2014 (has links)
Made available in DSpace on 2016-06-02T20:02:57Z (GMT). No. of bitstreams: 1
6458.pdf: 5523001 bytes, checksum: 13a03e09a64c7737467c2e1eee8e86bc (MD5)
Previous issue date: 2014-10-17 / The dissertation presents a proposal for teaching the content of fractions to a 7th grade classroom of basic education, based on a concrete didactical material, Fraction Case , and the Bar Model inspired in Singapore Mathematics, focused on the conceptual understanding along with basic operation skills. The motivation to this work was the recognition of great difficulty in learning with understanding of rational numbers, shown by the students of basic education across the grades. The learning of rational numbers is of fundamental importance to the accomplishment of the mathematics curriculum of basic education. We adopted the Fraction Case and the Bar Model because they actually offer the possibility of visualizing concrete representation of ideas that underline the subject of fractions. The proposed activities were inspired by the didactical ideas and activities in Baldin & Malagutti (2006), and they aim at the understanding of the concept of equivalent fractions together with the basic operations of addition, subtraction, multiplication and division of fractions, starting from the perspective of the part-whole relationship. We bring out the outcome resulted from the application of activities in three classrooms of 7th grade students of a private school of city of Bauru. / Apresentamos neste trabalho uma proposta de ensino do conteúdo de frações para uma turma de 7º ano, baseada na utilização de um material concreto intitulado Estojo das frações e do Modelo de Barras da Matemática de Singapura, e centrada na consolidação dos conceitos e das operações básicas. A realização deste trabalho foi motivada por uma constatação da enorme dificuldade de aprendizagem e compreensão dos números racionais apresentada por alunos de diversas séries do ensino fundamental. A aprendizagem dos números racionais é de fundamental importância para o desenvolvimento do conteúdo curricular da matemática do ensino fundamental. O Estojo de frações e o Modelo de Barras foram utilizados, pois oferecem a possibilidade de visualizar concretamente os conceitos relacionados ao tema de frações. As atividades propostas foram baseadas nas ideias didáticas e atividades do material de Baldin e Malagutti (2006), e buscam a compreensão do significado de frações equivalentes e das operações de adição, subtração, multiplicação e divisão de frações a partir do significado parte-todo. Trazemos também os resultados obtidos a partir da aplicação dessa proposta com três turmas de 7º ano de uma escola particular de Bauru.
|
2 |
Spojitý komorový nosník přes údolí / Continuous box girder bridge over the valleyHaluška, Ľuboš January 2020 (has links)
The aim of this Diploma thesis is focused on a design of the road bridge between Brodzany and Partizanske municipality, spaned the Valley. The design is processed in three preliminary designs. Selected variant is a continuos girder box with inclined walls, post-tensioned by bonded cables. Structural analysis includes the influences of construction by TDA method. The sctructure is assessed for temporary and permanent states. Design and check were carried out according to EC.
|
3 |
Är blockmodellen en modell att räkna med? : En intervjustudie om grundlärares erfarenheter av blockmodellen i matematikundervisningen / Is the bar model a model to count on ? : An interview study on primary teachers' experiences of the bar model in mathematics teachingHenning, Elsa January 2023 (has links)
En utgångspunkt för denna studie har varit att flera svenska elever har svårigheter att lösa matematiska textuppgifter. I ett försök att utveckla elevers förmågor att lösa matematiska textuppgifter har Singaporemetoden blivit allt mer populär. I Singaporemetoden används blockmodellen för att visualisera textuppgifter. Syftet med följande uppsats är att, utifrån ett sociokulturellt perspektiv, synliggöra hur fem lärare uppfattar att blockmodellen kan stötta elever i att utveckla problemlösningsförmågan när de löser textuppgifter. Uppsatsen syftar även till att synliggöra vilka erfarenheter lärarna har av att arbeta med blockmodellen i matematikundervisningen för årskurserna 1–6. Studien utgår från en kvalitativ metod där syftet besvaras genom fem enskilda semistrukturerade intervjuer med grundlärare som undervisar utifrån blockmodellen i matematikämnet. Studien har utgångspunkt i Vygotskijs sociokulturella teori och har inspirerats av en tematisk metodanalys. Resultatet visar att lärare uppfattar att det finns såväl fördelar som nackdelar med att använda blockmodellen i matematikundervisningen. Lärarna uppfattar att blockmodellen främst är stöttande genom att modellen strukturerar textuppgifter och stödjer elever och lärare att ta sig an textuppgifter. Med stöd av blockmodellen visualiseras dessutom matematiska områden och elever ges möjlighet att utveckla matematisk förståelse. Modellen kan även hjälpa lärare att skapa samtalssituationer för att låta elever utvecklas i den proximala utvecklingszonen. I samtalen får elever möjlighet att utveckla problemlösnings-, begrepps-, resonemangs- och kommunikationsförmåga. Resultatet visar även att främsta utmaningen är att modellen innehåller många steg som kräver att rita och skriva vilket inte passar för alla elever. Blockmodellen