Spelling suggestions: "subject:"variationnelle"" "subject:"variationnelles""
21 |
Validation et formulation variationnelle d'une loi de comportement viscoélastique non linéaire en grandes déformationsHassani, Seddiq 31 October 1997 (has links) (PDF)
On développe un modèle viscoélastique non linéaire en grandes déformations, appelé modèle pseudo-linéaire. Ce modèle est basé sur un choix particulier d'une mesure de déformation permettant d'écrire le potentiel d'énergie libre sous forme quadratique et la loi de comportement sous forme d'une convolution simple. Afin de valider ce modèle, on compare le potentiel pseudo-linéaire à un potentiel d'énergie libre écrit sous la forme générale d'un développement de Fréchet d'ordre 4. Les fonctions de relaxation de ce potentiel sont écrites sous forme d'exponentielles décroissantes à un temps caractéristique par décade. Cette comparaison montre une bonne concordance entre les deux descriptions. La formulation proposée permet de calculer simplement la dissipation dans le matériau. Une illustration est donnée dans le cas d'oscillations harmoniques. On développe alors une formulation variationnelle associée au modèle pseudo-linéaire basée sur la minimisation de l'énergie totale. On effectue une approximation linéaire en temps et on propose une procédure numérique de résolution. On construit alors un code de calcul par éléments finis et on le valide dans le cas de comportements simples en comparant les solutions analytiques aux résultats numériques.
|
22 |
Optimisation et approximation adiabatiqueRenaud-Desjardins, Louis R.-D. 12 1900 (has links)
L'approximation adiabatique en mécanique quantique stipule que si un système quantique évolue assez lentement, alors il demeurera dans le même état propre. Récemment, une faille dans l'application de l'approximation adiabatique a été découverte. Les limites du théorème seront expliquées lors de sa dérivation.
Ce mémoire à pour but d'optimiser la probabilité de se maintenir dans le même état propre connaissant le système initial, final et le temps d'évolution total. Cette contrainte sur le temps empêche le système d'être assez lent pour être adiabatique.
Pour solutionner ce problème, une méthode variationnelle est utilisée. Cette méthode suppose connaître l'évolution optimale et y ajoute une petite variation. Par après, nous insérons cette variation dans l'équation de la probabilité d'être adiabatique et développons en série. Puisque la série est développée autour d'un optimum, le terme d'ordre un doit nécessairement être nul. Ceci devrait nous donner un critère sur l'évolution la plus adiabatique possible et permettre de la déterminer.
Les systèmes quantiques dépendants du temps sont très complexes. Ainsi, nous commencerons par les systèmes ayant des énergies propres indépendantes du temps. Puis, les systèmes sans contrainte et avec des fonctions d'onde initiale et finale libres seront étudiés. / The adiabatic approximation in quantum mechanics states that if the Hamiltonian of a physical system evolves slowly enough, then it will remain in the instantaneous eigenstate related to the initial eigenstate. Recently, two researchers found an inconsistency in the application of the approximation. A discussion about the limit of this idea will be presented. Our goal is to optimize the probability to be in the instantaneous eigenstate related to the initial eigenstate knowing the initial and final system, with the total time of the experiment fixed to $T$. This last condition prevents us from being slow enough to use the adiabatic approximation.
To solve this problem, we turn to the calculus of variation. We suppose the ideal evolution is known and we add a small variation to it. We take the result, put it in the probability to be adiabatic and expand in powers of the variation. The first order term must be zero. This enables us to derive a criterion which will give us conditions on the ideal Hamiltonian. Those conditions should define the ideal Hamiltonian.
Time dependent quantum systems are very complicated. To simplify the problem, we will start by considering systems with time independent energies. Afterward, the general case will be treated.
