• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • Tagged with
  • 11
  • 11
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Métrique sur le fibré unitaire tangent au plan hyperbolique

Nsanzamahoro, Pierre Claver January 2016 (has links)
RÉSUMÉ: Toute variété différentiable $M$ admet une métrique dite métrique riemannienne.\\ En définissant $\mathbb{H}=\lbrace z\in\mathbb{C}: Im(z)>0\rbrace$, on peut munir de $\mathbb{H}$ d'une métrique riemannienne $ds^{2}=\frac{dzd\bar{z}}{(Im(z))^{2}}=\frac{dx^{2}+dy^{2}}{y^{2}}$.\\ Muni de cette métrique, $\mathbb{H}$ est une variété riemannienne à la quelle on associe le fibré tangent, $T\mathbb{H}$ ainsi que le fibré unitaire tangent, $T^{1}\mathbb{H}$. Les éléments de $T^{1}\mathbb{H}$ peuvent être exprimés, de façon bijective, en termes des éléments du groupe PSL(2,$\mathbb{R}$) dont l'action sur $T^{1}\mathbb{H}$ est transitive et libre.\\ La métrique définie sur $M$ (en particulier sur $M=\mathbb{H}$) permet de définir sur $TM$ (en particulier sur $T^{1}\mathbb{H}$) une métrique connue sous le nom de métrique de Sasaki.
2

Les groupes cycliques discrets d'isométries du bidisque

Perron, Stéphanie January 2015 (has links)
Dans ce mémoire, on présente un espace de la géométrie hyperbolique, le bidisque. On y parle de la géométrie du bidisque et pour ce faire on expose en détail la géométrie du plan hyperbolique. Ensuite, on présente les groupes d’isométries du bidisque pour lesquels on décrit les groupes d’isométrie du plan hyperbolique. Enfin, on donne des conditions nécessaires et suffisantes pour que des sous-groupes cycliques d’isométries du bidisque soient discrets.
3

Equations différentielles stochastiques multivoques : aspects théoriques et numériques - Applications

BERNARDIN, Frédéric 06 December 2004 (has links) (PDF)
On s'intéresse dans cette thèse à l'étude théorique et numérique des équations différentielles stochastiques multivoques et leurs applications à la modélisation de structures mécaniques sous sollicitations aléatoires. Les équations différentielles stochastiques considérées comportent dans le terme de dérive un opérateur multivoque maximal monotone pour lesquelles l'existence et l'unicité de solutions ont déjà été obtenues dans un cadre euclidien. Pour de telles équations on montre la convergence d'un schéma numérique, faisant intervenir grâce à la maximalité et à la monotonie des opérateurs considérés, des applications exclusivement univoques, rendant son implémentation aisée. Un ordre de convergence est de plus obtenu sous certaines conditions sur le coefficient de diffusion. Pour enrichir la modélisation, on envisage des équations différentielles stochastiques multivoques d'ordre 2 évoluant sur une variété riemanienne pour lesquelles ont été obtenues l'existence et l'unicité d'une solution. Des simulations numériques sur des modèles d'association en série ou en parallèle de ressorts, amortisseurs et patins (ou éléments de Saint-Venant), dont la formalisation mathématique fait intervenir des équations différentielles stochastiques multivoques, ont permis de valider des méthodes d'identification de paramètres à partir de cycles d'hystérésis.
4

Probability on the spaces of curves and the associated metric spaces via information geometry; radar applications / Probabilités sur les espaces de chemins et dans les espaces métriques associés via la géométrie de l’information ; applications radar

