• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 8
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spin Current Detection and Current Induced Magnetic Moment Switching in Magnetic Multilayers

Wen, Yan 28 June 2020 (has links)
In the past two decades, the interest in materials with strong spin-orbit coupling has attracted substantial attention because of the novel physical mechanisms they display and their potential for applications. The interface displaying large spin-orbit coupling has been recognized as a powerful platform to investigate the spin transport in ferromagnetic, antiferromagnetic, and non-magnetic materials, as well as their interfaces. Besides its rich physics, the related applications are also worth studying. The current-induced spin-orbit-torque arising from angular momentum transfer from the lattice to the spin system has substantial potential in recent state-of-art spin-orbit torque magnetic random access memory. In this dissertation, we have been interested in better understanding and characterizing the spin-orbit torque and spin Hall transport in various heterostructures of interest. We used the second harmonic method to determine the magnitude of the spin currents generation and transmission in Cu-Au alloy and Ir-Mn compound, respectively. We also characterized the device performance in selected heterostructures displaying either perpendicular MgO-based tunnel magnetoresistance or unusual surface states. Finally, we used these properties to approach spin-orbit torque magnetic random access memory through designing, fabricating, and characterizing the devices that focused on current-induced spin-orbit-torque magnetization switching.
2

Radiation tolerance of magnetic tunnel junctions with MgO barriers

Ren, Fanghui 11 September 2014 (has links)
In the next decade, technology trends--smaller dimension, lower voltage, higher operating frequency--introduce new technical considerations and challenges for radiation effects in integrated circuits. Semiconductor based circuits and traditional dynamic random-access memories will malfunction when exposed to extreme environments, such as space and nuclear reactor. The mechanisms for radiation effect are mainly attributed to the radiation-induced charging of the oxide in a CMOS device. Spintronics is an emerging area of nanoscale electronics involving the detection and manipulation of electron spin. The magnetic tunnel junctions (MTJs), based on the intrinsic spin of the electron, can be used as the storage elements in non-volatile magnetoresistive random-access memories (MRAMs). In this effort, we study radiation tolerance of MTJs by exposing the devices in gamma and neutron radiation environment. Theoretical model for the radiation-induced defects is analyzed in this work. Experiments of the MgO-based MTJs under the conditions of pre- and post-radiation are concluded. MTJs were irradiated with gamma ray to a total dose of 10 Mrad. During the neutron irradiation, total epithermal neutron fluence up to 2.9��10�����/cm�� was obtained. The experimental results show that neither the electrical nor the magnetic properties of MTJs are affected by the radiation. / Graduation date: 2013 / Access restricted to OSU community at author's request from Sept. 11, 2012 - Sept. 11, 2014
3

Current-induced dynamics in hybrid geometry MgO-based spin-torque nano-oscillators

