• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 32
  • 27
  • 15
  • 12
  • 10
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Time-based oversampled analog-to-digital converters in nano-scale integrated circuits

Jung, Woo Young 30 March 2015 (has links)
In this research, a time-based oversampling delta-sigma (ΔΣ) ADC architecture is introduced. This system uses time, rather than voltage or current, as the analog variable for its quantizer, and the noise shaping process is realized by modulating the width of a variable-width digital “pulse.” The ΔΣ loop integrator, the quantizer and digital-to-analog converter (DAC) are all time-based circuits and are implemented using digital gates only. Hence, no amplifier or voltage-based circuit is required. The proposed architecture not only offers a viable for nano-scale ‘digital’ IC technologies, but also enables improved circuit performance compared to the state-of-the-art. This is in contrast to conventional voltage-based analog circuit design, whose performance decreases with scaling due to increasingly higher voltage uncertainty due to supply voltage. The proposed architecture allows all digital implementation after the Voltage to Time Converter (VTC) and merged multi-bit quantizer/DAC blocks by taking advantage of delay lines reusable in both quantization and DAC operation. The novelty of this architecture is digital pulse width processing to implement the ΔΣ modulation. It is realized with small area and potentially can take advantage from the process scaling. A 3-bit prototype of this ADC in 0.18 μm CMOS process is implemented, tested, and presented. With an OSR of 36 and a bandwidth of 2 MHz, it achieves a SNDR of 34.6 dB while consuming 1.5 mA from a 1.8 V supply. The core occupies an area of 0.0275 mm² (110μm × 250μm = 0.0275 mm²). The second generation of the architecture was fabricated in IBM 45 nm SOI process. The oversampling frequency of this system is 705 MHz and oversampling ratio of 64. The expected performance is 7-bit effective resolution for a 5.5 MHz bandwidth while consuming 8mW of power and occupying a core area of less than 0.02 mm² (160μm × 120μm = 0.0192 mm²). / text
12

[en] TIME TO DIGITAL CONVERTER / [pt] CONVERSOR TEMPO-DIGITAL

ANA LUCIA CAPECHI DE PINHO 08 November 2005 (has links)
[pt] É apresentado um projeto para desenvolvimento de um conversor tempo-digital. O projeto baseia-se no uso de um oscilador como clock de referência, acoplado a uma linha de retardo composta por células de retardo discretas. O retardo total da linha é igual ao período do oscilador, de modo que a cada ciclo apenas um pulso se propaga através da linha. A medida de intervalos de tempo é composta pelo registro da contagem do número de pulsos do oscilador durante o intervalo, mas uma estimativa fina obtida a partir da posição do pulso na linha de retardo no momento de incidência dos sinais delimitadores do intervalo medido. Um estudo detalhado da linha de retardo é mostrado, indicando sua aplicabilidade para a tarefa em questão. Deste estudo fica clara a necessidade de se prever um circuito de acionamento (driver) que realize a interface entre a linha de retardo e os circuitos digitais. Este drive é projetado e testado. Simulações do circuito completo (oscilador, linha reta de retardo, drivers, registrador, codificador e contador) são feitas, demostrando a viabilidade do projeto. Para a implementação do conversor, foram utilizadas uma placa de circuito impresso com quatro camadas e uma interface de aquisição de dados. / [en] It is present a project to develop a Time to Digital Converter. Project is based on use of a oscillator as a clock coupled to a delay line compound by delay cells. The total delay line is equal to the period of oscillator, such for each eycle only a pulse cross the line. Measure of these intervals of time is compound by recording the numbers of oscillators pulses during these intervals, added to a fine estimation from the interval. A detailed study of delay line is showed, indicating its is applicable. It is already important to project a driver that realizes the interface between delay line and the others digital circuits. This driver is projected and tested. Complete circuit is simulated, (oscillator, delay line, register, encoder and counter), showing that project is applicable. A printed board crcuit with four layers and a interface for processing data were developed.
13

An integrated CMOS high precision time-to-digital converter based on stabilised three-stage delay line interpolation

