• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 6
  • 4
  • 1
  • 1
  • Tagged with
  • 29
  • 29
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Sobre uma classe de equações elípticas envolvendo crescimento exponencial em ℝ2

Guimarães, Wanderson Rodrigo 16 May 2013 (has links)
Made available in DSpace on 2015-05-15T11:46:22Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1317724 bytes, checksum: 6a915301a18806d377bf5c949922b304 (MD5) Previous issue date: 2013-05-16 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work, we will study the existence and multiplicity of weak solutions for a class of nonhomogeneous elliptic problems involving exponential growth Trudinger-Moser type in R2. For this, we will use the Ekeland s Variational Principle and the Mountain Pass Theorem without the Palais-Smale condition in combination with a version of the Trudinger-Moser inequality. / Teorema do Passo da Montanha, Principio variacional de Ekeland, equação de Schrodinger, Desigualdade de Trudinger-Moser, Crescimento Exponencial.
22

Métodos variacionais aplicados à problemas singulares em equações elípticas não lineares / Variational methods applied to singular problems in elliptic nonlinear equations

Brito, Lucas Menezes de 10 August 2018 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2018-09-06T10:34:36Z No. of bitstreams: 2 Dissertação - Lucas Menezes de Brito - 2018.pdf: 2914034 bytes, checksum: 600a20e123b6c9b15b12092b1a8071c8 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-09-06T10:35:12Z (GMT) No. of bitstreams: 2 Dissertação - Lucas Menezes de Brito - 2018.pdf: 2914034 bytes, checksum: 600a20e123b6c9b15b12092b1a8071c8 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-09-06T10:35:12Z (GMT). No. of bitstreams: 2 Dissertação - Lucas Menezes de Brito - 2018.pdf: 2914034 bytes, checksum: 600a20e123b6c9b15b12092b1a8071c8 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-08-10 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we study a singular partial differential problem in a bounded domain with smoth boundary. We have two main cases, one superlinear with weak singularity, and the other one sublinear with strong songularity. We use Variational Methods, such as the Ekeland Variational Principle and the Nehari Manifolds, to solve this problem, finding weak solutions and proving the multiplicity of solutions in one of the cases. / Neste trabalho estudaremos um problema diferencial parcial singular em um domínio limitado com bordo suave. Temos dois casos principais, um superlinear com singularidade fraca e um sublinear com singularidade forte. Usaremos Métodos Variacionais, como o Princípio Variacional de Ekeland e as Variedades de Nehari, para resolver este problema, encontrando soluções fracas e provando a multiplicidade das mesmas em um dos casos.
23

Existência e multiplicidade de soluções para uma classe de problemas quasilineares com crescimento crítico exponencial / Existence and multiplicity of solutions for a class of quasilinear problems with exponential critical growth

Luciana Roze de Freitas 09 December 2010 (has links)
Neste trabalho, mostramos a existência e multiplicidade de soluções para a seguinte classe de equações elípticas quasilineares { - \'DELTA IND. \'NÜ\' POT. \'upsilon\' + \'|\'upsilon\'| POT. \'NÜ\' - 2 \'upsilon\' = f(x, u), \'upsilon\' \'DIFERENTE\' 0, \'upsilon\' \'PERTENCE A >>: Nu + jujN2 u = f(x; u); x 2 ; u 6= 0; u 2 W1;N( ); onde e um domnio em RN, N 2, N e o operador N-Laplaciano e f e uma func~ao que possui um crescimento crtico exponencial. Para obter nossos resultados utilizamos o Princpio Variacional de Ekeland, Teorema do Passo da Montanha, Categoria de Lusternik- Schnirelman, Ac~ao de Grupo e tecnicas baseadas na Teoria do G^enero. Palavras chaves: Problemas elpticos quasilineares, Metodo Variacional, N-Laplaciano, crescimento crtico exponencial, Princpio Variacional de Ekeland, Categoria de Lusternik- Schnirelman, Desigualdade de Trudinger-Moser / In this work, we show the existence and multiplicity of solutions for the following class of quasilinear elliptic equations { - \'DELTA\' IND. \'NÜ\' \'upsilon\'\' + |\'upsilon\'| POT. \'NÜ\' - 2 = f(x, \'upsilon\'), x \"IT BELONGS\' \'OMEGA\', \'upsilon\' \'DIFFERENT\' 0, \'upsilon\' \'IT BELONGS\' W POT. 1, \'NÜ\' ( OMEGA), where \'OMEGA\' is a domain in \' R POT. \'NÜ\' > OR = 2, \'DELTA\' IND. \'NÜ\' is the N-Laplacian operator and f is a function with exponential critical growth. To obtain our results we utilize the Ekeland Variational Principle, the Mountain Pass Theorem, Lusternik-Schnirelman of Category, Group Action and techniques based on Genus Theory
24