Kowalska, Ewa 08 February 2019 (has links)
Spin-torque nano-oscillators (STNOs) are prospective successors of transistor-based emitters and receivers of radio-frequency signals in commonly used remote communication systems. In comparison to the conventional electronic oscillators, STNOs offer the advantage of being tunable over a wide range of frequencies simply by adjusting the applied current, the smaller lateral size (up to 50 times) and the lower power consumption as the lateral size of the device is reduced. It has already been demonstrated that the output signal characteristics of STNOs are compatible with the requirements for applications: they can provide output powers in the µW range, frequencies of the order of GHz, quality factors Q (equal to df/f, where f is the frequency, and df is the linewidth) up to several thousands (e.g., 3 200), and can be integrated into Phase-Locked Loop (PLL) circuits. The most promising type of spin-torque oscillators is the hybrid geometry STNOs utilizing an in-plane magnetized fixed layer, an out-of-plane magnetized free layer and the MgO tunnel barrier as a spacer. This geometry maximizes the output power, since the full parallel-to-antiparallel resistance variation can be exploited in the limit of large magnetization precession angle (i.e., when the magnetization oscillates fully within the plane of the STNO stack). Moreover, the considered hybrid geometry allows for the reduction of the critical currents, enables functionality regardless of the applied magnetic or current history and requires a simplified fabrication process in comparison to the opposite hybrid geometry, consisting of an in-plane magnetized free layer and an out-of-plane reference layer, which requires an additional read-out layer. Simultaneously, the choice of the spacer material in considered STNOs is motivated by the increase of both the output power (via large magnetoresistance ratios) and the power conversion rate ('output power to input power' ratio), compared to their fully metallic counterparts. Despite the many advantages of MgO-based hybrid geometry STNOs, unexplained issues related to the physics behind their principle of operation remained. In this thesis, the main focus is put on the two key aspects related to the out-of-plane steady-state precession in hybrid STNOs: the precession mechanism (combined with the analysis of the influence of the bias dependence of the tunnel magnetoresistance) and the zero-field oscillations stabilized by an in-plane shape anisotropy. State-of-the-art theoretical studies demonstrated that stable precession in hybrid geometry STNOs can only be sustained if the in-plane component of the spin-transfer torque (STT) exhibits an asymmetric dependence on the angle between the free and the polarizing layer (which is true for fully metallic devices, but not for the MgO-based magnetic tunnel junctions (MTJs)). Nevertheless, recent experimental reports showed that spin-transfer driven dynamics can also be sustained in MgO-based STNOs with this particular configuration. In this thesis, a phenomenological and straightforward mechanism responsible for sustaining the dynamics in considered system is suggested. The mechanism is based on the fact that, in MgO-based MTJs, the strong cosine-type angular dependence of the tunnel magnetoresistance, at constant applied current, translates into an angle-dependent voltage component, which results in an angle-dependent spin-transfer torque giving a rise to the angular asymmetry of the in-plane STT and, thus, enabling steady-state precession to be sustained. Subsequently, the bias dependence of the tunnel magnetoresistance (TMR), which has been so far neglected in similar calculations, is taken into account. According to the results of analytical and numerical studies, the TMR bias dependence brings about a gradual quenching of the dynamics at large applied currents. The theoretical model yields trends confirming our experimental results. The most important conclusion regarding to this part of the thesis is that, while the angular dependence of the tunnel magnetoresistance introduces an angular asymmetry for the in-plane spin transfer torque parameter (which helps maintain steady-state precession), the bias dependence of the resistance works to reduce this asymmetry. Thus, these two mechanisms allow us to tune the asymmetry of the in-plane STT as function of current and to control the dynamical response of the actual device. Except for the precession mechanism, the thesis is also focused on the issue of zero-field oscillations, which would be especially desirable from the point of view of potential applications. According to the state-of-the-art theoretical studies, for hybrid geometry devices with circular cross-section (i.e., exhibiting no other anisotropy terms), current-driven dynamics cannot be excited at zero applied field. Indeed, zero-field oscillations have only been experimentally observed for systems having the free layer magnetization slightly tilted from the normal to the plane, which has usually been achieved by introducing an in-plane shape anisotropy. In the thesis, the influence of the in-plane shape anisotropy of the MTJ on zero-field dynamics in the hybrid geometry MgO-based STNOs is analytically and numerically investigated. In agreement with the previous reports, no zero-field dynamics for circular nano-pillars is observed; however, according to the numerical data, an additional in-plane anisotropy smaller than the effective out-of-plane anisotropy of the free layer enables zero-field steady-state precession. Accordingly, the lack of an in-plane anisotropy component (e.g., for circular cross-section nano-pillars), or the presence of an in-plane shape anisotropy equal or greater than the out-of-plane effective anisotropy, inhibits the stabilization of dynamics in the free layer at zero field. The results of analytical and numerical studies and the general trends identified in the corresponding experimental data are found to be in excellent qualitative agreement.:1. Introduction 1.1. Short history of magnetotransport applications 1.2. Spin-transfer torque induced effects and devices 1.3. Goals of the thesis 2. Fundamentals 2.1. Electronic transport in single transition metal layers 2.2. Tunnel magnetoresistance (TMR) 2.2.1. Electronic transport in magnetic tunnel junctions 2.2.2. Tunnel magnetoresistance versus structural properties of the multilayer 2.2.3. Bias voltage and temperature dependence of tunnel magnetoresistance 2.2.4. Angular dependence of tunnel magnetoresistance 2.3. Spin-transfer torque in GMR/TMR structures 2.3.1. Spin-transfer torque 2.3.2. Landau-Lifshitz-Gilbert (LLG) equation 2.3.3. LLG equation and spin-transfer torques 2.3.4. Bias voltage dependence of spin-transfer torques in MTJs 2.3.5. Angular dependence of spin-transfer torque 2.4. Spin-torque-based phenomena 2.4.1. Current-induced switching 2.4.2. Current-induced dynamics 3. Experimental 3.1. General characteristics of MgO-based magnetic tunnel junctions 3.2. STNO samples 3.2.1. Samples by AIST (Tsukuba, Japan) 3.2.2. Samples by HZDR / SINGULUS (Dresden / Kahl am Main, Germany) 3.3. Magnetotransport measurements 3.3.1. Experimental setup and data analysis 3.3.2. Experimental results 3.4. Aspects to be explained 4 Numerical and analytical calculations 4.1 Out-of-plane steady-state precession in hybrid geometry STNO 4.1.1 Angular dependence of tunnel magnetoresistance as a mechanism of stable precession 4.1.2. Influence of the bias dependence of tunnel magnetoresistance 4.1.3. Comparison with the experimental data 4.1.4. Comparison with the GMR-type counterpart 4.1.5. Summary 4.2. Zero-field dynamics in hybrid geometry STNO stabilized by in-plane shape anisotropy 4.2.1. Effect of the in-plane shape anisotropy 4.2.2. Zero-field dynamics 4.2.3. Summary 5. Conclusions 6. Outlook Appendix Bibliography
4