Mäntyniemi, A. (Antti) 23 November 2004 (has links)
Abstract This thesis describes the development of a high precision time-to-digital converter (TDC) in which the conversion is based on a counter and three-stage stabilised delay line interpolation developed in this work. The biggest design challenges in the design of a TDC are related to the fact that the arrival moment of the hit signals (start and stop) is unknown and asynchronous with respect to the reference clock edges. Yet, the time interval measurement system must provide an immediate and unambiguous measurement result over the full dynamic range. It must be made sure that the readings from the counter and the interpolators are always consistent with very high probability. Therefore, the operation of the counter is controlled with a synchronising logic that is in turn controlled with the interpolation result. Another synchronising logic makes it possible to synchronise the timing signals with multiphase time-interleaved clock signals as if the synchronising was done with a GHz-level clock, and enables multi-stage interpolation. Multi-stage interpolation reduces the number of delay cells and registers needed. The delay line interpolators are stabilised with nested delay-locked loops, which leads to good stability and makes it possible to improve single-shot precision with a single look-up table containing the integral nonlinearities of the interpolators measured at the room temperature. A multi-channel prototype TDC was fabricated in a 0.6 μm digital CMOS process. The prototype reaches state-of-the-art rms single-shot precision of better than 20 ps and low power consumption of 50 mW as an integrated TDC.
14

Návrh injekcí zavěšeného kruhového oscilátoru pro aplikaci v systémech LIDAR přímo měřících čas průletu / Injection locked ring oscillator design for application in Direct Time of Flight LIDAR

Fránek, Jakub January 2021 (has links)
Diplomová práce přibližuje systémy LIDAR přímo měřící čas průletu a časově digitální převodníky určené k použití v těchto systémech. Představuje problematiku distribuce hodinových signálů napříč soubory časově digitálních převodníků v LIDAR systémech a věnuje se jednomu z nových řešení této problematiky, které je založené na injekcí zavěšených oscilátorech. Technika injekčního zavěšení oscilátorů je důkladně matematicky popsána. V programu Matlab byl vytvořen simulační model injekcí zavěšeného kruhového oscilátoru, který potvrzuje správnost uvedených analytických predikcí. Ve výrobní technologii ONK65 byl navržen injekcí zavěšený kruhový oscilátor stabilizovaný pomocí smyčky závěsu zpoždění, určený pro implementaci časově digitálního převodníku pro systém LIDAR. Navržený injekcí zavěšený kruhový oscilátor byl verifikován počítačovými simulacemi zohledňujícími vliv procesních, napěťových i teplotních variací. Oscilátor poskytuje specifikované časové rozlišení 50 pikosekund a dosahuje dvakrát nižší hodnoty fázového neklidu než ekvivalentní volnoběžný oscilátor v dané technologii.
15

High-Speed Time-Difference Circuits

Li, Shuo 01 January 2013 (has links) (PDF)
This thesis presents time difference (TD) circuits that are important for measuring fluorescence lifetime, building LIDAR systems, and optimizing digital systems. The contribution of this thesis is to present a systematic organization of TD circuits and to present novel designs for digital-to-time conversion (DTC) and time-to-digital conversion (TDC). Four basic time difference circuits are presented: TD adder, arbiter, time-difference MUX, and time-difference memory. Specifications, symbols, and multiple circuit implementations are presented for each block. Then the basic blocks are combined to form two compound blocks: DTC and TDC. Novel designs are presented for both blocks along with detailed simulation results. The DTC was fabricated in TSMC’s 0.35um high-voltage process. A printed circuit board was designed to interface the DTC chip to a computer and test instruments. The DTC demonstrated 80ps resolution.
16

Investigations of time-interpolated single-slope analog-to-digital converters for CMOS image sensors