Výpočtové modelování piezoelektrických vrstevnatých kompozitů a analýza jejich elektro-mechanické odezvy při harmonickém kmitání / Computational modelling of the layered piezoelectric composites and analysis of their electro-mechanical response upon harmonic vibrations

Machů, Zdeněk January 2019 (has links)
V současnosti je velmi aktuálním tématem generování elektrické energie z alternativních zdrojů, zejména z vibrací. Zařízení, která přeměňují mechanickou energii na elektrickou, využívají často ke své činnosti piezoelektrický jev. Pro optimální nastavení takového elektromechanického měniče pro danou aplikaci je třeba mít k dispozici výpočtový model, který bude schopný postihnout všechny klíčové aspekty jeho provozu. Tato práce se tedy zabývá vytvořením takovéhoto nástroje, který je schopen komplexně popsat elektromechanickou odezvu studovaného piezoelektrického měniče energie v podobě vetknutého, vícevrstvého keramického nosníku s piezoelektrickými vrstvami. Uvažovaná vícevrstvá konstrukce je během své činnosti vystavena kinematickému buzení a je rovněž zatížena tepelnou zbytkovou napjatostí vznikající při její výrobě. Vytvořený výpočtový model využívá klasickou laminátovou teorii k určení statické elektromechanické odezvy dané konstrukce. Elektromechanická odezva při kmitání uvažované konstrukce v ustáleném stavu je získána s využitím Hamiltonova variačního principu a teorie kmitání prutů. Vytvořený výpočtový model je dále schopen odhadnout zdánlivou lomovou houževnatost dané vícevrstvé konstrukce pomocí metody váhových funkcí. Výstupy vytvořeného výpočtového modelu jsou ověřeny s využitím numerických simulací na bázi MKP a dostupných experimentálních výsledků. V diplomové práci je následně vytvořený výpočtový model aplikován při hledání optimálního rozložení jednotlivých vrstev konkrétního vícevrstvého nosníku s cílem maximalizovat jeho elektrický výkon a odolnost vůči šíření povrchových trhlin, resp. vzniku křehkého lomu. Tohoto cíle je dosaženo pomocí vhodného rozložení tepelných zbytkových napětí v jednotlivých vrstvách uvažované konstrukce (řízeného použitými materiály a tloušťkami jednotlivých vrstev).
25

A duality approach to gap functions for variational inequalities and equilibrium problems

Lkhamsuren, Altangerel 25 July 2006 (has links)
This work aims to investigate some applications of the conjugate duality for scalar and vector optimization problems to the construction of gap functions for variational inequalities and equilibrium problems. The basic idea of the approach is to reformulate variational inequalities and equilibrium problems into optimization problems depending on a fixed variable, which allows us to apply duality results from optimization problems. Based on some perturbations, first we consider the conjugate duality for scalar optimization. As applications, duality investigations for the convex partially separable optimization problem are discussed. Afterwards, we concentrate our attention on some applications of conjugate duality for convex optimization problems in finite and infinite-dimensional spaces to the construction of a gap function for variational inequalities and equilibrium problems. To verify the properties in the definition of a gap function weak and strong duality are used. The remainder of this thesis deals with the extension of this approach to vector variational inequalities and vector equilibrium problems. By using the perturbation functions in analogy to the scalar case, different dual problems for vector optimization and duality assertions for these problems are derived. This study allows us to propose some set-valued gap functions for the vector variational inequality. Finally, by applying the Fenchel duality on the basis of weak orderings, some variational principles for vector equilibrium problems are investigated.
26

