• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 3
  • 1
  • Tagged with
  • 21
  • 21
  • 17
  • 15
  • 13
  • 13
  • 11
  • 11
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Equações parciais elípticas com crescimento exponencial / Elliptic partial equiations with exponential growth

Leuyacc, Yony Raúl Santaria 07 March 2014 (has links)
Neste trabalho estudamos existência, multiplicidade e não existência de soluções não triviais para o seguinte problema elíptico: { - \'DELTA\' = f(x, u), em \'OMEGA\' u = 0, sobre \'\\PARTIAL\' \'OMEGA\', onde \'OMEGA\' é um conjunto limitado de \'R POT. 2\' com fronteira suave e a função f possui crescimento exponencial. Para a existência de soluções são aplicados métodos variacionais combinados com as desigualdades de Trudinger-Moser. O resultado de não-existência é restrito ao caso de soluções radiais positivas e \'OMEGA\' = \'B IND.1\'(0). A prova usa técnicas de equações diferenciais ordinárias / In this work we study the existence, multiplicity and non-existence of non-trivial solutions to the following elliptic problem: { - \'DELTA\' u = f(x; u); in \'OMEGA\', ; u = 0; on \'\\PARTIAL\' \'OMEGA\' where \"OMEGA\' is a bounded and smooth domain in \'R POT. 2\' and f possesses exponential growth. The existence results are proved by using variational methods and the Trudinger- Moser inequalities. The non-existence result is restricted to the case of positive radial solutions and \'OMEGA\' = \'B IND. 1\'(0). The proof uses techniques of the theory of ordinary differential equations.
2

Sobre uma classe de problemas elípticos envolvendo o crescimento do tipo Trudinger-Moser

Felix, Diego Dias 30 July 2015 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-15T16:10:53Z No. of bitstreams: 1 arquivototal.pdf: 1030469 bytes, checksum: fd75dc32951ccd2147ed562db94af22a (MD5) / Made available in DSpace on 2017-08-15T16:10:53Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1030469 bytes, checksum: fd75dc32951ccd2147ed562db94af22a (MD5) Previous issue date: 2015-07-30 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work, we study a class of quasilinear elliptic problem involving nonlinearities with subcritical polynomial growth, subcritical exponential growth and critical exponential growth. Our main focus is to treat nonlinearities which do not satisfy the condition of super-quadratic of Ambrosetti-Rabinowitz. Our main tool is the Mountain Pass Theorem with the Cerami condition. / Neste trabalho, estudamos uma classe de problemas elípticos quase lineares envolvendo não linearidades com crescimento polinomial subcrítico, exponencial subcrítico e exponencial crítico. Nosso foco principal é tratar não linearidades que não satisfazem a condição de superquadraticidade de Ambrosetti-Rabinowitz. A nossa ferramenta é o Teorema do Passo da Montanha com a condição de Cerami.
3

Equações parciais elípticas com crescimento exponencial / Elliptic partial equiations with exponential growth

Yony Raúl Santaria Leuyacc 07 March 2014 (has links)
Neste trabalho estudamos existência, multiplicidade e não existência de soluções não triviais para o seguinte problema elíptico: { - \'DELTA\' = f(x, u), em \'OMEGA\' u = 0, sobre \'\\PARTIAL\' \'OMEGA\', onde \'OMEGA\' é um conjunto limitado de \'R POT. 2\' com fronteira suave e a função f possui crescimento exponencial. Para a existência de soluções são aplicados métodos variacionais combinados com as desigualdades de Trudinger-Moser. O resultado de não-existência é restrito ao caso de soluções radiais positivas e \'OMEGA\' = \'B IND.1\'(0). A prova usa técnicas de equações diferenciais ordinárias / In this work we study the existence, multiplicity and non-existence of non-trivial solutions to the following elliptic problem: { - \'DELTA\' u = f(x; u); in \'OMEGA\', ; u = 0; on \'\\PARTIAL\' \'OMEGA\' where \"OMEGA\' is a bounded and smooth domain in \'R POT. 2\' and f possesses exponential growth. The existence results are proved by using variational methods and the Trudinger- Moser inequalities. The non-existence result is restricted to the case of positive radial solutions and \'OMEGA\' = \'B IND. 1\'(0). The proof uses techniques of the theory of ordinary differential equations.
4