Le Brigant, Alice 04 July 2017 (has links)
Nous nous intéressons à la comparaison de formes de courbes lisses prenant leurs valeurs dans une variété riemannienne M. Dans ce but, nous introduisons une métrique riemannienne invariante par reparamétrisations sur la variété de dimension infinie des immersions lisses dans M. L’équation géodésique est donnée et les géodésiques entre deux courbes sont construites par tir géodésique. La structure quotient induite par l’action du groupe des reparamétrisations sur l’espace des courbes est étudiée. À l’aide d’une décomposition canonique d’un chemin dans un fibré principal, nous proposons un algorithme qui construit la géodésique horizontale entre deux courbes et qui fournit un matching optimal. Dans un deuxième temps, nous introduisons une discrétisation de notre modèle qui est elle-même une structure riemannienne sur la variété de dimension finie Mn+1 des "courbes discrètes" définies par n + 1 points, où M est de courbure sectionnelle constante. Nous montrons la convergence du modèle discret vers le modèle continu, et nous étudions la géométrie induite. Des résultats de simulations dans la sphère, le plan et le demi-plan hyperbolique sont donnés. Enfin, nous donnons le contexte mathématique nécessaire à l’application de l’étude de formes dans une variété au traitement statistique du signal radar, où des signaux radars localement stationnaires sont représentés par des courbes dans le polydisque de Poincaré via la géométrie de l’information. / We are concerned with the comparison of the shapes of open smooth curves that take their values in a Riemannian manifold M. To this end, we introduce a reparameterization invariant Riemannian metric on the infinite-dimensional manifold of these curves, modeled by smooth immersions in M. We derive the geodesic equation and solve the boundary value problem using geodesic shooting. The quotient structure induced by the action of the reparametrization group on the space of curves is studied. Using a canonical decomposition of a path in a principal bundle, we propose an algorithm that computes the horizontal geodesic between two curves and yields an optimal matching. In a second step, restricting to base manifolds of constant sectional curvature, we introduce a detailed discretization of the Riemannian structure on the space of smooth curves, which is itself a Riemannian metric on the finite-dimensional manifold Mn+1 of "discrete curves" given by n + 1 points. We show the convergence of the discrete model to the continuous model, and study the induced geometry. We show results of simulations in the sphere, the plane, and the hyperbolic halfplane. Finally, we give the necessary framework to apply shape analysis of manifold-valued curves to radar signal processing, where locally stationary radar signals are represented by curves in the Poincaré polydisk using information geometry.
5

Mosaïques de Poisson-Voronoï sur une variété riemannienne / Poisson-Voronoi tessellation in a Riemannian manifold

Chapron, Aurélie 20 November 2018 (has links)
Une mosaïque de Poisson-Voronoï est une partition aléatoire de l'espace euclidien en polyèdres, appelés cellules, obtenue à partir d'un ensemble aléatoire discret de points appelés germes. A chaque germe correspond une cellule, qui est l'ensemble des points de l'espace qui sont plus proches de ce germes que des autres germes. Ces modèles sont souvent utilisées dans divers domaines tels que la biologie, les télécommunications, l'astronomie, etc. Les caractéristiques de ces mosaïques et des cellules associées ont été largement étudiées dans l'espace euclidien mais les travaux sur les mosaïques de Voronoï dans un cadre non-euclidien sont rares.Dans cette thèse, on étend la définition de mosaïque de Voronoï à une variétériemannienne de dimension finie et on s'intéresse aux caractéristiques des cellules associées. Plus précisément, on mesure dans un premier temps l'influence que peut avoir la géométrie locale de la variété, c'est-à-dire les courbures sur les caractéristiques moyennes d'une cellule, comme son volume ou son nombre de sommets, en calculant des développements asymptotiques des ces caractéristiques moyennes à grande intensité. Dans un deuxième temps, on s'interroge sur la possibilité de retrouver la géométrie locale de la variété à partir des caractéristiques combinatoires de la mosaïque sur la variété. En particulier, on établit desthéorèmes limites, quand l'intensité du processus des germes tend vers l'infini, pour le nombre de sommets de la mosaïque dans une fenêtre, ce qui permet de construire un estimateur de la courbure et d'en donner quelques propriétés.Les principaux résultats de cette thèse reposent sur la combinaison de méthodesprobabilistes et de techniques issues de la géométrie différentielle. / A Poisson-Voronoi tessellation is a random partition of the Euclidean space intopolytopes, called cells, obtained from a discrete set of points called germs. To each germ corresponds a cell which is the set of the points of the space which are closer to this germ than to the other germs. These models are often used in several domains such as biology, telecommunication, astronomy, etc. The caracteristics of these tessellations and cells have been widely studied in the Euclidean space but only a few works concerns non-Euclidean Voronoi tessellation. In this thesis, we extend the definition of Poisson-Voronoi tessellation to a Riemannian manifold with finite dimension and we study the caracteristics of the associated cells. More precisely, we first measure the influence of the local geometry of the manifold, namely the curvatures, on the caracteristics of the cells, e.g. the mean volume or the mean number of vertices. Second, we aim to recover the local geometry of the manifold from the combinatorial properties of the tessellation on the manifolds. In particular, we establish limit theorems for the number of vertices of the tessellation, when the intensity of the process of the germs tends to infinity. This leads to the construction of an estimator of the curvature of the manifold and makes it possible to derive some properties of it. The main results of this thesis relies on the combination of stochastic methods and techniques from the differential geometry theory.
6