Modélisation et simulation Eulériennes des écoulements diphasiques à phases séparées et dispersées : développement d’une modélisation unifiée et de méthodes numériques adaptées au calcul massivement parallèle / Eulerian modeling and simulations of separated and disperse two-phase flows : development of a unified modeling approach and associated numerical methods for highly parallel computations

Drui, Florence 07 July 2017 (has links)
Dans un contexte industriel, l’utilisation de modèles diphasiques d’ordre réduit est nécessaire pour pouvoir effectuer des simulations numériques prédictives d’injection de combustible liquide dans les chambres de combustion automobiles et aéronautiques, afin de concevoir des équipements plus performants et moins polluants. Le processus d’atomisation du combustible, depuis sa sortie de l’injecteur sous un régime de phases séparées, jusqu’au brouillard de gouttelettes dispersées, est l’un des facteurs clés d’une combustion de bonne qualité. Aujourd’hui cependant, la prise en compte de toutes les échelles physiques impliquées dans ce processus nécessite une avancée majeure en termes de modélisation, de méthodes numériques et de calcul haute performance (HPC). Ces trois aspects sont abordés dans cette thèse. Premièrement, des modèles de mélange, dérivés par le principe variationnel de Hamilton et le second principe de la thermodynamique sont étudiés. Ils sont alors enrichis afin de pouvoir décrire des pulsations des interfaces au niveau de la sous-échelle. Des comparaisons avec des données expérimentales dans un contexte de milieux à bulles permettent de vérifier la cohérence physique des modèles et de valider la méthodologie. Deuxièmement, une stratégie de discrétisation est développée, basée sur une séparation d’opérateur, permettant la résolution indépendante de la partie convective des systèmes à l’aide de solveurs de Riemann approchés standards et les termes sources à l’aide d’intégrateurs d’équations différentielles ordinaires. Ces différentes méthodes répondent aux particularités des systèmes diphasiques compressibles, ainsi qu’au choix de l’utilisation de maillages adaptatifs (AMR). Pour ces derniers, une stratégie spécifique est développée : il s’agit du choix de critères de raffinement et de la projection de la solution d’une grille à une autre (plus fine ou plus grossière). Enfin, l’utilisation de l’AMR dans un cadre HPC est rendue possible grâce à la bibliothèque AMR p4est, laquelle a montré une excellente scalabilité jusqu’à plusieurs milliers de coeurs de calcul. Un code applicatif, CanoP, a été développé et permet de simuler des écoulements fluides avec des méthodes de volumes finis sur des maillages AMR. CanoP pourra être utilisé pour des futures simulations d’atomisation liquide. / In an industrial context, reduced-order two-phase models are used in predictive simulations of the liquid fuel injection in combustion chambers and help designing more efficient and less polluting devices. The combustion quality strongly depends on the atomization process, starting from the separated phase flow at the exit of the nozzle down to the cloud of fuel droplets characterized by a disperse-phase flow. Today, simulating all the physical scales involved in this process requires a major breakthrough in terms of modeling, numerical methods and high performance computing (HPC). These three aspects are addressed in this thesis. First, we are interested in mixture models, derived through Hamilton’s variational principle and the second principle of thermodynamics. We enrich these models, so that they can describe sub-scale pulsations mechanisms. Comparisons with experimental data in a context of bubbly flows enables to assess the models and the methodology. Based on a geometrical study of the interface evolution, new tracks are then proposed for further enriching the mixture models using the same methodology. Second, we propose a numerical strategy based on finite volume methods composed of an operator splitting strategy, approximate Riemann solvers for the resolution of the convective part and specific ODE solvers for the source terms. These methods have been adapted so as to handle several difficulties related to two-phase flows, like the large acoustic impedance ratio, the stiffness of the source terms and low-Mach issues. Moreover, a cell-based Adaptive Mesh Refinement (AMR) strategy is considered. This involves to develop refinement criteria, the setting of the solution values on the new grids and to adapt the standard methods for regular structured grids to non-conforming grids. Finally, the scalability of this AMR tool relies on the p4est AMR library, that shows excellent scalability on several thousands cores. A code named CanoP has been developed and enables to solve fluid dynamics equations on AMR grids. We show that CanoP can be used for future simulations of the liquid atomization.
27

