• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Utvärdering av sökmaskiner : en textanalys kring utvärderingar av sökmaskiner på Webben / Evaluation of search engines : a text analysis on evaluation of Web search engines

Johansson, Ann, Johansson, Karolina January 2002 (has links)
The purpose of this thesis is to analyse studies that evaluate Web search engines. This is done in four categories; the researchers’ purpose, the evaluation measurements, the relevance, and the time aspect. Our method is based on a text analysis in which we use the direction of analysis of the content of sixteen evaluation experiments. Our results indicate fundamental differences in the way the researchers are tackling the problem of evaluation of Web search engines. We think that, despite the differences that we have been able to identify, it is necessary to perform evaluation experiments, so that methods can be developed that can guarantee the quality of the Web search engines. To provide people with the kind of information they need is the main task for Web search engines. In an increasing flow of information that task will be even more important. Evaluation of Web search engines can be a part of improving the efficiency of the Web search engines and in that way strengthen their roll as important information resources. / Uppsatsnivå: D
2

Unsupervised multiple object tracking on video with no ego motion / Oövervakad spårning av flera objekt på video utan egorörelse

Wu, Shuai January 2022 (has links)
Multiple-object tracking is a task within the field of computer vision. As the name stated, the task consists of tracking multiple objects in the video, an algorithm that completes such task are called trackers. Many of the existing trackers require supervision, meaning that the location and identity of each object which appears in the training data must be labeled. The procedure of generating these labels, usually through manual annotation of video material, is highly resource-consuming. On the other hand, different from well-known labeled Multiple-object tracking datasets, there exist a massive amount of unlabeled video with different objects, environments, and video specifications. Using such unlabeled video can therefore contribute to cheaper and more diverse datasets. There have been numerous attempts on unsupervised object tracking, but most rely on evaluating the tracker performance on a labeled dataset. The reason behind this is the lack of an evaluation method for unlabeled datasets. This project explores unsupervised pedestrian tracking on video taken from a stationary camera over a long duration. On top of a simple baseline tracker, two methods are proposed to extend the baseline to increase its performance. We then propose an evaluation method that works for unlabeled video, which we use to evaluate the proposed methods. The evaluation method consists of the trajectory completion rate and the number of ID switches. The trajectory completion rate is a novel metric proposed for pedestrian tracking. Pedestrians generally enter and exit the scene for video taken by a stationary camera in specific locations. We define a complete trajectory as a trajectory that goes from one area to another. The completion rate is calculated by the number of complete trajectories over all trajectories. Results showed that the two proposed methods had increased the trajectory completion rate on top of the original baseline performance. Moreover, both proposed methods did so without significantly increasing the number of ID switches. / Spårning av flera objekt är en uppgift inom området datorseende. Som namnet angav består uppgiften av att spåra flera objekt i videon, en algoritm som slutför en sådan uppgift kallas trackers. Många av de befintliga spårarna kräver övervakning, vilket innebär att platsen och identiteten för varje objekt som visas i träningsdata måste märkas. Proceduren för att generera dessa etiketter, vanligtvis genom manuell anteckning av videomaterial, är mycket resurskrävande. Å andra sidan, till skillnad från välkända märkta uppsättningar för spårning av flera objekt, finns det en enorm mängd omärkt video med olika objekt, miljöer och videospecifikationer. Att använda sådan omärkt video kan därför bidra till billigare och mer varierande datauppsättningar. Det har gjorts många försök med oövervakad objektspårning, men de flesta förlitar sig på att utvärdera spårningsprestandan på en märkt dataset. Anledningen till detta är avsaknaden av en utvärderingsmetod för omärkta datamängder. Detta projekt utforskar oövervakad fotgängarspårning på video som tagits från en stillastående kamera under lång tid. Utöver en enkel baslinjespårare föreslås två metoder för att utöka baslinjen för att öka dess prestanda. Vi föreslår sedan en utvärderingsmetod som fungerar för omärkt video, som vi använder för att utvärdera de föreslagna metoderna. Utvärderingsmetoden består av banans slutförandegrad och antalet ID-växlar. Banans slutförandegrad är ett nytt mått som föreslås för spårning av fotgängare. Fotgängare går vanligtvis in och lämnar scenen för video tagna med en stillastående kamera på specifika platser. Vi definierar en komplett bana som en bana som går från ett område till ett annat. Färdigställandegraden beräknas av antalet kompletta banor över alla banor. Resultaten visade att de två föreslagna metoderna hade ökat graden av fullbordande av banan utöver den ursprungliga baslinjeprestandan. Dessutom gjorde båda de föreslagna metoderna det utan att nämnvärt öka antalet ID-växlar.
3

