• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 76
  • 29
  • 15
  • 15
  • 10
  • 6
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 183
  • 33
  • 31
  • 27
  • 25
  • 24
  • 22
  • 22
  • 21
  • 19
  • 18
  • 18
  • 18
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Passively-aligned Optical Transceiver on Si Bench for Light Peak Application

Shiu, Jr-I 11 July 2011 (has links)
ABSTRACT The aim of this dissertation is to fabricate an optical transceiver based on Si-bench technology for light peak application. The transceivers are composed of hybrid integration of the vertical cavity surface-emitting lasers (VCSEL), photo diodes and multi-mode fibers (MMF) on the Si optical bench using V-groove and U-groove structures. We are able to passively align VCSEL to MMF and photo diode to MMF because of the accurately-aligned characteristic of V-groove. The 45-degree-angled fibers with mirror coating are used to bend the directions of both the incoming and outgoing lights to the photodiode and the MMF. The simulations showed that the optical losses of the transceiver are less than 10 dB when the distance between VCSEL and MMF is 250£gm.The measured optical losses between transmitting module and receiving module are less than 12 dB. Key words: Light Peak¡Boptical transceiver¡BSi-bench¡Baccurately-aligned
42

A High Speed Transceiver Front-end Design with Fault Detection and Temperature Detector for FlexRay-based Automotive Communication Systems

Yeh, Tai-Hao 17 August 2011 (has links)
This thesis is composed of two parts: a high-speed transceiver front-end design with fault detection for FlexRay-based automative communication systems, and a temperature detector. In the first topic, a high-speed transceiver design with a fault detection circuit compliant with FlexRay standards V2.1 is proposed and realized on silicon. According to FlexRay physical layer standards, a LVDS-like transmitter is utilized to drive the twisted pair to generate a pair of differential signals. By contrast, a three-comparator-based receiver will recover the signals and then detect the mode of the bus. A failure detector is added at the transmitter to detect the operating current magnitude to avoid any over-current hazard. Meanwhile, a short-circuit detector is added at the receiver to detect short-circuit faults to vdd or gnd. The second topic discloses a temperature detector circuit, particularly dedicated for the reliability of any in-car system by sensing the temperature and the process at the same time. A discharging circuit composed of four PMOS transistors discharges until the output voltage is stable. It is composed of several reference voltages and comparators to determine the range of temperature and process. Eventually, by identifying the process corner and the temperature range, the reliability and safty of the car electrics will be ensured.
43

Bidirectional Transceiver Modules on the Silicon Bench using Ultra-thin Thin-film Filter and Optical Fibers

Yang, Chia-chin 13 June 2005 (has links)
The primary target of this paper is to fabricate bidirectional transceiver modules based on single mode fiber (SMF) and ultra-thin thin-film filter (TFF). Two major components, namely, SMF and ultra-thin TFF are hybrid integrated on the silicon bench using V-groove and U-groove techniques. A 1310 nm wavelength light was launched into the input SMF of the module. After passing through the filter, the light was received by the output SMF of the module. On the other hand, a 1550 nm wavelength light input to the SMF is reflected by the filter and collected by the output multimode fiber (MMF). Transceiver modules using two different fiber structures were fabricated. The first kind of the module uses standard SMF for 1310 nm light transmission. The insertion loss of the module for the 1310 nm wavelength light was 5.66 dB. In the second kind of the module lens fibers were used to replace the standard SMF. The insertion loss for the 1310 nm wavelength light was reduced to 0.98 dB. A reduction of 4.6 dB was achieved. For both modules, the insertion loss for the 1550 nm wavelength light reflected from the filter was around 0.5 dB.
44

Triplexer Transceiver Modules on the Silicon Bench using Ultra-thin Thin-film Filter and Optical Fibers

Chen, Yi-ting 23 June 2006 (has links)
The primary target of this paper is to fabricate triplexer modules based on Si-bench technology. The triplexer modules were formed by hybrid integration of single mode lensed fibers and ultra-thin thin-film filters (TFF) on silicon bench as using V-groove and U-groove techniques. The output light at 1.31 µm was launched into the input lensed fiber of the module. After passing through two filters, the light was received by the output lensed fiber of the module. The insertion loss of the module at the 1.31 µm light was 1.25 dB. On the other hand, incoming lights at 1.49µm and 1.55µm were received from the output lensed fiber. Lights at 1.49µm will pass through the first filter, and be reflected by the second filter, and eventually be collected into the second multimode fiber. The insertion loss of the module at the 1.49 µm light was 1.14 dB. The 1.55µm wavelength lights received at the lensed fiber are reflected by the first filter and collected by the first multimode fiber. The insertion loss of the module at the 1.55 µm light was 0.68 dB.
45

Development of IEEE 802.11b RF Transceiver Modules

Han, Fu-Yi 10 July 2003 (has links)
This thesis consisted of three parts. Part 1 introduced the design procedure of an RF transceiver modules for IEEE 802.11b WLAN system. It contained the selection of RF architectures, frequency planning, and the receiver link budget analysis flow. Part 2 focused on the implementation of each stage in the whole RF link. The design considerations of choosing passive elements and the parasitic effect of the evaluation board are discussed. Part 3 integrated the whole RF transceiver module and estimated the performance of this module through the link budget analysis method. Furthermore, a complete specification measurement was accomplished by using the standard test signals. The test results confirmed with the budget results, and also pass the specification of IEEE 802.11b WLAN system.
46