On Hamiltonian elliptic systems with exponential growth in dimension two / Sistemas elípticos hamiltonianos com crescimento exponencial em dimensão dois

Leuyacc, Yony Raúl Santaria 23 June 2017 (has links)
In this work we study the existence of nontrivial weak solutions for some Hamiltonian elliptic systems in dimension two, involving a potential function and nonlinearities which possess maximal growth with respect to a critical curve (hyperbola). We consider four different cases. First, we study Hamiltonian systems in bounded domains with potential function identically zero. The second case deals with systems of equations on the whole space, the potential function is bounded from below for some positive constant and satisfies some integrability conditions, while the nonlinearities involve weight functions containing a singulatity at the origin. In the third case, we consider systems with coercivity potential functions and nonlinearities with weight functions which may have singularity at the origin or decay at infinity. In the last case, we study Hamiltonian systems, where the potential can be unbounded or can vanish at infinity. To establish the existence of solutions, we use variational methods combined with Trudinger-Moser type inequalities for Lorentz-Sobolev spaces and a finite-dimensional approximation. / Neste trabalho estudamos a existência de soluções fracas não triviais para sistemas hamiltonianos do tipo elíptico, em dimensão dois, envolvendo uma função potencial e não linearidades tendo crescimento exponencial máximo com respeito a uma curva (hipérbole) crítica. Consideramos quatro casos diferentes. Primeiramente estudamos sistemas de equações em domínios limitados com potencial nulo. No segundo caso, consideramos sistemas de equações em domínio ilimitado, sendo a função potencial limitada inferiormente por alguma constante positiva e satisfazendo algumas de integrabilidade, enquanto as não linearidades contêm funções-peso tendo uma singularidade na origem. A classe seguinte envolve potenciais coercivos e não linearidades com funções peso que podem ter singularidade na origem ou decaimento no infinito. O quarto caso é dedicado ao estudo de sistemas em que o potencial pode ser ilimitado ou decair a zero no infinito. Para estabelecer a existência de soluções, utilizamos métodos variacionais combinados com desigualdades do tipo Trudinger-Moser em espaços de Lorentz-Sobolev e a técnica de aproximação em dimensão finita.
5

Existence results for some elliptic equations involving the fractional Laplacian operator and critical growth

Araújo, Yane Lísley Ramos 18 December 2015 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-14T16:13:37Z No. of bitstreams: 1 arquivototal.pdf: 1041120 bytes, checksum: 3357ded46458082b719eebe4f03879a9 (MD5) / Made available in DSpace on 2017-08-14T16:13:37Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1041120 bytes, checksum: 3357ded46458082b719eebe4f03879a9 (MD5) Previous issue date: 2015-12-18 / In this work we prove some results of existence and multiplicity of solutions for equations of the type (􀀀 ) u + V (x)u = f(x; u) in RN; where 0 < < 1, N 2 , (􀀀 ) denotes the fractional Laplacian, V : RN ! R is a continuous function that satisfy suitable conditions and f : RN R ! R is a continuous function that may have critical growth in the sense of the Trudinger-Moser inequality or in the sense of the critical Sobolev exponent. In order to obtain our results we use variational methods combined with a version of the Concentration-Compactness Principle due to Lions. / Neste trabalho provamos alguns resultados de existência e multiplicidade de soluções para equações do tipo (􀀀 ) u + V (x)u = f(x; u) em RN; onde 0 < < 1, N 2 , (􀀀 ) denota o Laplaciano fracionário, V : RN ! R é uma função contínua que satisfaz adequadas condições e f : RN R ! R é uma função cont ínua que pode ter crescimento crítico no sentido da desigualdade de Trudinger-Moser ou no sentido do expoente crítico de Sobolev. A m de obter nossos resultados usamos métodos variacionais combinados com uma versão do Princípio de Concentração- Compacidade devido à Lions.
6

Multiplicidade de soluções positivas para algumas classes de problemas elípticos em R2 com condição de Neumann