ger dessutom upphov till utmaningar när det gäller att differentiera undervisningen, eftersom arbetet oftast sker gemensamt med uppgifter på en specifik svårighetsgrad. Slutsatsen är att blockmodellen kan stötta elever i att utveckla problemlösningsförmågan i textuppgifter i kombination med lärarens kompetens. / The premise for this study has been that swedish upper primary- and lower secondary pupils have been shown to have difficulties in solving textual tasks in mathematics. In an attempt to develop pupils’ abilities in solving these textual tasks, the Singapore model has become increasingly popular. The Singapore model utilizes what is known as the bar model, which is used to visualize the text within these tasks. The purpose of this study is to highlight how five teachers perceive that the bar model can support pupils in developing problem-solving skills in textual tasks, from a socio-cultural perspective. The study also aims to highlight the experiences the teachers have gained from working with the bar model in mathematics teaching for grades 1-6. The study's purpose has been answered through five individual, qualitative and semi-structured interviews, with primary teachers who teach mathematics with the support of the the bar model. The study uses Vygotskij’s sociocultural theory and has been further inspired by a thematic method analysis to present and understand the results. The results show that teachers perceive both advantages and disadvantages in using the bar model in mathematics teaching. The teachers expressed that the bar model is primarily supportive in that the model structures textual tasks and supports pupils and teachers when approaching textual tasks. With the support of the bar model, abstract areas are also visualized and the pupils gain an increased mathematical understanding. The model can also contribute to creating conversational situations in order for pupils to develop in regards to the proximal development zone. In these conversations, pupils are given the opportunity to develop problem-solving, conceptual, reasoning and communicational skills. The results also show that the main challenge is that the model contains many elements that require drawing and writing, which are not suitable for all pupils. The bar model also gives rise to challenges in regard to differentiating the teaching, since the work usually takes place jointly with tasks at a specific degree of difficulty. The conclusion is that the bar model can support pupils in developing problem-solving skills in textual tasks in combination with teacher competence.
|
4 |
"Vi ska använda blockmodellen!" Vad innebär det? : En intervjustudie om lärares undervisning med blockmodellen på mellanstadietJoel, Wallgren January 2024 (has links)
Syftet med studien är att synliggöra lärares erfarenheter av undervisningsutformning när de lär ut problemlösning genom blockmodellen på mellanstadiet. Tidigare forskning har visat att blockmodellen är en framgångsrik problemlösningsmetod med både för- och nackdelar. Studien anses relevant då det inte finns mycket forskning om blockmodellen i svenska sammanhang. För att samla in data användes individuella semistrukturerade intervjuer och materialet analyserades genom en tematisk analys. Fem lärare som är verksamma på mellanstadiet intervjuades med fokus på vilka hinder och anpassningar de erfarit i sin undervisning med blockmodellen. Studiens teoretiska utgångspunkt är sociokulturell teori med fokus på hur elever tar till sig kulturella redskap. Resultatet visar fyra teman som kunde identifieras i lärarnas utsagor. I resultatets två första teman hanteras hinder som lärarna beskriver i samband med problemlösningsundervisning med blockmodellen. I resultatets två sista teman hanteras anpassningar som lärarna beskriver i samband med problemlösningsundervisning med blockmodellen. Samtliga lärare har en positiv inställning till blockmodellen som problemlösningsmetod men de är överens om flera utmaningar som behöver hanteras när undervisningen med metoden utformas. / The purpose of this study is to make teachers’ experiences of instruction design when teaching problem solving with the bar model in middle school visible. Previous research has shown that the bar model is a successful method for mathematical problem solving with both pros and cons. The study is considered relevant since there has not been much research conducted on the bar model in Sweden. Individual semi-structured interviews were conducted in order to collect data which later was analysed through a thematic analysis. Five active middle school teachers were interviewed with focus on the obstacles they have experienced and the adaptations they have implemented while teaching with the bar model. The theoretical framework used in this study is sociocultural theory with focus directed at how pupils assimilate cultural tools. The result shows four themes that could be identified from the teachers’ responses. The teachers’ descriptions of obstacles connected to teaching using the bar model are compiled in the first two themes. In the two following themes teachers’ descriptions of adaptations are compiled. All the teachers share a positive attitude towards using the bar model when teaching mathematical problem solving. They are however in agreement about several challenges that needs to be handled when designing instruction for problem solving with the bar model.