Levski, Deyan January 2018 (has links)
This thesis presents a study on solutions to high-speed analog-to-digital conversion in CMOS image sensors using time-interpolation methods. Data conversion is one of the few remaining speed bottlenecks in conventional 2D imagers. At the same time, as pixel dark current continues to improve, the resolution requirements on imaging data converters impose very high system-level design challenges. The focus of the presented investigations here is to shed light on methods in Time-to-Digital Converter interpolation of single-slope ADCs. By using high-factor time-interpolation, the resolution of single-slope converters can be increased without sacrificing conversion time or power. This work emphasizes on solutions for improvement of multiphase clock interpolation schemes, following an all-digital design paradigm. Presented is a digital calibration scheme which allows a complete elimination of analog clock generation blocks, such as PLL or DLL in Flash TDC-interpolated single-slope converters. To match the multiphase clocks in time-interpolated single-slope ADCs, the latter are generated by a conventional open-loop delay line. In order to correct the process voltage and temperature drift of the delay line, a digital backend calibration has been developed. It is also executed online, in-column, and at the end of each sample conversion. The introduced concept has been tested in silicon, and has showed promising results for its introduction in practical mass-production scenarios. Methods for reference voltage generation in single-slope ADCs have also been looked at. The origins of error and noise phenomenona, which occur during both the discrete and continuous-time conversion phases in a single-slope ADC have been mathematically formalized. A method for practical measurement of noise on the ramp reference voltage has also been presented. Multiphase clock interpolation schemes are difficult for implementation when high interpolation factors are used, due to their quadratic clock phase growth with resolution. To allow high interpolation factors a time-domain binary search concept with error calibration has been introduced. Although the study being conceptual, it shows promising results for highly efficient implementations, if a solution to stable column-level unit delays can be found. The latter is listed as a matter of future investigations.
17

Capteur d'images événementiel, asynchrone à échantillonnage non-uniforme / Asynchronous Event-driven Image Sensor

Darwish, Amani 27 June 2016 (has links)
Face aux défis actuels liés à la conception de capteurs d'images à forte résolution comme la limitation de la consommation électrique, l'augmentation du flux de données ainsi que le traitement de données associé, on propose, à travers cette thèse, un capteur d'image novateur asynchrone à échantillonnage non uniforme.Ce capteur d’images asynchrone est basé sur une matrice de pixels événementiels qui intègrent un échantillonnage non uniforme par traversée de niveaux. Contrairement aux imageurs conventionnels, où les pixels sont lus systématiquement lors de chaque trame, les pixels événementiels proposés sont consultés que lorsqu’ils contiennent une information pertinente. Cela induit un flux de données réduit et dépendant de l’image.Pour compléter la chaîne de traitement des pixels, on présente également une architecture numérique de lecture dédiée conçue en utilisant de la logique asynchrone et destinée à contrôler et à gérer le flux de données des pixels événementiels. Ce circuit de lecture numérique permet de surmonter les difficultés classiques rencontrées lors de la gestion des demandes simultanées des pixels événementiels sans dégrader la résolution et le facteur de remplissage du capteur d’images. En outre, le circuit de lecture proposé permet de réduire considérablement les redondances spatiales dans une image ce qui diminue encore le flux de données.Enfin, en combinant l'aspect échantillonnage par traversée de niveau et la technique de lecture proposée, on a pu remplacer la conversion analogique numérique classique de la chaîne de traitement des pixels par une conversion temps-numérique (Time-to-Digital Conversion). En d'autres termes, l'information du pixel est codée par le temps. Il en résulte une diminution accrue de la consommation électrique du système de vision, le convertisseur analogique-numérique étant un des composants les plus consommant du système de lecture des capteurs d'images conventionnels / In order to overcome the challenges associated with the design of high resolution image sensors, we propose, through this thesis, an innovative asynchronous event-driven image sensor based on non-uniform sampling. The proposed image sensor aims the reduction of the data flow and its associated data processing by limiting the activity of our image sensor to the new captured information.The proposed asynchronous image sensor is based on an event-driven pixels that incorporate a non-uniform sampling crossing levels. Unlike conventional imagers, where the pixels are read systematically at each frame, the proposed event-driven pixels are only read when they hold new and relevant information. This induces a reduced and scene dependent data flow.In this thesis, we introduce a complete pixel reading sequence. Beside the event-driven pixel, the proposed reading system is designed using asynchronous logic and adapted to control and manage the flow of data from event pixels. This digital reading system overcomes the traditional difficulties encountered in the management of simultaneous requests for event pixels without degrading the resolution and fill factor of the image sensor. In addition, the proposed reading circuit significantly reduces the spatial redundancy in an image which further reduces the data flow.Finally, by combining the aspect of level crossing sampling and the proposed reading technique, we replaced the conventional analog to digital conversion of the pixel processing chain by a time-to-digital Conversion (TDC). In other words, the pixel information is coded by time. This results in an increased reduction in power consumption of the vision system, the analog-digital converter being one of the most consuming reading system of conventional image sensors components
18