Evaluating volatility forecasts, A study in the performance of volatility forecasting methods / Utvärdering av volatilitetsprognoser, En undersökning av kvaliteten av metoder för volatilitetsprognostisering

Verhage, Billy January 2023 (has links)
In this thesis, the foundations of evaluating the performance of volatility forecasting methods are explored, and a mathematical framework is created to determine the overall forecasting performance based on observed daily returns across multiple financial instruments. Multiple volatility responses are investigated, and theoretical corrections are derived under the assumption that the log returns follow a normal distribution. Performance measures that are independent of the long-term volatility profile are explored and tested. Well-established volatility forecasting methods, such as moving average and GARCH (p,q) models, are implemented and validated on multiple volatility responses. The obtained results reveal no significant difference in the performances between the moving average and GARCH (1,1) volatility forecast. However, the observed non-zero bias and a separate analysis of the distribution of the log returns reveal that the theoretically derived corrections are insufficient in correcting the not-normally distributed log returns. Furthermore, it is observed that there is a high dependency of abslute performances on the considered evaluation period, suggesting that comparisons between periods should not be made. This study is limited by the fact that the bootstrapped confidence regions are ill-suited for determining significant performance differences between forecasting methods. In future work, statistical significance can be gained by bootstrapping the difference in performance measures. Furthermore, a more in-depth analysis is needed to determine more appropriate theoretical corrections for the volatility responses based on the observed distribution of the log returns. This will increase the overall forecasting performance and improve the overall quality of the evaluation framework. / I detta arbete utforskas grunderna för utvärdering av prestandan av volatilitetsprognoser och ett matematiskt ramverk skapas för att bestämma den övergripande prestandan baserat på observerade dagliga avkastningar för flera finansiella instrument. Ett antal volatilitetsskattningar undersökts och teoretiska korrigeringar härleds under antagandet att log-avkastningen följer en normalfördelningen. Prestationsmått som är oberoende av den långsiktiga volatilitetsprofilen utforskas och testas. Väletablerare metoder för volatilitetsprognostisering, såsom glidande medelvärden och GARCH-modeller, implementeras och utvärderas mot flera volatilitetsskattningar. De erhållna resultaten visar att det inte finns någon signifikant skillnad i prestation mellan prognoser producerade av det glidande medelvärdet och GARCH (1,1). Det observerade icke-noll bias och en separat analys av fördelningen av log-avkastningen visar dock att de teoretiskt härledda korrigeringarna är otillräckliga för att fullständigt korrigera volatilitesskattningarna under icke-normalfördelade log-avkastningar. Dessutom observeras att det finns ett stort beroende på den använda utvärderingsperioden, vilket tyder på att jämförelser mellan perioder inte bör göras. Denna studie är begränsad av det faktum att de använda bootstrappade konfidensregionerna inte är lämpade för att fastställa signifikanta skillnader i prestanda mellan prognosmetoder. I framtida arbeten behövs fortsatt analys för att bestämma mer lämpliga teoretiska korrigeringar för volatilitetsskattningarna baserat på den observerade fördelningen av log-avkastningen. Detta kommer att öka den övergripande prestandan och förbättra den övergripande kvaliteten på prognoserna.
4

