• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 348
  • 243
  • 92
  • 34
  • 24
  • 15
  • 14
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 866
  • 204
  • 190
  • 173
  • 149
  • 129
  • 125
  • 117
  • 113
  • 82
  • 74
  • 71
  • 69
  • 63
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
841

Pristine and Doped Titanium Dioxide Studied by NC-AFM

Bechstein, Ralf 02 February 2009 (has links)
A commercial non-contact atomic force microscope was improved to achieve utmost resolution on a routine basis. This system was used to study the (110) surface of rutile titanium dioxide. The focus was on understanding contrast formation in terms of tip-sample interaction mechanisms. Moreover, chromium and antimony-doped titanium dioxide was investigated. The implications of transition-metal doping on the surface structure of this highly interesting photocatalyst was studied at the atomic scale.
842

Pollution de l’air intérieur : mesure, impact sur la santé et traitement par méthodes photochimiques. / Indoor air pollution : measurement, health impact and photochemical methods treatment.

Le Bechec, Mickael 20 October 2016 (has links)
L’accroissement de la population humaine, l’agriculture intensive et le développement industriel créent une pollution de l’air qui aujourd’hui devient préoccupante pour notre santé et notre environnement. Si la qualité de l’air extérieur fait l’objet depuis plusieurs décennies de règlementations qui permettent aujourd’hui de constater une diminution globale de la pollution dans les grandes agglomérations européennes, la pollution de l’air intérieur a quant à elle été longtemps sous-estimée. En effet, avec le développement de matériaux composites pour la construction et l’ameublement, la gamme de polluants de l’air intérieur s’est très largement agrandie et les concentrations ont globalement augmenté. Plusieurs études ont ainsi montré que de nombreux composés organiques volatils étaient détectés dans l’air intérieur à des concentrations bien plus élevées qu’à l’extérieur. D’autre part, la modification des modes de vie sédentaires et citadines ont pour conséquence une augmentation du temps passé dans des espaces confinés comme les logements, les lieux de travail et les transports en commun. Le simple renouvellement de l’air intérieur par de l’air extérieur devenant de moins en moins satisfaisant dans les grandes agglomérations, de nouvelles méthodes de traitement sont actuellement développées pour diminuer les concentrations de ces polluants tout en limitant la consommation d’énergie. La photocatalyse, en tant que procédé d’oxydation avancé fait partie des technologies intéressantes pour minéraliser des composés organiques volatils (COV). Après un rapide rappel du contexte sociétal de la pollution atmosphérique, les conditions de mesures et les méthodes possibles pour le traitement de cette pollution sont présentées. Le chapitre suivant regroupe les résultats sur le développement de matériaux photocatalytiques innovants et la mesure de leur efficacité. La première partie de ce chapitre fait le bilan des réacteurs photocatalytiques adaptés à l’étude de réactions à l’interface solide-gaz et résume les nombreuses difficultés liées à l’évaluation des performances de divers matériaux dans des conditions le plus souvent difficilement comparables. Dans la seconde partie, un premier matériau composite constitué de film polymère et de dioxyde de titane a été caractérisé par sa capacité à oxyder un composé volatil, le diméthyle disulfure, utilisé en agriculture pour la fumigation. Le développement d’un second matériau photocatalytique original, constitué de fibres de TiO2 pur a, quant à lui, été caractérisé par sa capacité à minéraliser des COV représentatifs de la pollution de l’air intérieur (acétone, heptane, toluène). Les deux dernières parties de ce chapitre se situent à l’interface entre la photochimie et la biologie. Dans un premier temps, la capacité d’inactivation bactérienne d’un textile « intelligent » sur lequel sont fixées des particules de dioxyde de titane couplées à un photosensibilisateur a été étudiée et l’efficacité sous rayonnement visible de ce tissu original a été analysée. L’impact de la pollution de l’air intérieur sur des cellules de la peau fait l’objet