|
5 |
Blockmodellen - Utmaningar och möjligheter med att arbeta med blockmodellen : En intervjustudie om hur lärare arbetar med blockmodellen i grundskolan / The bar model - Challenges and Opportunities of Working with the Bar Model : An Interview Study on how teachers´ work with the Bar Model in Elementary SchoolTällberg, Emma January 2024 (has links)
Blockmodellen är en matematisk modell som ger visuellt stöd vid textuppgifter. Den har fått stor spridning i Singapore. Modellen har visat sig skapa goda resultat för elevers matematikkunskaper. Syftet med studien är att ta reda på vilka utmaningar och möjligheter som lärare kan stöta på när de arbetar med blockmodellen, men även hur detta arbete utformas. Detta gjordes genom semistrukturerade intervjuer, där svenska lärare i grundskolan intervjuades om deras erfarenheter. Totalt deltog tio lärare, där alla undervisade om blockmodellen i matematik på mellanstadiet. Analysverktygen som användes var en tematisk analys. Med hjälp av CPA-teorin och scaffolding skapades en infallsvinkel på studien. CPA-teorin utgår från att symboler skapar representationer inom exempelvis problemlösning. Resultatet visade att pedagogerna i den svenska skolan inte ser några större utmaningar med blockmodellen samt att det är ett bra verktyg för alla elever, speciellt för elever med lässvårigheter. Lärarna upplevde att det är en gynnsam metod för elever att lära sig tidigt i grundskolan, för att underlätta elevernas vidare matematikutveckling. Resultatet visade också att lärarna anser att man bör arbeta kollegialt med blockmodellen, både att eleverna arbetar tillsammans, att läraren stöttar eleverna och att lärarna själva arbetar kollegialt med kunniga kollegor. / The Bar Model is a mathematical method that gives visual support. It is spread across Singapore. The model has been shown to produce positive results in student’s mathematical skills. The purpose of this study is to explore the challenges and opportunities that teachers may encounter when working with The Bar Model, but also as how this work is designed. This was done through semi-structured interviews, where Swedish elementary school teachers were interviewed about their experiences. A total of ten teachers participated, all of whom teached according to The Bar Model in mathematics in middle school mathematics. The analytical tool used included a thematic analysis. An analytical approach was created using the CPA-theory and scaffolding. The CPA theory assumes that symbols create representations within, for example, problem solving. The results showed that the teachers in the Swedish school system didn’t perceive any major challenges with The Bar Model, and that it is an effective tool for all students, especially those with reading difficulties. The teachers found it to be a beneficial method for students to learn early in elementary school, to simplify their further mathematical development. The results also indicated that teachers believe collaborative work is important with The Bar Model, both in terms of students working together and teachers supporting students, as well as teachers collaborating with skilled colleagues.
|
6 |
Development Of Algorithms For Fault Detection In Distribution SystemsErsoi, Moustafa 01 December 2003 (has links) (PDF)
In this thesis, the possibility of detection of fault location in the cable distribution
systems by using traveling waves due to fault and circuit breaker operations is
investigated. Waveforms originated from both actions and fault steady state are
separately analyzed.