High precision time-to-digital converters for applications requiring a wide measurement range

Keränen, P. (Pekka) 05 April 2016 (has links)
Abstract The aim of this work was to develop time-to-digital converters(TDC) with a wide measurement range of several hundred microseconds and with a measurement precision of a few picoseconds. Because of these requirements, the focus of this work was mainly on TDC architectures based on the Nutt interpolation method, which has several advantages when a long measurement range is a requirement. Compared to conventional data converters the characteristics of a Nutt TDC differ significantly when, for example, quantization errors and linearity errors are considered. In this thesis, the operating principle of a Nutt TDC is analysed and, in particular, the effects of reference clock instabilities are studied giving new insight how the different phase noise processes can be reliably translated into time interval jitter, and how these affect the measurement precision when very long time intervals are measured. Furthermore, these analytical results are confirmed by measurements conducted with a long-range TDC designed as part of this work. Two long-range TDCs have been designed, each based on different interpolator architectures. The first TDC utilises discrete component time-to-voltage converters(TVC) as interpolators. Other key functionality is implemented on an FPGA. The interpolators use Miller integrators to improve the linearity and the single-shot precision of the converter. The TDC has a nominal measurement range of 84ms and it achieves a single-shot precision of 2ps for time intervals shorter than 2ms, after which the precision starts to deteriorate due to the phase noise of the reference clock. In addition to the discrete TDC, an integrated long-range CMOS TDC has been designed with 0.35μm technology. Instead of TVCs, this TDC features cyclic/algorithmic interpolators, which are based on switched-frequency ring oscillators(SRO). The frequency switching is used as a mechanism to amplify quantization error, a key functionality required by any cyclic or a pipeline converter. The interpolators are combined with a 16-bit main counter giving a total range of 327μs. The RMS single-shot precision of the TDC is 4.2ps without any nonlinearity compensation. Furthermore, a calibration functionality implemented partially on-chip ensures that the accuracy of the TDC varies only ±2.5ps in a temperature range of -30C to 70C. Although implemented with fairly old technology, the interpolators’ effective linear range and precision represent state-of-the-art performance. / Tiivistelmä Tämän työn tavoitteena oli kehittää aika-digitaalimuuntia (TDC), joilla on laaja satojen mikrosekuntien mittausalue ja muutaman pikosekunnin kertamittaustarkkuus. Näistä vaatimuksista johtuen tässä työssä keskitytään pääasiassa Nuttin interpolointimenetelmään perustuviin TDC-arkkitehtuureihin. Verrattuna tavanomaisiin datamuuntimiin, Nutt TDC:n toiminta poikkeaa merkittävästi, kun tarkastellaan kvantisointi- ja lineaarisuusvirhettä. Tässä väitöskirjatyössä Nuttin menetelmään perustavan TDC:n toiminta analysoidaan, jonka yhteydessä tutkitaan erityisesti referenssioskillaattorin epästabiilisuuksien vaikutusta mittausepävarmuuteen. Tämän pohjalta vaihekohinan eri kohinaprosessit voidaan luotettavasti muuntaa taajuustason kohinatiheysmittauksista aika-tasossa kuvattavaksi aikavälijitteriksi. Nämä teoreettiset tulokset ovat varmistettu yhdellä osana tätä työtä suunnitellulla pitkän kantaman TDC:llä. Teoreettisen tarkastelun lisäksi kaksi pitkän kantaman TDC:tä on suunniteltu, toteutettu ja testattu. Ensimmäinen näistä perustuu erilliskomponenteilla toteutettuun aika-jännitemuunnokseen (TVC) pohjautuvaan interpolointimenetelmään. Analogisten interpolaattoreiden ohella muu olennainen toiminnallisuus toteutettiin FPGA:lle. Interpolaattorit käyttävät Miller-integraattoreita lineaarisuuden ja kertamittaustarkkuuden parantamiseksi. TDC:n nimellinen mittausalue on 84ms ja sillä saavutetaan 2ps:n kertamittaustarkkuus, kun mitattava aikaväli on lyhyempi kuin 2ms, minkä jälkeen mittaustarkkuus heikkenee referenssioskillaattorin vaihekohinan vaikutuksesta. Toinen pitkän kantaman TDC perustuu 0.35μm:n CMOS teknologialla totetutettuun integroituun piiriin. Aika-jännitemuunnoksen sijasta tämä TDC perustuu sykliseen/algoritmiseen interpolointitekniikkaan, jossa taajuusmoduloitua rengasoskillaattoria(SRO) käytetään kvantisointivirheen vahvistamiseksi. Interpolaattorit ovat yhdistetty 16-bittiseen referenssioskillaattorin laskuriin, jolloin TDC:n mittausalue on noin 327μs. Tämän TDC:n RMS kertamittaustarkkuus on 4.2ps, joka saavutetaan ilman epälineaarisuuden kompensointia. Samalle piirille on lisäksi toteutettu kalibrointitoiminnallisuus, jolla varmistetaan TDC:n hyvä mittaustarkkuus kaikissa olosuhteissa. Mittaustarkkuus poikkeaa maksimissaan vain ±2.5ps, kun lämpötila on välillä -30C-70C. Vaikka TDC on toteutettu kohtalaisen vanhalla CMOS teknologialla, interpolaattoreiden efektiivinen lineaarinen alue ja mittaustarkkuus edustavat alansa huippua.
19