Elements of conditional optimization and their applications to order theory

Karliczek, Martin 10 December 2014 (has links)
In dieser Arbeit beweisen wir für Optimierungsprobleme in L0-Moduln relevante Resultate und untersuchen Anwendungen für die Darstellung von Präferenzen. Im ersten Kapitel geht es um quasikonkave, monotone und lokale Funktionen von einem L0-Modul X nach L0, die wir robust darstellen. Im zweiten Kapitel entwickeln wir das Ekeland’sche Variationsprinzip für L0-Moduln, die eine L0-Metrik besitzen. Wir beweisen eine L0 -Variante einer Verallgemeinerung des Ekeland’schen Theorems. Der Beweis des Brouwerschen Fixpunktsatzes für Funktionen, die auf (L0)^d definiert sind, wird in Kapitel 3 behandelt. Wir definieren das Konzept des Simplexes in (L0)^d und beweisen, dass jede lokale, folgenstetige Funktion darauf einen Fixpunkt besitzt. Dies nutzen wir, um den Fixpunktsatz auch für Funktionen auf beliebigen abgeschlossenen, L0 -konvexen Mengen zu zeigen. Eine allgemeinere Struktur als L0 ist die bedingte Menge. Im vierten Kapitel behandeln wir bedingte topologische Vektorräume. Wir führen das Konzept der Dualität für bedingte Mengen ein und beweisen Theoreme der Funktionalanalysis darauf, unter anderem das Theorem von Banach-Alaoglu und Krein-Šmulian. Im fünften Kapitel widmen wir uns der Darstellung mit wandernden konvexen Mengen. Wir zeigen danach, wie die Transitivität für diese Darstellungsform beschrieben werden kann. Abschließend modellieren wir die Eigenschaft, dass die Transitivität einer Relation nur für ähnliche Elemente gesichert ist und diskutieren Arten der Darstellung solcher Relationen. / In this thesis, we prove results relevant for optimization problems in L0-modules and study applications to order theory. The first part deals with the notion of an Assessment Index (AI). For an L0 -module X an AI is a quasiconcave, monotone and local function mapping to L0. We prove a robust representation of these AIs. In the second chapter of this thesis, we develop Ekeland’s variational principle for L0-modules allowing for an L0-metric. We prove an L0-Version of a generalization of Ekeland’s theorem. A further application of L0 -theory is examined in the third chapter of this thesis, namely an extension of the Brouwer fixed point theorem to functions on (L0)^d . We define a conditional simplex, which is a simplex with respect to L0 , and prove that every local, sequentially continuous function has a fixed point. We extend the fixed point theorem to arbitrary closed, L0-convex sets. A more general structure than L0 -modules is the concept of conditional sets. In the fourth chapter of the thesis, we study conditional topological vector spaces. We examine the concept of duality for conditional sets and prove results of functional analysis: among others, the Banach-Alaoglu and the Krein-Šmulian theorem. Any L0 -module being a conditional set allows to apply all results to L0 -theory. In the fifth chapter, we discuss the property of transitivity of relations and its connection to certain forms of representations. After a survey of common representations of preferences, we attend to relations induced by moving convex sets which are relations of the form that x is preferred to y if and only if x − y is in a convex set depending on y. We examine in which cases such a representation is transitive. Finally, we exhibit nontransitivity due to dissimilarity of the compared object and discuss representations for relations of that type.
28