During such switching actions, high frequency variations which are absent in the
steady state conditions, take place. In order to simulate high frequency changes
properly, system elements are modeled accordingly. In other words, frequency
dependent models are introduced, and they are used in Electro-Magnetic Transients
Program (EMTP).
Since the characteristics of waveforms are different for separately analyzed
portions, different fault locating algorithms with their limitations are introduced.
|
7 |
Resolução de problemas da pré-álgebra e álgebra para fundamental II do ensino básico com auxílio do modelo de barrasQueiroz, Jonas Marques dos Santos 17 October 2014 (has links)
Made available in DSpace on 2016-06-02T20:02:57Z (GMT). No. of bitstreams: 1
6507.pdf: 2675622 bytes, checksum: 1fa2e1a89f27433883070d1a6ede575e (MD5)
Previous issue date: 2014-10-17 / The difficulties in learning and teaching of algebra can be detected in the school cycle 4 (8th and 9th grades) of the Elementary School II and throughout High School, such difficulties being present in all Brazilian schools. These difficulties arise from an institutional failure, in others words, in the transition from arithmetic to algebra, in the phase of pre-algebra which occurs at cycle 3 ( 6th and 7th grades) of the Elementary School II. When this transition is unsatisfactory this compromises the subsequent studies making the students feel not motivated in learning the content of algebra. Therefore, in this research project we planned and executed 6 (six) activities based on the methodology of Problem Solving based on the phases proposed by George Polya, along with the methodology of the Bar Model from Singapore Mathematics. The activities were carried out in seventh grade classrooms of Elementary School II of Instituto Educacional Estilo , Campinas, SP. The results of this dissertation suggests to teachers of Elementary School II didactical sequences of activities that they can use and enjoy in classroom practices, so that they can improve also their teaching and learning, contributing to the development of the students. With the objective of achieving a satisfactory transition from arithmetic to algebra, the activities were developed and based on problems solving, and then analyzed critically using the Problem Solving steps. After 6 (six) activities, we applied a diagnostic evaluation in order to analyze the results and to check if the activities contributed to a meaningful learning of algebra. The dissertation presents a theoretical study about teaching and learning algebra as well as a study on the methodologies of Problem Solving in classroom practice and Bar Model from Singapore Mathematics. / As dificuldades na aprendizagem e no ensino da álgebra podem ser constatadas no ciclo 4 (8º Ano e 9º Ano) do Ensino Fundamental II e também em todo o Ensino Médio, tais dificuldades estão presentes em todas as escolas brasileiras. Essas dificuldades são decorrentes de uma falha na introdução, ou seja, na transição da aritmética para a álgebra, a pré-álgebra que ocorre no final do ciclo 3 (6º Ano e 7º Ano) do Ensino Fundamental II, já que feita de maneira não satisfatória pode comprometer as aulas seguintes fazendo com que os alunos se sintam desmotivados a aprenderem o conteúdo de álgebra. Deste modo foram planejadas e executadas 6 (seis) atividades utilizando a metodologia de Resolução de Problemas seguindo as etapas de George Polya, juntamente com a metodologia do Modelo de Barras segundo a Filosofia da Matemática de Singapura. As atividades foram aplicadas em duas turmas do sétimo ano do Ensino Fundamental II, no colégio Instituto Educacional Estilo, Campinas, SP. O trabalho desenvolvido nesta dissertação proporciona aos professores do Ensino Fundamental II e Ensino Médio uma sequência didática, que podem utilizar e aproveitar em suas aulas de forma que possam também melhorar em suas práticas de ensino e aprendizagens, de maneira a contribuir para o desenvolvimento de seus alunos. Com o objetivo de realizar uma transição satisfatória da aritmética para álgebra, as atividades foram elaboradas e baseadas na resolução de problemas, e depois analisadas criticamente por meio das etapas de resolução. Após as 6 (seis) atividades, aplicamos uma avaliação diagnóstica de forma a analisar os resultados para verificar se as atividades contribuíram com significado para uma aprendizagem da álgebra. O trabalho apresenta um estudo teórico sobre o ensino e aprendizagem da álgebra e também apresenta um estudo sobre as metodologias desenvolvidas no trabalho, Resolução de Problemas e Modelo de Barras segundo a Filosofia da Matemática de Singapura.