A stabilized multi-channel CMOS time-to-digital converter based on a low frequency reference

Jansson, J.-P. (Jussi-Pekka) 30 October 2012 (has links)
Abstract The aim of this work was to improve the performance and usability of a digital time-to-digital converter (TDC) in CMOS technology. The characteristics of the TDC were improved especially for the needs of pulsed laser time-of-flight (TOF) distance measurement, where picosecond-level precision with a long µs-level measurement range is needed in order to approach mm-level measurement accuracy. Stability in the face of process, voltage and temperature variations, multiple measurement channels, alternative measurement modes, a high integration level, standard interfaces and simple usage were the main features for development. The measurement architecture is based on counter and timing signal interpolation on two levels. The counter counts the full reference clock cycles between the timing signals, while a new recycling delay line developed in this thesis interpolates within the reference clock cycle. This technique utilizes a short delay line several times per reference clock cycle, which minimizes the interpolation nonlinearity. The same structure also makes the use of a low, MHz-level reference frequency possible, and thus only a crystal is needed as an external oscillator component. The parallel load capacitor-scaled delay line structure acts as the second, sub-gate-delay interpolation level. The INL does not accumulate in elements connected in parallel, and the load capacitance differences enable high, ps-level resolution to be achieved. Four TDC circuits in 0.35 µm CMOS technology were designed and tested in the course of this work, of which the latest, a 7-channel TDC, is able to measure the time intervals between the start pulse and three separate stop pulses in one measurement and to resolve the pulse widths or rise times at the same time. In laser TOF distance measurement this functionality can be used when several echoes arrive at the receiver, and also to compensate for the detection threshold problem known as timing walk error. The TDC achieves 8.9 ps interpolation resolution within the cycle time of a 20 MHz reference clock using only 8 delay elements on the first interpolation level and 14 delay elements on the second. A measurement precision better than 9 ps was achieved without using result post-processing or look-up tables. This work shows that versatile, high performance TDCs can be created in standard CMOS technology. / Tiivistelmä Väitöskirjatyön tavoitteena oli parantaa CMOS-aika-digitaalimuuntimien suorituskykyä ja käytettävyyttä. Muuntimen ominaisuuksia kehitettiin erityisesti laseretäisyysmittauksen tarpeita ajatellen, missä millimetritason mittaustarkkuus laajalla mittausaluella edellyttää aika-digitaalimuuntimelta pikosekuntitason tarkkuutta mikrosekuntien mittausalueella. Stabiilius prosessiparametri-, jännite- ja lämpötilavaihteluita vastaan, useat mittauskanavat, useat mittausmoodit, korkea integraatioaste, standardoidut liitäntäväylät ja helppo