Sur l'existence de champs browniens fractionnaires indexés par des variétés / On the existence of fractional brownian fields indexed by manifolds

Venet, Nil 19 July 2016 (has links)
Cette thèse porte sur l'existence de champs browniens fractionnaires indexés par des variétés riemanniennes. Ces objets héritent des propriétés qui font le succès du mouvement brownien fractionnaire classique (H-autosimilarité des trajectoires ajustable, accroissements stationnaires), mais autorisent à considérer des applications où les données sont portées par un espace qui peut par exemple être courbé ou troué. L'existence de ces champs n'est assurée que lorsque la quantité 2H est inférieure à l'indice fractionnaire de la variété, qui n'est connu que dans un petit nombre d'exemples. Dans un premier temps nous donnons une condition nécessaire pour l'existence de champ brownien fractionnaire. Dans le cas du champ brownien (correspondant à H=1/2) indexé par des variétés qui ont des géodésiques fermées minimales, cette condition s'avère très contraignante : nous donnons des résultats de non-existence dans ce cadre, et montrons notamment qu'il n'existe pas de champ brownien indexé par une variété compacte non simplement connexe. La condition nécessaire donne également une preuve courte d'un fait attendu qui est la non-dégénérescence du champ brownien indexé par les espaces hyperboliques réels. Dans un second temps nous montrons que l'indice fractionnaire du cylindre est nul, ce qui constitue un exemple totalement dégénéré. Nous en déduisons que l'indice fractionnaire d'un espace métrique n'est pas continu par rapport à la convergence de Gromov-Hausdorff. Nous généralisons ce résultat sur le cylindre à un produit cartésien qui possède une géodésique fermée minimale, et donnons une majoration de l'indice fractionnaire de surfaces asymptotiquement proches du cylindre au voisinage d'une géodésique fermée minimale. / The aim of the thesis is the study of the existence of fractional Brownian fields indexed by Riemannian manifolds. Those fields inherit key properties of the classical fractional Brownian motion (sample paths with self-similarity of adjustable parameter H, stationary increments), while allowing to consider applications with data indexed by a space which can be for example curved or with a hole. The existence of those fields is only insured when the quantity 2H is inferior or equal to the fractional index of the manifold, which is known only in a few cases. In a first part we give a necessary condition for the fractional Brownian field to exist. In the case of the Brownian field (corresponding to H=1/2) indexed by a manifold with minimal closed geodesics this condition happens to be very restrictive. We give several nonexistence results in this situation. In particular we show that there exists no Brownian field indexed by a nonsimply connected compact manifold. Our necessary condition also gives a short proof of an expected result: we prove the nondegeneracy of fractional Brownian fields indexed by the real hyperbolic spaces. In a second part we show that the fractional index of the cylinder is null, which gives a totally degenerate case. We deduce from this result that the fractional index of a metric space is noncontinuous with respect to the Gromov-Hausdorff convergence. We generalise this result about the cylinder to a Cartesian product with a closed minimal geodesic. Furthermore we give a bound of the fractional index of surfaces asymptotically close to the cylinder in the neighbourhood of a closed minimal geodesic.
7

Équations de Hardy-Sobolev sur les variétés Riemanniennes compactes : influence de la géométrie / Hardy-Sobolev equations on the compact Riemannian manifolds : Influence of geometry

Jaber, Hassan 24 June 2014 (has links)
Dans ce Manuscrit, nous étudions l'influence de la géométrie sur les équations de Hardy-Sobolev perturbées ou non sur toute variété Riemannienne compacte sans bord de dimension supérieure ou égale à 3. Plus précisément, dans le cas non perturbé nous démontrons que pour toute dimension de la variété strictement supérieure à, l'existence d'une solution (ou plutôt une condition suffisante d'existence) dépendra de la géométrie locale autour de la singularité. En revanche, dans le cas où la dimension est égale à 3, c'est la géométrie globale (particulièrement, la masse de la fonction de Green) de la variété qui comptera. Dans le cas d'une équation à terme perturbatif sous-critique, nous démontrons que l'existence d'une solution dépendra uniquement de la perturbation pour les grandes dimensions et qu'une interaction entre la géométrie globale de la variété et la perturbation apparaîtra en dimension 3. Enfin, nous établissons une inégalité optimale de Hardy-Sobolev Riemannienne, la variété étant avec ou sans bord, où nous démontrons que la première meilleure constante est celle des inégalités Euclidiennes et est atteinte / In this Manuscript, we investigate the influence of geometry on the Hardy-Sobolev equations on the compact Riemannian manifolds without boundary of dimension greateror equal to 3. More precisely, we prove in the non perturbative case that the existence of solutions depends only on the local geometry around the singularity when the dimension is greater or equal to 4 while it is the global geometry of the manifold when the dimension is equal to 3 that matters. In the presence of a perturbative subcritical term, we prove that the existence of solutions depends only on the perturbation when the dimension is greater or equal to 4 while an interaction between the perturbation and the global geometry appears in dimension 3. Finally, we establish an Optimal Hardy-Sobolev inequality for all compact Riemannian manifolds, with or without boundary, where we prove that the Riemannian sharp constant is the one for the Euclidean inequality and is achieved
8