de la dernière partie de ce chapitre. Pour cela un montage permettant d’exposer des cellules de kératinocytes en culture, mais également des biopsies de peau humaine, à des concentrations contrôlées en COV a été mis au point. Nous avons ainsi pu mettre en évidence une réponse cellulaire à ce stress environnemental et préciser l’origine de ce stress. Enfin ce travail se termine par une ouverture sur des projets de recherche actuellement en cours ayant pour objet la mesure des espèces réactives de l’oxygène impliquées dans les réactions photochimiques et le développement de nouveau matériaux hybrides polymère/photosensibilisateurs. Des idées de projets à l’interface de la photochimie et de la biologie ouvrent de nouvelles perspectives à la suite de ces premiers résultats. / The increase of human population, the modern agriculture and industrial development generate air pollution, which is nowadays worrying for health and environment. Since several decades, outdoor air pollution has been regulated giving rise a global decrease of pollution in the most important European cities. However indoor air pollution was neglected for a long time. Indeed with development of composite materials for building and furnishing, the number of air pollutants strongly increased together with their concentrations. Several studies have thus demonstrated that numerous volatile organic compounds (VOC) were detected indoor at much higher concentration than outdoor. Moreover, due to the modification of sedentary and urban lifestyles, the time spent in confined spaces like housing, working places and public transportation increases. It is less and less satisfactory to simply renew indoor air with outdoor air in most of urban agglomerations. Accordingly, new processes for air treatment are developed in order to decrease indoor air pollutant concentrations while limiting energetic consumption. Photocatalysis is an advanced oxidation process potentially interesting for VOC removal. After a short reminder on the societal context of atmospheric pollution, measurement and treatment methods are presented in chapters I and II. The following chapter gathers the results obtained on the development of new photocatalytic materials and on the measure of their efficiency. The first part of this chapter is devoted to an overview of photocatalytic reactors for gas solid reactions and summarizes the numerous problems arising from the comparison of different materials under various conditions, which are not always similar. In the second part, a composite material made of titanium dioxide encapsulated in a polymer film is characterized and used for the oxidation of a volatile compound used for agricultural fumigation, dimethyl disulfide. The spectroscopic analysis led to the optimization of the material as a function of its thickness and its titanium dioxide loading. A second innovative photocatalytic material made of pure TiO2 fibers is characterized by its mineralization ability of representative indoor air VOC (acetone, heptane, and toluene). The performance of this material is compared to that of a commercial one, Quartzel ® made of TiO2 deposited on quartz fibers, under strictly identical conditions. The two last parts of this chapter are at the interface between photochemistry and biology. In a first strep, bacterial inactivation by a smart textile where titanium dioxide particles coupled with a photosensitizer is studded under visible light. In the last part, the impact of indoor air pollution on skin cells is presented. A dedicated device allowing keratinocytes culture cells and skin biopsies exposures to controlled VOC concentrations is developed. It is thus possible to evidence and to determine the origin of the cellular response to this environmental stress. At last, new research projects for a near future are then presented. They concern the determination of reactive oxygen species involved in photochemical reactions and the development of new hybrid polymers encapsulating photosensitizing molecules. Prospective ideas at the interface of photochemistry and biology conclude this memory.
843

Nouveaux polymères de coordination à base de titane et de dérivés phénoliques / New coordination polymers based on titanium and phenolic derivatives