An ultra-wideband transmit/receive module using 10 to 35 GHz six-channel microstrip multiplexers and its applications to phased-array antenna transceiver systems

Hong, Seung Pyo 30 October 2006 (has links)
This dissertation introduces new and simple techniques for suppression of multispurious passbands, which are inherent to the conventional microstrip parallel coupleline bandpass filters. In addition, the operation of harmonic suppression is analyzed using a simple model. Special emphasis is placed on the applications of several new filter designs for microstrip diplexers and multiplexers. Compact, full-duplex beam scanning antenna transceiver systems with extremely broad bandwidth have also been developed. Recent advances in broadband monolithic microwave integrated circuit (MMIC) amplifiers make the realization of extremely broadband phased-array transceiver systems possible. The ultra-wideband phased-array transceiver systems can be used in multi-band mobile satellite communication systems and wideband radars. This dissertation presents a multi-band, compact, full-duplex, beam scanning antenna transceiver system for satellite communications and two designs of ultra-wideband, low-cost radar systems as applications of the MMIC amplifiers. In addition, a multi-frequency antenna has been developed. A single-feed triple frequency microstrip patch antenna is presented as an answer to the recent demand for multi-function systems in the wireless communications. In summary, the research presented in this dissertation covers every component required to build an ultra-wideband, full-duplex beam scanning phased-array antenna transceiver. The work done in this dissertation should have many applications in the wireless communication systems and wideband radar technologies.
47

Design and implementation of a frequency synthesizer for an IEEE 802.15.4/Zigbee transceiver

Srinivasan, Rangakrishnan 17 September 2007 (has links)
The frequency synthesizer, which performs the main role of carrier generation for the down-conversion/up-conversion operations, is a key building block in radio transceiver front-ends. The design of a synthesizer for a 2.4 GHz IEEE 802.15.4/Zigbee transceiver forms the core of this work. This thesis provides a step-by-step procedure for the design of a frequency synthesizer in a transceiver environment, from the mapping of standard-specifications to its integrated circuit implementation in a CMOS technology. The results show that careful system level planning leads to high-performance realizations of the synthesizer. A strategy of using different supply voltages to enhance the performance of each building block is discussed. A section is presented on layout and board level issues, especially for radio-frequency systems, and their effect on synthesizer performance. The synthesizer consumes 15.5 mW and meets the specifications of the 2.4 GHz IEEE 802.15.4/Zigbee standard. It is capable of 5 GHz operation with a VCO sensitivity of 135 MHz/V and a tuning range of 700 MHz. It can be seen that the adopted methodology can be used for the design of high-performance frequency synthesizers for any narrow-band wireless standard.
48

Positioning of Seafloor Transponders Using GPS and Acoustic Measurements

Jang, Jia-Pu 11 August 2009 (has links)
Observing seafloor crustal deformation is often composed of acoustic ranging and GPS positioning techniques, which involves positioning of a single seabed transponder. Generally, the positional uncertainty of the seabed transponder is evaluated in terms of the slant range residuals. In order to further verify the relative positioning accuracy between seabed transponders, this study designed and fabricated a transponder lander. Three transponders were mounted on the lander to form a triangle with sides 1.505, 1.505 and 1.160 m. In addition, a data acquisition and logging system is developed to collect the lander¡¦s attitude, including pitch, roll, heading, and accelerations in three orthogonal axes. A field experiment to verify the relative positioning accuracy between seabed transponders was carried out off the coast of Kaohsiung Harbor, Taiwan. The transponder lander was deployed on the seabed at a water depth of about 300 m. Based on the attitude data collected by the logging system, the heading, pitch and roll of the transponder lander on the seabed are 123.5 degrees, 0.63 degrees and 0.62 degrees, respectively. A vessel was sailed along predetermined paths to collect observations of GPS and acoustic slant range. Then, an optimization technique combined with ray tracing method was used to estimate the positions of three transponders. The position estimates of the three transponders form a triangle with sides 1.533, 1.518 and 1.184 m, which shows that, comparing with the true values, the relative positioning error between transponders is less than 3 cm. Furthermore, based on the estimates of the transponder positions, the heading, pitch and roll of the transponder lander are calculated as 120.45 degrees, 6.43 degrees and 2.51 degrees, respectively, which are in good agreement with that measured by the attitude logging system. The experimental and evaluation results indicate that the optimization technique along with the ray tracing method is practical for precisely estimating the transponder position.
49

An interference-cancellation receiver for multi-band and multi-standard wireless communication systems

Beck, Sungho 24 June 2011 (has links)
The dissertation presents novel methodologies to realize a multi-band and multi-standard receiver with an interference-cancellation capability. First, the receiver specifications are derived from the wireless communication standard. These specifications are then used to obtain the required amount of TX leakage cancellation by using a proposed frequency selective feedback topology with multi-band capability. The effectiveness of this technique is demonstrated by the measurement of prototype integrated circuit (IC). To make the IC operate for multi-standard, another novel technique is also proposed for a channel-selection filter. With a proposed interpolated resistor bank, the active-RC channel-selection filter has programmable gain and pseudo-continuous bandwidth, which reduce the total power consumption and silicon area of the receiver. The measured result of a prototype silicon chip shows the effectiveness of the technique. With these two topologies, a multi-band multi-standard receiver that uses low power can be realized at a cost.
50

Inductively coupled radio frequency power transmission system for wireless systems and devices /

O'Brien, Kathleen. January 2007 (has links)
Techn. University, Diss.--Dresden, 2006.

Page generated in 0.0813 seconds