Transport optimal : régularité et applications

Gallouët, Thomas 10 December 2012 (has links) (PDF)
Cette thèse comporte deux parties distinctes, toutes les deux liées à la théorie du transport optimal. Dans la première partie, nous considérons une variété riemannienne, deux mesures à densité régulière et un coût de transport, typiquement la distance géodésique quadratique et nous nous intéressons à la régularité de l'application de transport optimal. Le critère décisif à cette régularité s'avère être le signe du tenseur de Ma-Trudinger-Wang (MTW). Nous présentons tout d'abord une synthèse des travaux réalisés sur ce tenseur. Nous nous intéressons ensuite au lien entre la géométrie des lieux d'injectivité et le tenseur MTW. Nous montrons que dans de nombreux cas, la positivité du tenseur MTW implique la convexité des lieux d'injectivité. La deuxième partie de cette thèse est liée aux équations aux dérivées partielles. Certaines peuvent être considérées comme des flots gradients dans l'espace de Wasserstein W2. C'est le cas de l'équation de Keller-Segel en dimension 2. Pour cette équation nous nous intéressons au problème de quantification de la masse lors de l'explosion des solutions ; cette explosion apparaît lorsque la masse initiale est supérieure à un seuil critique Mc. Nous cherchons alors à montrer qu'elle consiste en la formation d'un Dirac de masse Mc. Nous considérons ici un modèle particulaire en dimension 1 ayant le même comportement que l'équation de Keller-Segel. Pour ce modèle nous exhibons des bassins d'attractions à l'intérieur desquels l'explosion se produit avec seulement le nombre critique de particules. Finalement nous nous intéressons au profil d'explosion : à l'aide d'un changement d'échelle parabolique nous montrons que la structure de l'explosion correspond aux points critiques d'une certaine fonctionnelle.
9

Dynamical and Spectral applications of Gromov-Hausdorff Theory / Applications dynamiques et spectrales de la théorie de Gromov-Hausdorff