Assi, Hala 21 October 2016 (has links)
Les solides hybrides poreux ou les « MOFs » sont l'une des classes les plus récentes de polymères de coordination poreux cristallins. En raison de la variété de leur structure et leur composition, Ils sont actuellement considérés comme des candidats prometteurs dans divers domaines (le stockage de gaz, la séparation des fluides, la catalyse, la biomédecine…). Cependant, la littérature sur l'activité photocatalytique de ces solides n’a commencé à s’exploser que très récemment, bien que l’utilisation de ces matériaux comme photocatalyseurs hétérogènes soit avantageux en comparaison avec les semi-conducteurs classiques. Compte tenu des propriétés photocatalytiques bien établies de TiO2, il semble logique de se concentrer sur le titane(IV) pour la conception de nouveaux MOFs pour de telles applications. Néanmoins, en raison de la difficulté de contrôler la réactivité de cet ion métallique en solution (en particulier hors des conditions très acides), très peu de MOFs à base de titane ont été décrits, parmi les MOFs nombreux connus dans la littérature. Ainsi, l'obtention de solides cristallins à base de titane dans l'eau et en milieu basique reste un défi majeur dans ce domaine. Dans nos travaux, certaines stratégies ont été suivies afin de bénéficier des avantages de l’utilisation des cations Ti4+ et parallèlement confronter leurs limitations en se focalisant sur l'exploration de la chimie de ces cations (alcoxydes de titane, complexes et oxo-clusters) avec divers ligands polytopiques, en particulier les dérivés hydroxycarboxylates et polycatécholates pour la conception de nouveaux solides hybrides poreux stables à base de titane. Ces ligands présentent des avantages importants par rapport aux carboxylates purs, tels que la diversité structurale potentiellement plus élevée, les liaisons Ti-O plus fortes conduisant à une stabilité chimique améliorée en milieu basique, et une large absorption dans le visible assurée par un transfert de charge ligand-métal. D'autre part, l'utilisation des complexes moléculaires ou des oxo-clusters de titane sera une opportunité prometteuse dans le but de contrôler l'hydrolyse spontanée et la réactivité élevée des ions Ti4+. En privilégiant la synthèse solvo- et hydrothermale à l'aide du « système haut-débit », ces stratégies ont conduit à l’obtention de nouveaux solides cristallins (composés moléculaires et polymériques 1D /2D /3D). La synthèse, la caractérisation structurale au travers de la combinaison de différentes techniques (diffraction des rayons X, analyse thermogravimétrique, spectroscopie IR, RMN du solide, mesure de sorption...), l'étude de certaines propriétés et l’étude préliminaire de l’activité photocatalytique (production de dihydrogène de l’eau) de ces nouveaux solides seront ainsi discutées dans ce manuscrit. / Crystalline Metal-Organic Frameworks MOFs are one of the most recent classes of crystalline porous coordination polymers. Due to the variety of their structure and composition, they are currently considered as promising candidates in various domains (gas storage, fluid separation, catalysis, biomedicine…). However, the literature on the photocatalytic activity of these solids has exploded only very recently, although the many advantages of using these materials as heterogeneous photocatalysts in comparison with classical semiconductors. Considering the well-established photocatalytic properties of TiO2, it seems logical to focus on titanium in order to design new MOFs for such applications. Nevertheless, because of the difficulty in controlling the reactivity of these ions in solution (especially out of the very acidic conditions), very few crystalline titanium-based MOFs have been described, among the numerous MOFs known in the literature. Thus, obtaining titanium-based MOFs in water and basic medium remains a big challenge. In our work, some strategies has been followed in order to benefice from the advantages of the titanium ions and at the same time confront their limitations by focusing on the exploration of the chemistry of Ti4+ ions (titanium alkoxides, complexes and oxo-clusters) with various polytopic ligands, especially hydroxycarboxylate and polycatecholate derivatives in order to design new stable titanium-based MOFs. Such ligands provide important advantages in comparison with pure carboxylates, such as a potentially higher structural diversity, stronger Ti-O bonds leading to an enhanced chemical stability in basic medium, and a strong absorption in the visible range ensured by ligand to metal charge transfer. On the other hand, the use of titanium molecular complexes or oxo-clusters will be a promising opportunity in order to control the spontaneous hydrolysis and the high activity of Ti4+ ions. By privileging the solvo- and hydrothermal synthesis using the «high-throughput system», these strategies lead to obtain new crystalline solids (molecular and 1D/2D/3D polymeric compounds). The synthesis, the structural characterization by a combination of different technics (X-ray diffraction, TGA analysis, IR spectroscopy, Solid State NMR, sorption measurement…), the study of some properties and the preliminary photocatalytic experiments (water splitting reaction) of these new solids will be discussed in this manuscript.
844