Charge transport in the assemblies of magnetic, non-magnetic and spin-cross over nano-structures / Transport de charge dans les assemblages de nanostructures magnétiques, non magnétiques et à spin cross-over complexes

Usmani, Suhail 05 April 2018 (has links)
La compréhension des propriétés de transport de charge des nanostructures métalliques et magnétiques est très importante pour le développement et la miniaturisation des dispositifs fonctionnels modernes. En particulier, les nanostructures synthétisées chimiquement sont intéressant car elles permettent de mieux contrôler leur forme et leur taille, ce qui peut être utilisé pour ajuster leurs propriétés de transport de charge. L'objectif de cette thèse est d'étudier les aspects différents des propriétés de transport de charge qui résultent de la petite taille et de la nature magnétique de différents types de nanostructures comprenant des nanoparticules de Pt (1,3-3 nm), des particules magnétiques FeCo (⁓10 nm), et complexe de coordination à base de triazole Fe (II). Pour préciser davantage, des phénomènes tels que le blocage de Coulomb, la magnétorésistance tunnel et la transition de spin seront mis en évidence. En fonction de la propriété souhaitée, ces nanostructures peuvent être exploitées pour leurs applications dans divers capteurs, actionneurs et dispositifs spintroniques, etc. / Understanding charge transport properties of metallic and magnetic nano-structures is highly important for the development and miniaturization of modern functional devices. In particular, chemically synthesized nano-structures are in focus as they provide better control over their shape and size, which can be used to tune their charge transport properties. The aim of this thesis is to study the various aspects of charge transport properties which emerge due to the small size and magnetic nature of different types of nanostructures which include Pt nanoparticles (1.3-3 nm), FeCo magnetic particles (⁓10 nm), and Fe (II) triazole based coordination complex. To further specify, phenomenon such as Coulomb blockade, tunnel magnetoresistance and spin-transition will be in focus. Depending on the desirable property, these nanostructures can be exploited for their applications in a variety of sensors, actuators and spintronic devices etc.
5

Elaboration de jonctions tunnel magnétiques à barrière SrTiO3 pour application bas RA / Development of SrTiO3 based magnetic tunnel junctions for low RA applications