|
23 |
Analyse d'images par des méthodes variationnelles et géométriques / Geometric and variational methods for image analysisFoare, Marion 26 June 2017 (has links)
Dans cette thèse, nous nous intéressons à la fois aux aspects théoriques et à la résolution numérique du problème de Mumford-Shah avec anisotropie pour la restauration et la segmentation d'image. Cette fonctionnelle possède en effet la particularité de reconstruire une image dégradée tout en extrayant l'ensemble des contours des régions d'intérêt au sein de l'image. Numériquement, on utilise l'approximation d'Ambrosio-Tortorelli pour approcher un minimiseur de la fonctionnelle de Mumford-Shah. Elle Gamma-converge vers cette dernière et permet elle aussi d'extraire les contours. Les implémentations avec des schémas aux différences finies ou aux éléments finis sont toutefois peu adaptées pour l'optimisation de la fonctionnelle d'Ambrosio-Tortorelli. On présente ainsi deux nouvelles formulations discrètes de la fonctionnelle d'Ambrosio-Tortorelli à l'aide des opérateurs et du formalisme du calcul discret. Ces approches sont utilisées pour la restauration d'images ainsi que pour le lissage du champ de normales et la détection de saillances des surfaces digitales de l'espace. Nous étudions aussi un second problème d'optimisation de forme similaire avec conditions aux bords de Robin. Nous démontrons dans un premier temps l'existence et la régularité partielle des solutions, et dans un second temps deux approximations par Gamma-convergence pour la résolution numérique du problème. L'analyse numérique montre une nouvelle fois les difficultés rencontrées pour la minimisation d'approximations par Gamma-convergence. / In this work, we study both theoretical and numerical aspects of an anisotropic Mumford-Shah problem for image restoration and segmentation. The Mumford-Shah functional allows to both reconstruct a degraded image and extract the contours of the region of interest. Numerically, we use the Amborsio-Tortorelli approximation to approach a minimizer of the Mumford-Shah functional. It Gamma-converges to the Mumford-Shah functional and allows also to extract the contours. However, the minimization of the Ambrosio-Tortorelli functional using standard discretization schemes such as finite differences or finite elements leads to difficulties. We thus present two new discrete formulations of the Ambrosio-Tortorelli functional using the framework of discrete calculus. We use these approaches for image restoration and for the reconstruction of normal vector field and feature extraction on digital data. We finally study another similar shape optimization problem with Robin boundary conditions. We first prove existence and partial regularity of solutions and then construct and demonstrate the Gamma-convergence of two approximations. Numerical analysis shows once again the difficulties dealing with Gamma-convergent approximations.
|
24 |
Méthodes variationnelles : Applications à l'analyse d'image et au modèle de Frenkel-Kontorova / Variational methods : Applications to image analysis and to Frenkel-Kontorova modelIssa, Samar 19 December 2011 (has links)
Cette thèse est décomposée en deux parties. La première est consacrée à l'étude de la restauration d'image et la seconde partie est consacrée à l'étude d'un modèle de Frenkel-Kontorova par des méthodes issues du calcul variationnel et des équations aux dérivées partielles. Au chapitre 1, nous présentons les questions essentielles que nous traiterons dans cette thèse, puis on fait des rappels sur les définitions et quelques propriétés d'espace des fonctions à variations bornées BV , l'espace d'Orlicz et le modèle de Frenkel-Kontorova. Au chapitre 2, nous montrons que les problèmes de minimisation non convexe (restauration d'image) contenant des termes de régularisation sous-linéaires sont mal posés. Au chapitre 3, nous étudions un modèle de restauration avec un terme de régularisation à croissance non standard, proposé par Blomgren et al. : le module du gradient est élevé a une puissance qui dépend elle même du gradient. On montre qu'elle est semi-continue inférieurement pour la topologie faible d'un certain espace d'Orlicz-Sobolev qui lui est associé, ce qui permet un résultat d'existence de la solution. Au chapitre 4, nous étudions un modèle de Frenkel-Kontorova, dont on montre l'existence d'au moins une solution de type travelling wave, u. / This thesis is divided into two parts. The first is devoted to the study of image restorationand the second part is devoted to the study of a Frenkel-Kontorova model using methodsfrom the calculus of variations and partial differential equations. In chapter 1, we presentthe key issues we will discuss in this thesis, and recal the denitions and some properties ofspaces of functions of bounded variations BV , Orlicz Sobolev spaces and Frenkel-Kontorovamodel results on image analysis. In chapter 2, we show that the non-convex minimizationproblems (restoration image) involving sublinear regularizing terms are ill-posed. In chapter3, we study a model of restoration with nonstandard increasing regularizing terms,proposedby Blomgren. We show that is lower semi-continuous in the weak topologie of some Sobolev-Orlicz space associated with it, which allows existence result of the solution. In Chaptre 4, we study a Frenkel-Kontorova model, that we show existence of at least a traveling wave type solution, u.