Contributions au calcul des variations et au principe du maximum de Pontryagin en calculs time scale et fractionnaire / Contributions to calculus of variations and to Pontryagin maximum principle in time scale calculus and fractional calculus

Bourdin, Loïc 18 June 2013 (has links)
Cette thèse est une contribution au calcul des variations et à la théorie du contrôle optimal dans les cadres discret, plus généralement time scale, et fractionnaire. Ces deux domaines ont récemment connu un développement considérable dû pour l’un à son application en informatique et pour l’autre à son essor dans des problèmes physiques de diffusion anormale. Que ce soit dans le cadre time scale ou dans le cadre fractionnaire, nos objectifs sont de : a) développer un calcul des variations et étendre quelques résultats classiques (voir plus bas); b) établir un principe du maximum de Pontryagin (PMP en abrégé) pour des problèmes de contrôle optimal. Dans ce but, nous généralisons plusieurs méthodes variationnelles usuelles, allant du simple calcul des variations au principe variationnel d’Ekeland (couplé avec la technique des variations-aiguilles), en passant par l’étude d’invariances variationnelles par des groupes de transformations. Les démonstrations des PMPs nous amènent également à employer des théorèmes de point fixe et à prendre en considération la technique des multiplicateurs de Lagrange ou encore une méthode basée sur un théorème d’inversion locale conique. Ce manuscrit est donc composé de deux parties : la Partie 1 traite de problèmes variationnels posés sur time scale et la Partie 2 est consacrée à leurs pendants fractionnaires. Dans chacune de ces deux parties, nous suivons l’organisation suivante : 1. détermination de l’équation d’Euler-Lagrange caractérisant les points critiques d’une fonctionnelle Lagrangienne ; 2. énoncé d’un théorème de type Noether assurant l’existence d’une constante de mouvement pour les équations d’Euler-Lagrange admettant une symétrie ; 3. énoncé d’un théorème de type Tonelli assurant l’existence d’un minimiseur pour une fonctionnelle Lagrangienne et donc, par la même occasion, d’une solution pour l’équation d’Euler-Lagrange associée (uniquement en Partie 2) ; 4. énoncé d’un PMP (version forte en Partie 1, version faible en Partie 2) donnant une condition nécessaire pour les trajectoires qui sont solutions de problèmes de contrôle optimal généraux non-linéaires ; 5. détermination d’une condition de type Helmholtz caractérisant les équations provenant d’un calcul des variations (uniquement en Partie 1 et uniquement dans les cas purement continu et purement discret). Des théorèmes de type Cauchy-Lipschitz nécessaires à l’étude de problèmes de contrôle optimal sont démontrés en Annexe. / This dissertation deals with the mathematical fields called calculus of variations and optimal control theory. More precisely, we develop some aspects of these two domains in discrete, more generally time scale, and fractional frameworks. Indeed, these two settings have recently experience a significant development due to its applications in computing for the first one and to its emergence in physical contexts of anomalous diffusion for the second one. In both frameworks, our goals are: a) to develop a calculus of variations and extend some classical results (see below); b) to state a Pontryagin maximum principle (denoted in short PMP) for optimal control problems. Towards these purposes, we generalize several classical variational methods, including the Ekeland’s variational principle (combined with needle-like variations) as well as variational invariances via the action of groups of transformations. Furthermore, the investigations for PMPs lead us to use fixed point theorems and to consider the Lagrange multiplier technique and a method based on a conic implicit function theorem. This manuscript is made up of two parts : Part A deals with variational problems on time scale and Part B is devoted to their fractional analogues. In each of these parts, we follow (with minor differences) the following organization: 1. obtaining of an Euler-Lagrange equation characterizing the critical points of a Lagrangian functional; 2. statement of a Noether-type theorem ensuring the existence of a constant of motion for Euler-Lagrange equations admitting a symmetry;3. statement of a Tonelli-type theorem ensuring the existence of a minimizer for a Lagrangian functional and, consequently, of a solution for the corresponding Euler-Lagrange equation (only in Part B); 4. statement of a PMP (strong version in Part A and weak version in Part B) giving a necessary condition for the solutions of general nonlinear optimal control problems; 5. obtaining of a Helmholtz condition characterizing the equations deriving from a calculus of variations (only in Part A and only in the purely continuous and purely discrete cases). Some Picard-Lindelöf type theorems necessary for the analysis of optimal control problems are obtained in Appendices.
29