Kinetika fotokatalytické a fotoelektrokatalytické degradace modelových polutantů bazénových vod / Kinetics of photocatalytic and electrophotocatalytic degradation of swimming pool water model pollutants

Morávková, Eva January 2021 (has links)
This diploma thesis deals with the coating and printing of thin layers based on nanoparticles of titanium dioxide and organosilica binder on various substrates. The influence of the ratio of the both components on the activity of the prepared immobilized layers was studied. Five compositions with different ratios of TiO2 and binder were prepared. The work focuses mainly on the study of photocatalytic and photoelectrocatalytic properties of prepared layers. It was also important to characterize the mechanical properties of the layer such as hardness or adhesion. Both photocatalytic and photoelectrocatalytic activity were determined by monitoring the degradation of the model pollutants in aqueous solutions. The dye Acid Orange 7 and UV filter 2-hydroxy-4-methoxybenzophenone were used in conjunction with UV/VIS spectroscopy or high performance liquid chromatography techniques. Both photocatalytic and photoelectrocatalytic activity were expressed using kinetic characteristics.
845

Preparation and application of pine-magnetite composite grafted with functional vinyl monomers for removal of dyes from single and binary solutions

Mtshatsheni, Kgomotso Ntombizodwa Gina 05 1900 (has links)
PhD (Department of Chemistry, Faculty of Applied and Computer Sciences), Vaal University of Technology. / Water is a basic resource to mankind. The environment is deteriorating daily due to industrial pollution of water resources. Industrial effluents containing organic pollutants such as dyes are undesirable even at low concentrations in the environment. Natural biomaterials have been applied as adsorbents for dye removal from water systems, however, their application has been limited by their low adsorption capacity. Much attention has been focused on the chemical modification of natural biomass via grafting processes. The modification of natural polymers by graft copolymerization is a promising technique since it functionalizes a biopolymer thus imparting desirable properties. The purpose of the study was to prepare and optimize the working conditions for the pine-magnetite bionanocomposites (PMC) as adsorbents and as photocatalysts modifiers. First, this work focuses on the synthesis and optimization of reaction variables in the preparation of PMC for the removal of methylene blue (MB). The thesis also explores the synthesis of acrylamide and acrylic acid-grafted PMC, resulting in the formation of acrylamide-grafted PMC (GACA) and acrylic acid-grafted pine-magnetite bionanocomposites (GAA), respectively. The grafting of functional groups such as –CO, –NH2 onto cellulose from acrylamides is also explored in detail. The adsorption conditions optimized were used to investigate the adsorption efficiency of GAA and GACA on MB. Finally, the application of PMC and GAA as modifiers for amorphous TiO2 and N-doped TiO2was carried out. The photocatalytic bionanocomposites from PMC (namely PMC–a-C,TiO2 and PMC–a-C,NTiO2) and those from GAA (labeled GAA–a-C,TiO2 and GAA–a-C,NTiO2) are compared by their photocatalytic efficiency on the degradative removal of an alkaline dye mixture formed from Reactive red 120 (RR 120) and Rhodamine B (Rh B). The synthesis procedure for PMC involved treating pinecone biomass with 0.15 M NaOH solution to remove unwanted plant extracts and the subsequent coating of the treated pinecone with iron oxide magnetic particles through a co-precipitation method. The variables used for the experiments were volume of NH4OH (5 to 40 cm3), reaction temperature (40 to 100 °C), effect of time (15 to 60 min) and mass (1.0 to 3.5 g). The PMC and acrylic acid grafted pine-magnetite composite (GAA) were probed for structural morphology and surface properties using various surface characterization instrumental techniques. Strong chemical interactions between pinecone magnetite and acrylic acid were demonstrated by thermogravimetric (TGA), differential thermal analysis (DTA) and X-ray photoelectron spectroscopy (XPS) for these unique bionanocomposites as such suggesting high chemical stability. Grafting acrylic acid was shown by XPS to form polyacrylic acid on the surface of the bionanocomposites and