|
25 |
Corrélations, intrication et dynamique des systèmes quantiques à N Corps : une étude variationnelle / Correlations, Entanglement and Time Evolution of Quantum many Body Systems : a variational studyThibaut, Jérôme 09 July 2019 (has links)
Cette thèse porte sur l'étude de systèmes quantiques à N-corps à température nulle, où le comportement du système n'est alors soumis qu'aux effets quantiques. Je vais présenter ici une approche variationnelle développée avec Tommaso Roscilde, mon directeur de thèse, et Fabio Mezzacapo, mon co-encadrant de thèse, pour étudier ces systèmes.Cette approche se base sur une parametrisation de l’état quantique (dit Ansatz) à laquelle on applique une procédure d’optimisation variationnelle lui permettant de reproduire l'évolution d'un système soumis à l'équation de Schrödinger, tout en limitant le nombre de variables considérées. En considérant une évolution en temps imaginaire, il est possible d'étudier l'état fondamental d'un système. Je me suis ainsi intéressé à un modèle de chaîne XX de spins 1/2, dont les corrélations à longue portée rendent l'étude difficile, et adapté ainsi notre approche pour reproduire au mieux les corrélations et l'intrication du système. Je me suis ensuite intéressé au modèle J1-J2 dont la structure de signe non positive des coefficients de l’état quantique pose un défi important pour les approches Monte Carlo; et dans laquelle la frustration magnétique induit une transition de phase quantique (d’un état aux corrélations à longue porté vers un état non magnétique avec formation d’un cristal de lien de valence). Je me suis enfin intéressé à l'évolution temporelle d'un système à N-corps à partir d'un état non stationnaire. J'ai pu étudier la capacité de notre approche à reproduire la croissance linéaire de l’intrication dans le temps, ce qui est un obstacle fondamental pour les approches alternatives telles que le groupe de renormalisation de la matrice densité. / This thesis presents a study of quantum many-body systems at zero temperature, where the behavior of the system is purely driven by the quantum effects. I will introduce a variationnal approach developped with Tommaso Roscilde, my PhD supervisor, and Fabio Mezzacapo, my co-supervisor, in order to study these systems.This approach is based on a parametrisation of the quantum state (named Ansatz) on which we apply a variational optimisation, allowing us reproduce the system's evolution under Schrödinger's equation with a limited number of variables.By considering an imaginary-time evolution, it is possible to reconstruct the system's ground state. I focused on S=1/2 XX spin chain, where the long-range quantum correlations complicate a variational study; and I have specifically targeted our Ansatz in order to reproduce the correlations and the entanglement of the ground state. Moreover I considered the antiferromagnetic S=1/2 J1-J2 spin chain, where the non-trivial sign structure of the coefficients of the quantum state introduces an important challenge for the quantum Monte Carlo approach; and where the magnetic frustration induces a quantum phase transition (from a state with long range correlations to a non-magnetic state in the form of a valence-bond crystal).Finally I focused on the time evolution of a quantum many-body system starting from a non-stationary state. I studied the ability of our approach to reproduce the linear increase of the entanglement during time, which is a fondamental obstacle for other approaches such as the density-matrix renormalization group.
|
26 |
Deep learning of representations and its application to computer visionGoodfellow, Ian 04 1900 (has links)
No description available.
|
27 |
Théorèmes de point fixe et principe variationnel d'EkelandDazé, Caroline 02 1900 (has links)
Le principe de contraction de Banach, qui garantit l'existence d'un point fixe d'une contraction d'un espace métrique complet à valeur dans lui-même, est certainement le plus connu des théorèmes de point fixe. Dans plusieurs situations concrètes, nous sommes cependant amenés à considérer une contraction qui n'est définie que sur un sous-ensemble de cet espace. Afin de garantir l'existence d'un point fixe, nous verrons que d'autres hypothèses sont évidemment nécessaires. Le théorème de Caristi, qui garantit l'existence d'un point fixe d'une fonction d'un espace métrique complet à valeur dans lui-même et respectant une condition particulière sur d(x,f(x)), a plus tard été généralisé aux fonctions multivoques. Nous énoncerons des théorèmes de point fixe pour des fonctions multivoques définies sur un sous-ensemble d'un espace métrique grâce, entre autres, à l'introduction de notions de fonctions entrantes. Cette piste de recherche s'inscrit dans les travaux très récents de mathématiciens français et polonais. Nous avons obtenu des généralisations aux espaces de Fréchet et aux espaces de jauge de quelques théorèmes, dont les théorèmes de Caristi et le principe variationnel d'Ekeland. Nous avons également