Oliveira, Elisânia Santana de 05 March 2012 (has links)
Made available in DSpace on 2015-05-15T11:46:03Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 952913 bytes, checksum: 0b170d0ebe538db0d58bb1162fc18e99 (MD5) Previous issue date: 2012-03-05 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we prove the existence and multiplicity of positive weak solutions for some classes of elliptic problems in plane involving exponential growth of the Trudinger-Moser type with Neumann boundary condition. To do this, we use the method of sub and supersolution in combination with variational methods and the maximum principle. / Nesta dissertação, provamos a existência e multiplicidade de soluções fracas positivas para algumas classes de problemas elípticos no plano envolvendo crescimento exponencial do tipo Trudinger-Moser com condição de Neumann na fronteira. Para isso, usaremos o método de sub e supersolução em combinação com métodos variacionais e o princípio do máximo.
7

Sobre Soluções de Equações Elípticas Envolvendo o N-Laplaciano e Crescimento Crítico Exponencial

Araújo, Gustavo da Silva 08 March 2013 (has links)
Made available in DSpace on 2015-05-15T11:46:12Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1062540 bytes, checksum: 59af76713b0f39a5f68815eb132bc18e (MD5) Previous issue date: 2013-03-08 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work, we study existence, multiplicity and nonexistence of positive solutions, with respect to a positive parameter , for a class of quasilinear elliptic problems in bounded domains of RN, N 2, involving the N-laplacian operator and a nonlinearity f(t) which behaves as t, for some 2 (0;N1), when t ! 0+ and has critical exponential growth of Trudinger-Moser type at +1. In order to obtain the results, we have used minimax theorems, sub and supersolution methods and a refinement of the Trudinger- Moser inequality due to P.-L. Lions. / Neste trabalho, estudamos existência, multiplicidade e não-existência de soluções positivas, com respeito a um parâmetro positivo , para uma classe de problemas elípticos quasilineares em domínios limitados de RN, N 2, envolvendo o operador N-laplaciano e uma não-linearidade f(t) que se comporta como tá, para algum 2 (0;N 1), quando t ! 0+ e possui crescimento crítico exponencial do tipo Trudinger-Moser em +1. Na obtenção dos resultados, podemos destacar a utilização de teoremas do tipo minimax, métodos de sub e supersolução e um refinamento da Desigualdade de Trudinger-Moser devido a P.-L. Lions.
8

Desigualdade de Adams em domínios ilimitados / Adams inequality in unbounded domains

Rocha, Fábio Sodré 10 August 2018 (has links)
Submitted by Liliane Ferreira (ljuvencia30@gmail.com) on 2018-09-05T10:48:04Z No. of bitstreams: 2 Dissertação - Fábio Sodré Rocha - 2018.pdf: 2598970 bytes, checksum: 6dcbeb213d900d41e0a2064ff8a20d22 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-09-05T11:22:03Z (GMT) No. of bitstreams: 2 Dissertação - Fábio Sodré Rocha - 2018.pdf: 2598970 bytes, checksum: 6dcbeb213d900d41e0a2064ff8a20d22 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-09-05T11:22:03Z (GMT). No. of bitstreams: 2 Dissertação - Fábio Sodré Rocha - 2018.pdf: 2598970 bytes, checksum: 6dcbeb213d900d41e0a2064ff8a20d22 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-08-10 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work our aim is to present an extension of the Trudinger-Moser inequality [20] in unbounded domains of Rn for Sobolev Spaces involving high order derivatives. This inequality is nowadays known as Adams-type inequality [1]. We study the techniques developed in the works due to F. Sani and B. Ruf in [23] and due to N. Lam and G. Lu in [16] which are, essentially, combinations of the Comparison Principle of Trombetti and Vazquez for polyharmonic operators and a symmetrization argument, also known as Schwarz Symmetrization. "With such techniques in hands", our aim is to reduce our problem to the radial case and, as a consequence, find an upper bound for the supremum over all functions belonging to the unit ball of Wn;mn (Rn) provided with some specific norm, as well as the sharpness of the constant that appears in Adams inequalities. / Neste trabalho temos como objetivo apresentar uma extensão da desigualdade de AdamsTrudinger-Moser [1] em domínios ilimitados de Rn para espaços de Sobolev envolvendo derivadas de ordem superior no caso crítico. Esta desigualdade é conhecida hoje como desigualdade do tipo Adams [1]. Nosso estudo é baseado nas técnicas desenvolvidas nos trabalhos devidos à F. Sani e B. Ruf em [23] e à N. Lam e G. Lu em [16], que são, essencialmente, combinações do Princípio de Comparação de Vazquez-Trombetti para operadores poliharmônicos e um argumento de simetrização, também conhecido como Simetrização de Schwarz. Munidos de tais técnicas, nosso objetivo é reduzir nosso problema ao caso radial, e como consequência, encontrar um limite superior para o supremo sobre todas as funções pertecentes à bola unitária de Wn;mn (Rn) provido de uma norma específica, bem como também mostrar a otimalidade da constante presente na desigualdade do tipo Adams.
9