thus capping the surface groups. Significant differences in size were shown by transmission electron spectroscopy (TEM) and scanning electron microscopy (SEM); i.e., smaller particle sizes (Ave = 13.0 nm) for GAA and slightly larger for PMC (Ave = 14.0 nm). Brunauer Emmett Teller (BET) surface analysis demonstrated a larger surface area, pore volume and pore diameter (59.9 m2.g-1, 0.2254 cm3.g-1 and 28.14) for GAA compared to PMC. These characteristics coupled with the point of zero charge for GAA (pHpzc = 6.8) were critical in enhancing the efficiency of GAA adsorption of MB at pH 12 and further enable GAA to have a higher desorption efficiency of up to 99.7% after four cycles of washing with 0.10 M HCl. The adsorption kinetics and isotherm studies indicated that the adsorption process follows the pseudo second order kinetics and Langmuir isotherm respectively. The adsorbent also showed improvement in the adsorption capacity and reusability promising to be used for the removal of dyes in a prototype scale. GAA and MB adsorption mechanism was confirmed to be through intra particle diffusion. The overall performance of the GAA bionanocomposites is hinged on the formation of polyacrylic acid on the surface, its structural morphology, and the enhanced surface properties. Most importantly, the plant-based materials (lignin and cellulose) provide an environment that is rich with surface (–COOH and –OH) groups for the attachment of the magnetite nanoparticles while the polyacrylic acid stabilizes the magnetite onto the pinecone nanoparticles while reducing the point of zero charge for increased adsorption of cationic species. The photocatalytic bionanocomposites were fabricated from the adsorptive bionanocomposites using a simple solgel process in which ~10 wt.% of PMC and GAA, respectively, were used as a starting agent. Titanium butoxide was used as a precursor, acetylacetone as a dispersant and ethylene diamine as a nitrogen source. Using this procedure, amorphous carbon-doped titania (a-C,TiO2) and amorphous carbon and nitrogen co-doped titania (a-C,NTiO2) were fabricated except that the biopolymer was not added. Two sets of amorphous titania bionanocomposites were fabricated. One set was the nitrogen doped forms that had been modified with PMC and GAA (PMC–a-C,TiO2 and GAA–a-C,NTiO2). The other set of photocatalytic bionanocomposites produced in this work were without nitrogen (PMC–a-C,TiO2 and GAA–a-C,TiO2). TEM and SEM micrographs showed that all the photocatalysts consisted of globular, smooth aggregates of nanosized a-CTiO2 and a-C,NTiO2 which decreased in size with N-doping and the incorporation of GAA and PMC to as low as <30 nm. Surface chemical analysis through FTIR, XPS and EDS confirmed the presence of C, O, Ti and N (for the N-doped photocatalysts). In addition, it was demonstrated that N-doping into TiO2 had taken place, albeit with most of the N incorporated as organic nitrogen. It was further demonstrated that because of the absence of high temperature calcination, the process chemicals played a significant role in doping the photocatalysts with carbon resulting in the promotion of photocatalytic activity for a-C,TiO2 to the point of surpassing that of, a-C,NTiO2 and all the PMC-modified photocatalytic bionanocomposites. a-C,TiO2 had an overall 94% removal of the dyes, Rhodamine B (RhB) and Reactive red 120(RR 120), under UV illumination. The benefit of co-doping a-TiO2 with C, N and the biopolymers was realized with the incorporation of GAA as a modifier. The result was 97% removal of the dyes by GAA–a-CTiO2 and 99% for GAA–a-C,NTiO2. It was further observed that the degradation of the binary mixture of the dyes (RhB and RR 120) proceeded through the zero order kinetics for the a-C,TiO2 based photocatalysts and first order kinetics for the N-doped photocatalysts. The work, has, therefore demonstrated the applicability of plant-based biopolymers in the fabrication of nanoadsorbents and nanophotocatalysts. While the photocatalytic degradations were carried out under UV-light, there still remains a number of possible avenues that researchers can build on to improve the visible light-driven photocatalytic bionanocomposites. The research work has proven the effectiveness of novel pinecone magnetic nanoparticle materials and TiO2-based photocatalyst for the degradation of undesirable dyes from wastewater.
846