Cerocchi, Filippo 08 July 2013 (has links)
Cette thèse est divisée en deux parties. La première est consacrée à la méthode du barycentre, introduite en 1995 par G. Besson, G. Courtois et S. Gallot pour résoudre la conjecture de l'Entropie Minimale. Dans le Chapitre 1 nous décrivons ses développements les plus récents, notamment l'extension de cette méthode au cadre des variétés dont la courbure sectionnelle est de signe quelconque (voir les énoncés 1.2.1 et 1.4.1). Dans le Chapitre 2 et 3 nous présentons des résultats dans lesquels la méthode du barycentre joue un rôle important. Le problème “deux variétés dont les flots géodésiques sont conjugués sont-elles isométriques ?” (problème de la rigidité par conjugaison des flots) est le thème du Chapitre 2. Après avoir montré que deux telles variétés ont la même géométrie à grande échelle, on montre comment on peut utiliser ce résultat et la méthode du barycentre pour donner une nouvelle preuve de la rigidité (par conjugaison des flots) des variétés plates. Dans le Chapitre 3 nous utilisons la méthode du barycentre (en courbure de signe quelconque) et des inégalités de Sobolev itérées pour démontrer un théorème de comparaison entre les spectres de deux variétés riemanniennes (Y , g) et (X , g') de volumes proches, sachant qu'il existe une approximation de Gromov-Hausdorff de degré non nul entre ces deux variétés. Il s'agit d'un résultat d'approximation avec majoration de l'erreur d'approximation (et pas seulement d'un résultat de convergence). Remarquons qu'il n'est fait aucune autre hypothèse géométrique (et en particulier aucune hypothèse de courbure) sur la variété (Y , g), ce qui autorise un grand nombre de contre-exemples prouvant que le résultat est optimal. Dans la deuxième partie de la thèse (chapitre 4), on démontre un Lemme de Margulis sans hypothèse sur la courbure, qui s'applique aux variétés dont les groupes fondamentaux sont des produits libres (et qui ne possèdent pas d'élément de torsion d'ordre 2). Nous donnons également une borne inférieure de la systole des variétés dont le diamètre et l'entropie volumique sont majorés et dont le groupe fondamental est isomorphe à un produit libre sans torsion. Comme conséquences de ce dernier résultat nous obtenons des résultats de précompacité et de finitude topologique ou différentiable pour les variétés riemanniennes et une minoration de leur volume, tout ceci sans faire d'hypothèse de courbure. / This Ph.D. Thesis is divided into two parts. In the first part we present the barycenter method, a technique which has been introduced by G. Besson, G. Courtois and S. Gallot in 1995, in order to solve the Minimal Entropy conjecture. In Chapter 1 we are interested in the more recent developments of this method, more precisely in the recent extension of the method to the case of manifolds having sectional curvature of variable sign. In Chapters 2 and 3 we shall present some new results whose proofs make use of the barycenter method. The Conjugacy Rigidity problem is the theme of Chapter 2. First we show a general result which provide a comparison between the large scale geometry of the Riemannian universal coverings of two compact manifolds whose geodesic flows are conjugates. Then we shall show how we can apply the latter result and the barycenter method in curvature of variable sign in order to give a new proof of the conjugacy rigidity of flat manifolds. In Chapter 3 we shall give a proof of a spectra comparison theorem for a compact Riemannian manifold which admits a Gromov-Hausdorff-approximation of non zero absolute degree on a fixed compact manifold (X,g') and which has volume almost smaller than the one of the reference manifold. The proof relies on the barycenter method in curvature of variable sign and on iterated Sobolev inequalities. We underline that it is an approximation result (and not just a convergence result) and that no curvature assumptions are made or inferred on (Y,g). The second part of the Thesis consists of a single chapter. In this chapter we prove a Margulis Lemma without curvature assumptions for Riemannian manifolds having decomposable 2-torsionless fundamental group. We shall give also a proof of a universal lower bound for the homotopy systole of compact Riemannian manifolds having bounded volume entropy and diameter, and decomposable torsionless fundamental group. As a consequence of the latter result we shall deduce a Precompactness and Finiteness theorem and a Volume estimate without curvature assumptions.
10

Comparaison de valeurs propres de Laplaciens et inégalités de Sobolev sur des variétés riemanniennes à densité / Eigenvalue comparison for Laplacians and Sobolev inequalities on weighed Riemannian manifolds

Shouman, Abdolhakim 03 July 2017 (has links)
Le but de cette thèse est triple : INÉGALITÉS DE SOBOLEV AVEC DES CONSTANTES EXPLICITES SUR DES VARIÉTÉS RIEMANNIENNES À DENSITÉ ET À BORD CONVEXE : On obtient des inégalités de Sobolev à densité, avec des constantes géométriques explicites pour des variétés à courbure de m-Bakry-Émery Ricci minorée par une constante positive et à bord convexe. Ceci permet de généraliser de nombreux résultats connus dans le cas riemannien aux variétés avec densité. Nous montrons aussi comment déduire des inégalités de Sobolev obtenues, un résultat d’isolement pour les applications f -harmoniques. Nous présenterons également une nouvelle et très simple méthode pour la preuve de l’inégalité de Moser-Trudinger-Onofri [Onofri, 1982] dans le cas du disque euclidien. / The purpose of this thesis is threefold: SOBOLEV INEQUALITIES WITH EXPLICIT CONSTANTS ON A WEIGHTED RIEMANNIAN MANIFOLD OF CONVEX BOUNDARY: We obtain weighted Sobolev inequalities with explicit geometric constants for weighted Riemannian manifolds of positive m-Bakry-Emery Ricci curvature and convex boundary. As a first application, we generalize several results of Riemannian manifolds to the weighted setting. Another application is a new isolation result for the f -harmonic maps. We also give a new and elemantry proof of the well-known Moser-Trudinger-Onofri [Onofri, 1982] inequality for the Euclidean disk.

Page generated in 0.1481 seconds