käytettävyys olivat erityisesti kehityksen kohteina. Suunniteltu mittausarkkitehtuuri koostuu laskurista ja kaksitasoisesta ajoitussignaali-interpolaattorista. Laskuri laskee kokonaiset referenssikellojaksot ajoitussignaalien välillä ja työssä kehitetty referenssiä kierrättävä viivelinjarakenne rekistereineen interpoloi ajoitussignaalien paikat referenssikellojaksojen sisältä. Referenssinkierrätystekniikka hyödyntää lyhyttä viivelinjaa useampaan kertaan kellojakson aikana, mikä minimoi epälineaarisuuden interpoloinnissa. Sama rakenne mahdollistaa myös MHz-tason referenssitaajuuden, jolloin matalataajuista kidettä voidaan käyttää referenssilähteenä. Toinen interpolointitaso koostuu rinnakkaisista kapasitanssiskaalatuista viive-elementeistä, mitkä mahdollistavat alle porttiviiveen mittausresoluution. Rinnakkaisessa rakenteessa elementtien epälineaarisuudet eivät summaudu, mikä mahdollistaa pikosekuntitason mittaustarkkuuden. Väitöskirjatyössä suunniteltiin ja toteutettiin neljä aikavälinmittauspiiriä käyttäen 0,35 µm CMOS-teknologiaa, joista viimeisin, 7-kanavainen muunnin kykenee mittaamaan aikavälin useampaan pulssiin yhdellä kertaa sekä voi selvittää samalla pulssien leveydet tai nousuajat. Laseretäisyysmittauksessa monikanavaisuutta voidaan käyttää kun useita kaikuja lähetetystä pulssista saapuu vastaanottimeen sekä kompensoimaan mittauksessa esiintyviä muita virhelähteitä. Käytettäessä 20 MHz:n kidettä referenssilähteenä muunnin saavuttaa alle 9 ps:n interpolointiresoluution ja tarkkuuden ilman epälineaarisuudenkorjaustaulukoita. Työ osoittaa, että edullisella CMOS-teknologialla voidaan toteuttaa monipuolinen ja erittäin suorituskykyinen aika-digitaalimuunnin.
20

Fast Clock Synchronization for Large-Scale MEMS Ultrasonic Transducer Arrays

Karlsson, Karl-Johan January 2022 (has links)
In many systems today sensors or transmitters need to be read or controlled simultaneously. This thesis investigates a new architecture used for deskewing clock signals between multiple separated parts of a signal transmission system. The original application is a multi-channel MEMS transceiver system utilizing beamforming, split into two separate modules. The presented architecture has been developed after evaluating multiple alternative systems. Special focus has been on the locking time of the full system. Furthermore, the scalability for use in implementations with requirements for interconnection delays, as well as input frequency and final timing skew. The full system consists of two parts, a master- and a slave-system. A proof-of-concept transistor implementation has been done in a 180 nm CMOS process. It has been simulated to verify the functionality with varying interconnection delays, i.e., wire lengths up to 1 m. The results from the simulations show that the system works as intended with a skew less than the required 1 ns for a 10 MHz clock signal. This fulfills the requirement for the original application. Further work is required to finalize the presented system before deployment in an actual product

Page generated in 0.0584 seconds