A deep learning theory for neural networks grounded in physics

Scellier, Benjamin 12 1900 (has links)
Au cours de la dernière décennie, l'apprentissage profond est devenu une composante majeure de l'intelligence artificielle, ayant mené à une série d'avancées capitales dans une variété de domaines. L'un des piliers de l'apprentissage profond est l'optimisation de fonction de coût par l'algorithme du gradient stochastique (SGD). Traditionnellement en apprentissage profond, les réseaux de neurones sont des fonctions mathématiques différentiables, et les gradients requis pour l'algorithme SGD sont calculés par rétropropagation. Cependant, les architectures informatiques sur lesquelles ces réseaux de neurones sont implémentés et entraînés souffrent d’inefficacités en vitesse et en énergie, dues à la séparation de la mémoire et des calculs dans ces architectures. Pour résoudre ces problèmes, le neuromorphique vise à implementer les réseaux de neurones dans des architectures qui fusionnent mémoire et calculs, imitant plus fidèlement le cerveau. Dans cette thèse, nous soutenons que pour construire efficacement des réseaux de neurones dans des architectures neuromorphiques, il est nécessaire de repenser les algorithmes pour les implémenter et les entraîner. Nous présentons un cadre mathématique alternative, compatible lui aussi avec l’algorithme SGD, qui permet de concevoir des réseaux de neurones dans des substrats qui exploitent mieux les lois de la physique. Notre cadre mathématique s'applique à une très large classe de modèles, à savoir les systèmes dont l'état ou la dynamique sont décrits par des équations variationnelles. La procédure pour calculer les gradients de la fonction de coût dans de tels systèmes (qui dans de nombreux cas pratiques ne nécessite que de l'information locale pour chaque paramètre) est appelée “equilibrium propagation” (EqProp). Comme beaucoup de systèmes en physique et en ingénierie peuvent être décrits par des principes variationnels, notre cadre mathématique peut potentiellement s'appliquer à une grande variété de systèmes physiques, dont les applications vont au delà du neuromorphique et touchent divers champs d'ingénierie. / In the last decade, deep learning has become a major component of artificial intelligence, leading to a series of breakthroughs across a wide variety of domains. The workhorse of deep learning is the optimization of loss functions by stochastic gradient descent (SGD). Traditionally in deep learning, neural networks are differentiable mathematical functions, and the loss gradients required for SGD are computed with the backpropagation algorithm. However, the computer architectures on which these neural networks are implemented and trained suffer from speed and energy inefficiency issues, due to the separation of memory and processing in these architectures. To solve these problems, the field of neuromorphic computing aims at implementing neural networks on hardware architectures that merge memory and processing, just like brains do. In this thesis, we argue that building large, fast and efficient neural networks on neuromorphic architectures also requires rethinking the algorithms to implement and train them. We present an alternative mathematical framework, also compatible with SGD, which offers the possibility to design neural networks in substrates that directly exploit the laws of physics. Our framework applies to a very broad class of models, namely those whose state or dynamics are described by variational equations. This includes physical systems whose equilibrium state minimizes an energy function, and physical systems whose trajectory minimizes an action functional (principle of least action). We present a simple procedure to compute the loss gradients in such systems, called equilibrium propagation (EqProp), which requires solely locally available information for each trainable parameter. Since many models in physics and engineering can be described by variational principles, our framework has the potential to be applied to a broad variety of physical systems, whose applications extend to various fields of engineering, beyond neuromorphic computing.

Page generated in 0.1237 seconds