Hassen, Emeline 12 October 2012 (has links)
Ce travail de thèse porte sur l'élaboration et la caractérisation de jonctions tunnel magnétiques (JTM) polycristallines à barrière d'oxyde de titane de strontium, SrTiO3, qui se situe parmi les nouvelles barrières tunnel aux bandes interdites les plus étroites, recensées par la littérature. De telles barrières pourraient répondre à un besoin applicatif crucial : avoir un produit résistance x surface, RA, plus faible dans les JTM, ou à son corollaire, avoir une épaisseur de barrière plus forte à RA égal tout en conservant une magnétorésistance tunnel, TMR, élevée. De précédents travaux ont montré que le SrTiO3 présente une température de cristallisation inhabituellement basse (< 400°C) lorsqu'il est déposé par pulvérisation par faisceau d'ions (IBS) ce qui peut le rendre compatible avec les électrodes magnétiques standards constitutives des JTM. Le dépôt par IBS restant une technique pour le moins exotique au regard de l'état de l'art des JTM, nous avons dans un premier temps élaboré des JTM à barrière d'oxyde de magnésium, MgO, matériau phare de la spintronique. Cette étude a permis de mettre en avant les paramètres spécifiques à cette technique de dépôt influant sur les propriétés de transport des JTM, notamment le type d'oxydation. Dans un second temps, nous avons réalisé des JTM CoFeB/SrTiO3/CoFeB par IBS à partir d'une cible céramique de SrTiO3, en nous inspirant du travail effectué sur le MgO. Les influences de plusieurs paramètres de dépôt, d'oxydation et de recuit ont été analysées, conduisant à deux tendances opposées avec des systèmes présentant soit à une TMR élevée (18 %), soit un RA faible (2.6 Ohm.µm²). Des JTM SrTiO3 ont ensuite été nanostructurées pour la première fois et les tests électriques ont montré que les JTM ayant un bas RA présentaient un comportement ohmique alors que celles ayant une TMR élevée présentaient le comportement tunnel attendu. De plus, ces dernières présentent un claquage diélectrique intrinsèque à l'oxyde. En parallèle, des études microstructurales ont montré une qualité morphologique des JTM SrTiO3 semblable à celle des JTM MgO à l'état de l'art. Toutefois, ces observations n'ont pas permis de statuer sur le caractère cristallisé ou non des barrières en SrTiO3. Plusieurs pistes visant à déterminer la température de cristallisation du SrTiO3 dans la gamme des épaisseurs extraordinairement faibles des barrières tunnel ont été proposées. / This work is focused on the development and the characterization of polycrystalline magnetic tunnel junctions (MTJ) with strontium titanium oxide barrier, SrTiO3, identified as a low band gap tunnel barrier by literature. Such barrier could fulfill the critical application requirement: having a lower resistance area product (RA) in MTJ, or its corollary, having a thicker barrier at constant RA, while keeping the tunnel magnetoresistance ratio (TMR) high enough. Former studies have shown that SrTiO3 deposited by ion beam sputtering (IBS) could crystallize at an unusual low temperature (< 400°C) which could make it compatible with the magnetic layers of MTJs. In a first place, MTJs with a tunnel barrier made of a well known material in spintronics, namely MgO, were deposited. This preliminary work allowed us to highlight the specific parameters affecting the transport properties in MTJs deposited by IBS, including the oxidation type. In a second place, CoFeB/SrTiO3/CoFeB MTJs were developed using IBS and a SrTiO3 ceramic target, learning from our experience on MgO based MTJs. Many combinations of different parameters (including deposition, oxidation and annealing parameters) were explored, leading to two opposite tendencies with systems having either a high TMR (up to 18 %) or a low RA (down to 2.6 Ohm.µm²). SrTiO3 based MTJs were then patterned for the first time and submitted to electrical tests. These tests showed that the MTJs having a low RA exhibited an ohmic behaviour while the MTJs having a large TMR showed the expected tunnel characteristics. Furthermore, the latter MTJs showed an intrinsic dielectric breakdown. In parallel, microstructural characterizations have shown that SrTiO3 based MTJs and MgO based MTJ were alike morphologically. Nevertheless, these observations alone were not enough to assess on the crystalline state of SrTiO3. Many possibilities/tracks aiming at determining the crystallisation temperature of SrTiO3, in the range of extremely low thicknesses used in MTJs, are identified.
6

Magnetic tunnel junctions for ultrasensitive all-oxide hybrid sensors for medical applications / Jonctions tunnel magnétiques pour capteurs hybrides tout-oxydes ultrasensibles pour des applications médicales