généralisé des théorèmes de point fixe pour des fonctions qui sont définies sur un sous-ensemble d'un espace de Fréchet ou de jauge. Pour ce faire, nous avons eu recours à de nouveaux types de contractions; les contractions sur les espaces de Fréchet introduites par Cain et Nashed [CaNa] en 1971 et les contractions généralisées sur les espaces de jauge introduites par Frigon [Fr] en 2000. / The Banach contraction principle, which certifies that a contraction of a complete metric space into itself has a fixed point, is for sure the most famous of all fixed point theorems. However, in many case, the contraction we consider is only defined on a subset of a complete metric space. Of course, to certify that such a contraction has a fixed point, we need to add some restrictions. The Caristi theorem, which certifies the existence of a fixed point of a function of a complete metric space into itself satisfying a particular condition on d(x,f(x)), was later generalized to multivalued functions. By introducing different types of inwardness assumptions, we will be able to state some fixed point theorems for multivalued functions defined on a subset of a metric space. This is related to the recent work of French and Polish mathematicians. We were able to generalize some theorems to Fréchet spaces and gauge spaces such as the Caristi theorems and the Ekeland variational principle. We were also able to generalize some fixed point theorems for functions that are only defined on a subset of a Fréchet space or a gauge space. To do so, we used new types of contractions; contractions on Fréchet spaces introduced by Cain and Nashed [CaNa] in 1971 and generalized contractions on gauge spaces introduced by Frigon [Fr] in 2000.
|
28 |
Décomposition d’image par modèles variationnels : débruitage et extraction de texture / Variational models for image decomposition : denoising and texture extractionPiffet, Loïc 23 November 2010 (has links)
Cette thèse est consacrée dans un premier temps à l’élaboration d’un modèle variationnel dedébruitage d’ordre deux, faisant intervenir l’espace BV 2 des fonctions à hessien borné. Nous nous inspirons ici directement du célèbre modèle de Rudin, Osher et Fatemi (ROF), remplaçant la minimisation de la variation totale de la fonction par la minimisation de la variation totale seconde, c’est à dire la variation totale de ses dérivées. Le but est ici d’obtenir un modèle aussi performant que le modèle ROF, permettant de plus de résoudre le problème de l’effet staircasing que celui-ci engendre. Le modèle que nous étudions ici semble efficace, entraînant toutefois l’apparition d’un léger effet de flou. C’est afin de réduire cet effet que nous introduisons finalement un modèle mixte, permettant d’obtenir des solutions à la fois non constantes par morceaux et sans effet de flou au niveau des détails. Dans une seconde partie, nous nous intéressons au problème d’extraction de texture. Un modèle reconnu comme étant l’un des plus performants est le modèle T V -L1, qui consiste simplement à remplacer dans le modèle ROF la norme L2 du terme d’attache aux données par la norme L1. Nous proposons ici une méthode originale permettant de résoudre ce problème utilisant des méthodes de Lagrangien augmenté. Pour les mêmes raisons que dans le cas du débruitage, nous introduisons également le modèle T V 2-L1, consistant encore une fois à remplacer la variation totale par la variation totale seconde. Un modèle d’extraction de texture mixte est enfin très brièvement introduit. Ce manuscrit est ponctué d’un vaste chapitre dédié aux tests numériques. / This thesis is devoted in a first part to the elaboration of a second order variational modelfor image denoising, using the BV 2 space of bounded hessian functions. We here take a leaf out of the well known Rudin, Osher and Fatemi (ROF) model, where we replace the minimization of the total variation of the function with the minimization of the second order total variation of the function, that is to say the total variation of its partial derivatives. The goal is to get a competitive model with no staircasing effect that generates the ROF model anymore. The model we study seems to be efficient, but generates a blurry effect. In order to deal with it, we introduce a mixed model that permits to get solutions with no staircasing and without blurry effect on details. In a second part, we take an interset to the texture extraction problem. A model known as one of the most efficient is the T V -L1 model. It just consits in replacing the L2 norm of the fitting data term with the L1 norm.We propose here an original way to solve this problem by the use of augmented Lagrangian methods. For the same reason than for the denoising case, we also take an interest to the T V 2-L1 model, replacing again the total variation of the function by the second order total variation. A mixed model for texture extraction is finally briefly introduced. This manuscript ends with a huge chapter of numerical tests.