A Machine Learning Estimation of the Occupancy of Padel Facilities in Sweden : An application of Random Forest algorithm on a padel booking dataset / Uppskattning av svenska padelanläggningars beläggningsgrad genom maskininlärning

Johansson, Michael, Gonzálvez Läth, Nadia January 2022 (has links)
Padel is one of the fastest growing sports in Sweden. Its popularity rose significantly during the Covid-19 pandemic in 2020, as many other types of sport facilities closed, and people had more flexible work schedules due to remote work. This paper is an analysis on the monthly occupancy of indoor padel facilities in Sweden between January 2018 and April 2022. It aims to answer to what degree a machine learning algorithm can predict the occupancy for a given padel facility and which key features have the largest impact on the occupancy. With these findings, it is possible to estimate the revenue for a given padel facility and therefore be used to identify which type of padel facilities have the biggest opportunity to succeed from an economical perspective. This article reviews the literature regarding different methods of machine learning, in this case, applied to booking systems and occupancy estimations. The reviewed literature also presents the most common evaluation metrics used for comparing different machine learning models. This study analyses the relationship between the occupancy level of a given padel facility and 12 input features, related to the padel facility in question, with a random forest regression model. This work results in a model that achieved a R2 score of 49% and a mean absolute error of 11%. The input features ranked according to the largest impact on the model’s estimation are (with the mean of all absolute SHAP values written in parentheses): Year (7.71), Month (5.23), Average Income in municipality (4.13), Driving Time from municipality Centre (2.35), Population of municipality (1.97), Padel Slots in municipality (1.27), Padel Slots in facility (1.27), Average Court Price (1.12), Tennis Slots in municipality (0.73), Badminton Slots in municipality (0.55), Squash Slots in municipality (0.44) and Golf Slots in municipality (0.26). Padel facilities had the highest average occupancy in 2020. The Covid-19 pandemic is likely a significant contributor to this, due to the shutdown of offices and many types of training venues. Therefore, Year has the largest impact on the model’s estimation. Occupancy of indoor facilities follows a seasonal trend, where it tends to be highest in December and January and lowest in June and July. This trend can partly be explained by a larger demand for indoor sport activities during winter and increased competition from outside padel facilities and other activities during summer. Because of this, Month had the second largest impact on the model’s estimation. / Padel är en av de snabbast växande sporterna i Sverige. Dess popularitet ökade avsevärt under Covid-19-pandemin i 2020, främst på grund av att många andra typer av sportanläggningar stängdes ner och människor hade mer flexibla arbetsscheman på grund av distansarbete. Den här uppsatsen är en analys av den månatliga beläggningen av inomhuspadelanläggningar i Sverige mellan januari 2018 och april 2022. Studien syftar till att svara på i vilken grad en maskininlärningsalgoritm kan förutsäga beläggningen för en given padelanläggning och vilka nyckelfunktioner som har störst inverkan på beläggningen. Med dessa insikter är det möjligt att uppskatta intäkterna för en given padelanläggning och kan därför användas vilka typer av padelanläggningar som har störst möjlighet att vara framgångsrika ur ett ekonomiskt perspektiv. Den granskade litteraturen studerar olika maskininlärningsmetoder tillämpad i områden som bokningssystemsanalys och beläggningsgradsstudier, samt presenterar de vanligaste utvärderingsmåtten som används för att jämföra metoderna. Denna studie analyserar sambandet mellan beläggningsgraden för en given padelanläggning och 12 inputparametrar, relaterade till padelanläggningen i fråga med hjälp av en random forest regressionsalgoritm. Detta arbete resulterar i en modell som uppnådde ett R2 värde på 49% och en genomsnittlig absolut avvikelse på 11 %. Inputparametrarna rangordnade enligt den största påverkan på modellens uppskattning är (med medelvärdet av alla absoluta SHAP-värden skrivna inom parentes): År (7.71), Månad (5.23), Genomsnittlig Inkomst i kommunen (4.13), Körtid mellan anläggning och kommunens centrum (2.35), Kommunens befolkningsmängd (1.97), Antal padeltider i kommunen (1.27), Padeltider i anläggningen(1.27), Genomsnittlig pris för bana(1.12), Tennistider i kommunen (0.73), Badmintontider i kommunen (0.55), Squashtider i kommunen (0.44) och Golftider i kommunen (0.26). Padelanläggningar hade högsta genomsnittliga beläggningsgraden under 2020. Covid-19-pandemin är sannolikt en betydande bidragande orsak till detta på grund av nedläggningen av kontor och andra sportanläggningar. Därför har inputparametern År den största inverkan på modellens uppskattning. Beläggningen av inomhusanläggningar följer en säsongsmässig trend, där den tenderar att vara högst i januari och lägst i juli. Denna trend kan delvis förklaras av en större efterfrågan på inomhussportaktiviteter under vintern och ökad konkurrens från utomstående padelanläggningar och andra aktiviteter under sommaren. På grund av detta hade Månad den näst största påverkan på modellens uppskattning.
5