|
8 |
Blockmodellen - Hur gör vi? : En designstudie om hur vi kan utveckla vår undervisning med blockmodellen för att eleverna ska kunna förstå och tillämpa metoden / Bar model - How do we do? : A design study about how we can develop our teaching wuth the bar model in order for the pupils to understand and apply the methodHällstrand, Bea January 2024 (has links)
Blockmodellen är en metod från Singapore som används inom problemlösning i matematiken. Det saknas svensk forskning på hur den fungerar i den svenska skolan trots att många skolor har läromedel och förutsättningar att använda metoden. Syftet med studien är att undersöka vad som bidrar till att elever i årskurs 6 förstår och kan använda blockmodellen och hur den kan bidra till deras problemlösningsförmåga utifrån planerade lektionstillfällen. Genom en designcykel skedde två lektionstillfällen, och med hjälp av inspelning av lektionerna kunde avgörande medierande handlingar identifieras utifrån Vygotskys medierande triangel. En deduktiv analys användes för att granska elevernas frågor och kommentarer i det inspelade materialet och utifrån det kunde elevernas mest avgörande handlingar presenteras. Eleverna visade sig förstå blockmodellen efter genomgångar om hur blocken ritas och med hjälp av en framtagen arbetsgång som fungerade som guide till en början. Eleverna visade även att algebraiska ekvationer var enklare att lösa med hjälp av blockmodellen, tack vare blockmodellens visuella framställning. När eleverna vet hur de ska rita och korrekt representera blocken i blockmodellen, är det en metod de kan tillämpa i sin problemlösning. / The bar model comes from Singapore and is used in word problems in mathematics. Swedish research on how the model works is missing even though many schools have the books and the conditions to use the method. The purpose of this study is to examine what it is that contributes to the understanding and usage of the method from pupils in year 6, and how it contributes to their problem-solving ability by planned lessons. Through a design cycle there were two lessons and with help from recording the lessons, crucial mediating actions could be found from the mediating triangle by Vygotsky. A deductive analysis was used to review the questions and comments from the recorded material and from that, the most crucial mediating actions could be presented. The pupils understood the bar model after briefings on how the bars should be drawn and with the help from a provided guide. The pupils also showed that algebraic equations were easier to solve with the bar model, thanks to its visual production. When the pupils know how to draw and correctly represent the bars in the bar model, they can apply the method in their problemsolving.
|
9 |
Předpjatý most číslo 202 na rychlostní komunikaci R2 na Slovensku / Prestressed bridge No. 202 on the expressway R2 in SlovakiaJanek, Tomáš January 2015 (has links)
My diploma thesis deals with design of the bridge number 202 on expressway in Slovakia. The bridge leads across the road number I50 (between Trenčín and Bánovce nad Bebravou) and railway number 130 (between Trenčín and Chynorany). For each course there is a separate super-structure. Only left super-structure is considered for the work. The box girder with four spans is chosen from three variations. This bridge is designed according to limit states, construction´s influence on design is taking into consideration. Structural model of construction is made as a spatial bar model. Structural analysis, well arranged drawings and visualization are elaborated in this thesis too.
|
10 |
Návrh mostní konstrukce dálničního mostu / Design of highway bridgeLuberová, Lucie January 2017 (has links)
The subject of this bachelo r’s thesis is the design a new supporting bridge construction in Prešovský kraj, district Levoča the territory of Slovak Republic. This object is located on the highway D 26,5/120, at kilometer 13,499 795 and communication of third class – 131-00 bridges. The objective is the design of a perpendicular four-span construction, which is proposed in three variants. The first variant is a chamber girder with inclined walls from post-tensioned concrete height 2,480 m. The second variant is composed of two beamed cross-section and the third variant is composed of one beamed cross-section. For detailed assessment the first variant was chosen with a length of bridging of 166,000 m. The calculation of load effects is done by software Scia Engineer and compared with a manual calculation according to current standards. This bridge is designed according to limit states, construction´s influence on design is taking into consideration. Structural analysis, well arranged drawings and visualization are elaborated in this thesis too.
|
Page generated in 0.0923 seconds