|
29 |
Ultrafast lasers in the femtosecond regime : generation, amplification and measurementOliveira, Pedro 09 December 2013 (has links) (PDF)
Il est intuitif qu'avec de nouveaux outils, il devient possible d'explorer de nouveaux domaines de la physique. Les champs électromagnétiques ultra-rapides sont l'un de ces outils, ils permettent de sonder la matière à de nouvelles échelles de temps, à la fois pour développer de nouvelles applications et pour la recherche fondamentale. Néanmoins, ces champs constituent en eux-mêmes un phénomène méritant d'être analysé et étudié. Le travail présenté ici est divisé en deux parties, dont la première s'occupe de la génération et amplification de lasers ultracourtes. L'amplification paramétrique optique est discutée dans les différentes configurations, notamment dans le cas où le signal a une dérivé angulaire spectrale. On discute aussi deux oscillateurs à blocage de mode en phase. Ont présente aussi une nouvelle manière d'étudier son comportement en fonction des dimensions de la sous-cavité. La mesure de ces phénomènes représente également un défi en raison de l'échelle temporelle extrêmement réduite à laquelle ces phénomènes se produisent, échelle bien trop petite pour des méthodes de mesure traditionnelles. Dans ce manuscrit, nous avons abordé deux techniques de mesure bien connues: l'autocorrélation interférométrique (IAC) du second ordre et la corrélation croisée du 3ème ordre (TOCC). Avec l'IAC et une mesure de la puissance spectrale du champ, il est possible de reconstruire intégralement le champ électrique tandis que le TOCC associé à l'autocorrélation en intensité détermine le profil en intensité de manière unique, et ont présente des algorithmes que font la reconstruction avec un haut contraste. Nous avons par ailleurs étudié la réalisation d'une nouvelle configuration de corrélateur croisé monocoup.
|
30 |
Théorèmes de point fixe et principe variationnel d'EkelandDazé, Caroline 02 1900 (has links)
Le principe de contraction de Banach, qui garantit l'existence d'un point fixe d'une contraction d'un espace métrique complet à valeur dans lui-même, est certainement le plus connu des théorèmes de point fixe. Dans plusieurs situations concrètes, nous sommes cependant amenés à considérer une contraction qui n'est définie que sur un sous-ensemble de cet espace. Afin de garantir l'existence d'un point fixe, nous verrons que d'autres hypothèses sont évidemment nécessaires. Le théorème de Caristi, qui garantit l'existence d'un point fixe d'une fonction d'un espace métrique complet à valeur dans lui-même et respectant une condition particulière sur d(x,f(x)), a plus tard été généralisé aux fonctions multivoques. Nous énoncerons des théorèmes de point fixe pour des fonctions multivoques définies sur un sous-ensemble d'un espace métrique grâce, entre autres, à l'introduction de notions de fonctions entrantes. Cette piste de recherche s'inscrit dans les travaux très récents de mathématiciens français et polonais. Nous avons obtenu des généralisations aux espaces de Fréchet et aux espaces de jauge de quelques théorèmes, dont les théorèmes de Caristi et le principe variationnel d'Ekeland. Nous avons également généralisé des théorèmes de point fixe pour des fonctions qui sont définies sur un sous-ensemble d'un espace de Fréchet ou de jauge. Pour ce faire, nous avons eu recours à de nouveaux types de contractions; les contractions sur les espaces de Fréchet introduites par Cain et Nashed [CaNa] en 1971 et les contractions généralisées sur les espaces de jauge introduites par Frigon [Fr] en 2000. / The Banach contraction principle, which certifies that a contraction of a complete metric space into itself has a fixed point, is for sure the most famous of all fixed point theorems. However, in many case, the contraction we consider is only defined on a subset of a complete metric space. Of course, to certify that such a contraction has a fixed point, we need to add some restrictions. The Caristi theorem, which certifies the existence of a fixed point of a function of a complete metric space into itself satisfying a particular condition on d(x,f(x)), was later generalized to multivalued functions. By introducing different types of inwardness assumptions, we will be able to state some fixed point theorems for multivalued functions defined on a subset of a metric space. This is related to the recent work of French and Polish mathematicians. We were able to generalize some theorems to Fréchet spaces and gauge spaces such as the Caristi theorems and the Ekeland variational principle. We were also able to generalize some fixed point theorems for functions that are only defined on a subset of a Fréchet space or a gauge space. To do so, we used new types of contractions; contractions on Fréchet spaces introduced by Cain and Nashed [CaNa] in 1971 and generalized contractions on gauge spaces introduced by Frigon [Fr] in 2000.
|
Page generated in 0.0702 seconds