Sign of the Times : Unmasking Deep Learning for Time Series Anomaly Detection / Skyltarna på Tiden : Avslöjande av djupinlärning för detektering av anomalier i tidsserier

Richards Ravi Arputharaj, Daniel January 2023 (has links)
Time series anomaly detection has been a longstanding area of research with applications across various domains. In recent years, there has been a surge of interest in applying deep learning models to this problem domain. This thesis presents a critical examination of the efficacy of deep learning models in comparison to classical approaches for time series anomaly detection. Contrary to the widespread belief in the superiority of deep learning models, our research findings suggest that their performance may be misleading and the progress illusory. Through rigorous experimentation and evaluation, we reveal that classical models outperform deep learning counterparts in various scenarios, challenging the prevailing assumptions. In addition to model performance, our study delves into the intricacies of evaluation metrics commonly employed in time series anomaly detection. We uncover how it inadvertently inflates the performance scores of models, potentially leading to misleading conclusions. By identifying and addressing these issues, our research contributes to providing valuable insights for researchers, practitioners, and decision-makers in the field of time series anomaly detection, encouraging a critical reevaluation of the role of deep learning models and the metrics used to assess their performance. / Tidsperiods avvikelsedetektering har varit ett långvarigt forskningsområde med tillämpningar inom olika områden. Under de senaste åren har det uppstått ett ökat intresse för att tillämpa djupinlärningsmodeller på detta problemområde. Denna avhandling presenterar en kritisk granskning av djupinlärningsmodellers effektivitet jämfört med klassiska metoder för tidsperiods avvikelsedetektering. I motsats till den allmänna övertygelsen om överlägsenheten hos djupinlärningsmodeller tyder våra forskningsresultat på att deras prestanda kan vara vilseledande och framsteg illusoriskt. Genom rigorös experimentell utvärdering avslöjar vi att klassiska modeller överträffar djupinlärningsalternativ i olika scenarier och därmed utmanar de rådande antagandena. Utöver modellprestanda går vår studie in på detaljerna kring utvärderings-metoder som oftast används inom tidsperiods avvikelsedetektering. Vi avslöjar hur dessa oavsiktligt överdriver modellernas prestandapoäng och kan därmed leda till vilseledande slutsatser. Genom att identifiera och åtgärda dessa problem bidrar vår forskning till att erbjuda värdefulla insikter för forskare, praktiker och beslutsfattare inom området tidsperiods avvikelsedetektering, och uppmanar till en kritisk omvärdering av djupinlärningsmodellers roll och de metoder som används för att bedöma deras prestanda.

Page generated in 0.0892 seconds