Kurij, Georg 24 March 2016 (has links)
La détection des très faibles valeurs de champ magnétique est un enjeu important pour l’émergence à plus grande échelle de techniques pour le domaine du médical telles que la magnéto cardiographie, ou la magnétoencéphalographie. Les solutions existantes industrialisées reposent sur l’utilisation de jonctions tunnels supraconductrices qui permettent de fabriques des SQUIDS (Superconducting Quantum Intereference Device) qui sont les briques de base des magnétomètres avec des sensibilités de l’ordre de la dizaine de femtotesla. Cependant cette approche impose de travailler à des températures très basses qui ne sont accessibles qu’avec de l’hélium liquide. Un approche récente, développée par le Spec-CEA permet de travailler à l’azote liquide (77K) ce qui lève un certain nombre de contraintes. Le dispositif est un capteur mixte composé d’une boucle supraconductrice de grande taille qui contient une constriction de taille micrométrique sur laquelle est rapportée une magnétorésistance tunnel qui sert de sonde locale du champ magnétique. L’objectif du travail dans ce travail de thèse est de poursuivre le développement de ce type de capteur en utilisant visant des structures tout oxyde. En effet l’intégration complète de ce type de capteur permettrait de gagner encore en termes de performances et d’atteindre une résolution de l’ordre du femtotesla. Pour ce faire le travail vise à intégrer une jonction tunnel tout oxyde directement par épitaxie sur la constriction. La jonction tunnel sera réalisée à partie d’oxydes magnétiques tels que les composés LaSrMnO3 ou SrRuO3 qui sont deux matériaux ferromagnétiques à la température de l’azote liquide. / Sensing of extremely weak magnetic signals, such as produced by electrical activity of the human heart and brain, still remains a challenge. A very promising alternative to established field-sensing techniques is a novel, spin electronic based, ultrasensitive device called an all-oxide mixed sensor. It is formed by a superconducting loop, acting as a flux-to-field transformer and field amplifier, combined with a magnetic tunnel junction sensing the field.Our research activities have the goal to improve the performance of the mixed sensor, focusing on its core component – the magnetic tunnel junction (MTJ). The capability of an MTJ is predominantly determined by the quality of the tunnel barrier and by the stability of magnetization states. In this context, oxide materials, known for their remarkable physical properties, have already shown their advantages. Thus, studies on La0.7Sr0.3MnO3/SrTi0.8Nb0.2O3 functional oxide interfaces, exploration of SrRuO3/ La0.7Sr0.3MnO3 exchange bias system, and the final integration of these two components into a magnetic tunnel junction form the main part of our work.In the presented thesis, oxide thin films and heterostructures used for studies were grown by pulsed laser deposition (PLD). We fabricated electronic devices for investigations using clean room microfabrication techniques , e.g. optical lithography, chemically assisted ion beam etching (CAIBE) and sputtering. Temperature dependent magnetic and (magneto-) transport measurements were performed.Metal-semiconductor interfaces formed by the half-metallic ferromagnet La0.7Sr0.3MnO3 (LSMO) and heavily doped semiconductor SrTi0.8Nb0.2O3 (Nb:STO) were studied. Antiferromagnetic coupling at the interface of the LaSrMnO3 and itinerant ferromagnet SrRuO3 was explored. Magnetic tunnel junctions with Schottky barrier were investigated (MTJs with Nb:STO and LSMRO).
7

The tunnel magneto-Seebeck effect in magnetic tunnel junctions

Walter, Marvin 14 November 2013 (has links)
No description available.
8

Impact of symmetry of oxygen vacancies on electronic transport in MgO-based magnetic tunnel junctions / Effet de la symétrie des lacunes d'oxigène dans MgO sur le transport électronique polarisé en spin

Taudul, Beata 12 December 2017 (has links)
En spintronique, l’étude des hétérostructures multicouches composées d'une électrode ferromagnétique et d'une couche isolante mince, c'est-à-dire des jonctions tunnel magnétiques (JTM), est particulièrement importante. Le système canonique est le Fe/MgO/Fe où les hautes valeurs du rapport de la magnétoresistance tunnel (TMR) ont été mesurées. Le facteur crucial définissant la performance de la jonction est l’imperfection structurelle dans un dispositif réel. Dans notre travail, nous nous sommes concentrés sur des lacunes d'oxygène dans MgO. Au moyen de la théorie de la fonctionnelle de densité, nous avons étudié les propriétés électroniques de l'état fondamental des lacunes d'oxygène simples et doubles dans MgO massif, appelées respectivement centres F et M. Nous avons ensuite étudié l'impact de ces lacunes sur le transport balistique dans les jonctions magnétiques. Nous avons démontré le rôle supérieur joué par les centres M et nous avons prouvé qu'un transport cohérent, préservant le spin et la symétrie des électrons, est possible en présence de centres M. / In sprintronics, the study of multilayer heterostructures composed of a ferromagnetic electrodes and a thin insulating layer, i.e. magnetic tunnel junctions (MTJs), is of special importance. The canonical systems are MTJs made of Fe/MgO/Fe where hight tunneling mangetoresistance ratio (TMR) values were measured. The crucial factor defining the junction performance is the structural imperfection appearing in a real devices. In our work we focused in particular on oxygen vacancies in MgO. By means of density functional theory we studied ground state electronic properties of single and double oxygen vacancies, referred as F and M centers, respectively, in bulk MgO. We then switched to full junctions where we investigated the impact of vacancies on the ballistic transport. We demonstrated that M centers played a superior role and proved that coherent transport, preserving electrons spin and symmetry, is possible in presence of paired vacancies.
9