Métodos variacionais, desigualdade do tipo Trudinger-Moser e aplicações

Santos, Izabela Andrade dos 16 February 2017 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we are interested in establishing some variational methods, together with applications, that determine the existence and non uniqueness of weak solutions for the nonlinear elliptic partial differential equation −div (K(x)-u) = K(x)f(u) + h, x E R2, where K is an exponential weight, h is a linear functional and f is the nonlinearity that presents critical exponential growth. First of all, for the sake of convenience of the reader, this study shows detailed proofs of some classic results of the theory that involves these methods as, for example, the deformation and mountain pass theorems; and Ekeland’s variational principle. Second of all, we work with a Trudinger-Moser inequality that is related to a Sobolev space with weight K in order to achieve our aim. / Neste trabalho, estamos interessados em apresentar alguns Métodos Variacionais, juntamente com aplicações, que determinam existência e a não unicidade de soluções fracas para uma específica Equação Diferencial Parcial Elíptica não linear −div (K(x)-u) = K(x)f(u) + h, x E R2, onde K é um peso exponencial, h é um funcional linear e f é a não linearidade que apresenta crescimento exponencial crítico. Em um primeiro momento, para uma maior comodidade do leitor, estabelecemos provas detalhadas de alguns resultados clássicos da teoria que contém esses métodos como, por exemplo, os Teoremas da Deformação e do Passo da Montanha; e o Princípio Variacional de Ekeland. Em seguida, trabalhamos com uma Desigualdade do tipo Trudinger-Moser em um Espaço de Sobolev com peso K com o objetivo de alcançarmos nossa meta.
10

On Hamiltonian elliptic systems with exponential growth in dimension two / Sistemas elípticos hamiltonianos com crescimento exponencial em dimensão dois

Yony Raúl Santaria Leuyacc 23 June 2017 (has links)
In this work we study the existence of nontrivial weak solutions for some Hamiltonian elliptic systems in dimension two, involving a potential function and nonlinearities which possess maximal growth with respect to a critical curve (hyperbola). We consider four different cases. First, we study Hamiltonian systems in bounded domains with potential function identically zero. The second case deals with systems of equations on the whole space, the potential function is bounded from below for some positive constant and satisfies some integrability conditions, while the nonlinearities involve weight functions containing a singulatity at the origin. In the third case, we consider systems with coercivity potential functions and nonlinearities with weight functions which may have singularity at the origin or decay at infinity. In the last case, we study Hamiltonian systems, where the potential can be unbounded or can vanish at infinity. To establish the existence of solutions, we use variational methods combined with Trudinger-Moser type inequalities for Lorentz-Sobolev spaces and a finite-dimensional approximation. / Neste trabalho estudamos a existência de soluções fracas não triviais para sistemas hamiltonianos do tipo elíptico, em dimensão dois, envolvendo uma função potencial e não linearidades tendo crescimento exponencial máximo com respeito a uma curva (hipérbole) crítica. Consideramos quatro casos diferentes. Primeiramente estudamos sistemas de equações em domínios limitados com potencial nulo. No segundo caso, consideramos sistemas de equações em domínio ilimitado, sendo a função potencial limitada inferiormente por alguma constante positiva e satisfazendo algumas de integrabilidade, enquanto as não linearidades contêm funções-peso tendo uma singularidade na origem. A classe seguinte envolve potenciais coercivos e não linearidades com funções peso que podem ter singularidade na origem ou decaimento no infinito. O quarto caso é dedicado ao estudo de sistemas em que o potencial pode ser ilimitado ou decair a zero no infinito. Para estabelecer a existência de soluções, utilizamos métodos variacionais combinados com desigualdades do tipo Trudinger-Moser em espaços de Lorentz-Sobolev e a técnica de aproximação em dimensão finita.

Page generated in 0.0717 seconds