Hybrid light photocatalysis of aromatic wastes in a fluidized bed reactor

Akach, John Willis Juma Pesa 08 1900 (has links)
PhD. (Department of Chemical Engineering, Faculty of Engineering and Technology), Vaal University of Technology. / The use of solar photocatalysis for the treatment of aromatic chemicals like phenol in wastewater has attracted significant attention due to the low cost of sunlight. However, sunlight is unreliable since its intensity fluctuates during the day. This drawback can be addressed by supplementing sunlight with artificial UV lamps when the solar intensity reduces. In this work, such a hybrid solar/UV lamp reactor, internally illuminated by the UV lamp and externally by sunlight, was designed. Phenol was used as the model pollutant and the nanophase Aeroxide P25 TiO2 was employed as the photocatalyst and fluidized by compressed air. The catalyst and bubble distribution in the reactor was analysed using computational fluid dynamics (CFD) while the Monte Carlo (MC) method was used to model the light distribution and reaction kinetics. Finally, a lamp controller was designed to specify the required UV lamp output as a function of the solar intensity. The CFD simulation using ANSYS CFX 17 showed that a fairly homogeneous distribution of the catalyst was achieved in the reactor. Consequently, accurate simulations of the light distribution could be achieved without considering the hydrodynamics. The MC models revealed that bubbles did not significantly influence light absorption at the optimum catalyst loading. This showed that air was a good medium for fluidization as it could provide good mixing and oxygen electron acceptor without negatively affecting light absorption. The forward scattering behaviour of the P25 TiO2 and the increase in light attenuation with catalyst loading was confirmed in this work. The optimum catalyst loading in the different reactor configurations was 0.15 g/L (tubular solar), 0.2 g/L (annular solar), 0.4 g/L (annular UV lamp), and 0.4 g/L (hybrid light). This resulted in experimental reaction rates of 0.337 mgL-1min-1 (tubular solar), 0.584 mgL-1min-1 (annular UV lamp), and 0.93 mgL-1min-1 (hybrid light). An analysis of the local volumetric rate of energy absorption (LVREA) and reaction rate profiles along the radial coordinate showed a non-uniformity which worsened with an increase in catalyst loading. The reaction order with respect to the volumetric rate of energy absorption (VREA) indicated that solar illumination resulted in a higher electron-hole recombination as compared to UV illumination. This, combined with the higher intensity of the UV lamp, resulted in a higher reaction rate under UV light as compared to sunlight, demonstrating that the UV lamp could be used to supplement sunlight. For a typical sunny day, a lamp controller was designed that could adjust the UV lamp output as a function of the solar intensity to maintain the reaction rate at a reference level while ensuring less energy consumption than an ON/OFF lamp controller. This work demonstrated the feasibility of hybrid solar/UV lamp photocatalysis reactor which could maintain the advantages of solar photocatalysis while mitigating its drawbacks.
847

Applications de la macrocyclisation par métathèse d’alcènes en flux continu et développement d’un réacteur facilitant la macrocyclisation photochimique