Optimisation de jonctions tunnel magnétiques pour STT-MRAM et développement d'un nouveau procédé de nanostructuration de ces jonctions / Engineering of magnetic tunnel junction stacks for improved STT-MRAM performance and development of novel and cost-effective nano-patterning techniques

Chatterjee, Jyotirmoy 29 March 2018 (has links)
Le but de la thèse sera d'étudier la faisabilité d'un nouveau procédé de nanostructuration des jonctions tunnel de dimension sub-30nm récemment imaginé et breveté par Spintec et le LTM et de tester les propriétés des jonctions tunnel obtenus sur les plans structural, magnétique et des propriétés électriques. Une attention particulière sera mise sur la caractérisation des défauts générés en bord de piliers lors de la gravure des jonctions tunnels et l'impact de ces défauts sur les propriétés magnétiques et de transport. Une autre partie de la thèse concerne l'optimisation des propriétés magnétiques et de transport des empilements jonctions tunnel magnétiques en vue d'en améliorer la stabilité thermique, l'amplitude de magnétoresistance tunnel et la facilité de gravure de l'empilement.En particulier l'insertion de nouveaux matériaux réfractaires (W, ) dans les empilements a été étudiée pour améliorer la stabilité de l'empilement lors des recuits à haute température. Des améliorations ont également été apportées pour renforcer la stabilité de la couche de référence de la jonction tunnel lorsque cette dernière est située au dessus de la barrière tunnel. Par ailleurs, une nouvelle couche de couplage antiferromagnétique a été mise au point permettant de réduire significativement l'épaisseur totale de l'empilement et par là même facilitant sa gravure.Tous ces résultats ont été obtenus par des mesures magnétiques et de transport réalisées sur les couches continues et sur des piliers de taille nanométriques. / The first aim of the thesis is to study the feasibility of a new process for nanopatterning of sub-30nm diameter tunnel junctions recently patented by Spintec and LTM and to test the properties of tunnel junctions obtained, from the point of view of magnetic and electrical properties. Particular attention will be paid on the characterization of defects generated at the pillar edges when patterning the tunnel junctions and the impact of these defects on the magnetic and transport properties. Another part of the thesis is focused on improving the magnetic and transport MTJ stacks with higher thermal budget tolerance. As a part of this, new materials (W, etc) were used as cap layer or as a spacer layer in composite free layer of pMTJ stacks. Moreover, different magnetic materials combined with different non-magnetic spacer have been investigated to improve the thermal stability factor of the composite storage layers. Detailed structural characterizations were performed to demonstrate the improvements in magnetic and electrical properties. A new RKKY coupling layer was found which allowed to obtain an extremely thin pMTJ stack by reducing the SAF layer thickness to 3.8nm. Seed lees multilayers with enhanced PMA is necesssary to realize a top-pinned pMTJ stack which is necessary to configure a spin-orbit torque MRAM (SOT-MRAM)stack and double magnetic tunnel junction stacks (DMTJs). A new seed less multilyar with enhanced PMA and subsequently advanced stacks such as conventional-DMTJ, thin-DMT, SOT-MRAM stacks, Multibit memory were realized. Finally, electrical properties patterned memory devices were also studied to correlate with the magnetic properties of thin films.
10

Korrelationen zwischen struktureller Ordnung und elektrischen Transporteigenschaften in CoFeB|MgO|CoFeB Tunnelmagnetowiderstandselementen / Correlations between structural order and electric transport properties in CoFeB|MgO|CoFeB magnetic tunnel junctions

Eilers, Gerrit 15 January 2010 (has links)
No description available.

Page generated in 0.0901 seconds