Morin, Émilie 08 1900 (has links)
Les réactions de macrocyclisation constituent un défi pour les chimistes de synthèse, car les sélectivités pour les réactions intramoléculaires par rapport à celles intermoléculaires sont difficiles à maximiser. Celles-ci sont donc effectuées dans des milieux dilués et sont souvent lentes. La chimie en flux continu a été utilisée pour améliorer les réactions présentées dans cette thèse, car elle permet un meilleur transfert de masse qui se traduit par un mélange et un chauffage plus efficace, donc des temps de réaction plus courts. À la suite d’introductions sur les macrocycles (Chapitre 1) et sur la métathèse d’alcènes (Chapitre 2), nos efforts pour améliorer l’étape de macrocyclisation par métathèse d’alcènes d’un musc découvert par l’industrie des fragrances sont décrits au chapitre 3. Alors que les conditions rapportées ne permettaient pas de réaliser cette réaction de façon reproductible sur une échelle de plus de 100 mg, il a été possible de l’effectuer sur une échelle d’un gramme grâce à l’emploi du catalyseur approprié. La réaction a été effectuée dans un montage traditionnel (ballon à fond rond) à température ambiante pour fournir 57% du macrocycle désiré après 5 jours. En comparaison, le montage en flux continu n’a nécessité que 5 minutes de temps de résidence à 150 °C pour fournir 32% de rendement. Le second projet présenté dans cette thèse porte sur la synthèse totale de la néomarchantine A (Chapitre 5) et est précédé d’une introduction sur les composés bisbibenzyliques (Chapitre 4). Cette synthèse a permis de démontrer l’avantage d’incorporer plusieurs étapes clés en flux continu. Différentes conditions ont été investiguées pour réaliser les deux étapes de couplage C-O en début de synthèse. Les meilleurs résultats ont été obtenus avec le couplage de Chan-Evans-Lam dans un cas (34%) et la substitution nucléophile (SNAr) dans l’autre (71%), ce qui a permis de s’éloigner des conditions classiques de couplage d’Ullmann. La première macrocyclisation par métathèse d’alcènes pour la synthèse d’un composé bisbibenzylique est également rapportée. Les conditions en flux continu ont permis de réaliser la réaction en seulement 10 minutes de temps de résidence avec un rendement de 49%, ce qui est similaire au rendement obtenu dans un montage traditionnel, mais qui nécessite 17 heures de temps de réaction. Précédé d’une introduction sur la photochimie (Chapitre 6), le chapitre 7 décrit la conception et l’évaluation d’un réacteur en flux continu adapté à la macrocyclisation photochimique. Celui-ci est inspiré des réacteurs à agitation continue (CSTR), mais est aminci pour permettre une irradiation plus uniforme. Son efficacité a été démontrée par l’application de la réaction d’oxydation aérobique de thiols en disulfures. En plaçant plusieurs réacteurs en série, un rendement d’environ 47% a été obtenu peu importe l’échelle de la réaction, allant de 100 mg à 1 g. En comparaison, le montage traditionnel, le réacteur standard en flux continu (PFR) ainsi que le réacteur CSTR n’ont pas été en mesure de fournir plus de 20% du macrocycle désiré. L’étendue de la réaction a été démontrée en synthétisant différents macrocycles d’intérêt biologique ou structurel avec des rendements entre 33 % et 50 %. / Macrocyclization reactions pose a challenge for synthetic chemists because the selectivity for the intramolecular reaction over intermolecular is difficult to achieve. They are usually done in diluted medium and are often slow. Continuous flow chemistry has been used to improve the reactions developed in the present thesis by allowing better mass and energy transfer which results in more efficient mixing and heating, and thus shorter reaction times. Following introductions on macrocycles (Chapter 1) and olefin metathesis (Chapter 2), our efforts to improve the olefin metathesis macrocyclization step of a musk discovered by the fragrance industry are described in Chapter 3. While the reported conditions did not allow the reaction to be performed reproducibly on a scale greater than 100 mg, the use of the appropriate catalyst allowed us to perform the reaction on a gram scale. The reaction was carried out in batch at room temperature to provide 57% of the desired macrocycle after 5 days. In comparison, the continuous flow setup required only 5 minutes of residence time at 150 °C to provide 32% yield. The second project focuses on the total synthesis of neomarchantine A (Chapter 5) and is preceded by an introduction on bisbibenzyl compounds (Chapter 4). The goal of the synthesis was to show the advantage of integrating several key steps in continuous flow. Different conditions were investigated to carry out the two C-O bond forming steps early in the synthesis. The best results were obtained with Chan-Evans-Lam coupling in one case (34%) and a SNAr reaction in the other (71%), which allowed to deviate from the classical conditions of Ullmann coupling. The first macrocyclization by ring-closing metathesis for the synthesis of a bisbibenzyl is also reported. The continuous flow conditions produced a 49% yield of a key macrocycle, which is similar to the batch results but only required 10 minutes of residence time in flow instead of 17 hours of reaction time in batch. Preceded by an introduction on photochemistry (Chapter 6), Chapter 7 describes the design and evaluation of a continuous flow reactor suitable for photochemical macrocyclization. It is inspired by CSTR reactors but is “flattened” to allow a uniform irradiation. Its effectiveness has been demonstrated by the application of aerobic oxidation of thiols to disulfides. By placing reactors in series, a yield of 47% was obtained regardless of the scale, ranging from 100 mg to 1 g. In comparison, the batch setup as well as the CSTR and PFR reactors were not able to provide more than 20% of the desired macrocycle. The scope of the reaction was demonstrated by synthesizing different macrocycles of biological or structural interest in yields of 33-50%.
848

ZnSe/CdS Core/Shell Nanostructures and Their Catalytic Properties

Kirsanova, Maria 18 July 2012 (has links)
No description available.
849

Development of highly porous crystalline titania photocatalysts

Marszewski, Michal 14 October 2016 (has links)
No description available.
850

Reusable and Antibacterial Polymer-Based Nanocomposites for the Adsorption of Dyes and the Visible-Light-Driven Photocatalytic Degradation of Antibiotics

Wang, Jiao, Sgarzi, Massimo, Němečková, Zuzana, Henych, Jiří, Licciardello, Nadia, Cuniberti, Gianaurelio 19 April 2024 (has links)
Adsorption and advanced oxidation processes, especially photocatalysis, are amongst the most common water treatment methodologies. Unfortunately, using each of these techniques independently does not fully eliminate the pollutants of diverse nature, which are present in wastewater. Here, an avenue for multifunctional materials for water treatment is opened by reporting for the first time the preparation, characterization, and study of the properties of a novel multifunctional nanocomposite with both adsorption and visible-light-driven photocatalysis abilities. These multifunctional nanocomposites, namely iron (II, III) oxide/poly(N-isopropylacrylamide-co-methacrylic acid)/silver-titanium dioxide (Fe3O4/P(NIPAM-co-MAA)/Ag-TiO2), are prepared by combining magnetic polymeric microspheres (Fe3O4/P(NIPAM-co-MAA)) with silver-decorated titanium dioxide nanoparticles (Ag-TiO2 NPs). Cationic dyes, such as basic fuchsin (BF), can be adsorbed by the nanocomposites thanks to the carboxylic groups of Fe3O4/P(NIPAM-co-MAA) microspheres. Concomitantly, the presence of Ag-TiO2 NPs endows the system with the visible-light-driven photocatalytic degradation ability toward antibiotics such as ciprofloxacin (CIP) and norfloxacin (NFX). Furthermore, the proposed nanocomposites show antibacterial activity toward Escherichia coli (E. coli), thanks to the presence of silver nanoparticles (Ag NPs). Due to the superparamagnetic properties of iron (II, III) oxide nanoparticles (Fe3O4 NPs), the nanocomposites can be also recycled and reused, after the cleaning process, by using an external magnetic field.

Page generated in 0.0596 seconds