11 |
[en] TREE-STRUCTURE SMOOTH TRANSITION VECTOR AUTOREGRESSIVE MODELS – STVAR-TREE / [pt] MODELOS VETORIAIS AUTO-REGRESSIVOS COM TRANSIÇÃO SUAVE ESTRUTURADOS POR ÁRVORES - STVAR - TREEALEXANDRE JOSE DOS SANTOS 13 July 2010 (has links)
[pt] Esta dissertação tem como objetivo principal introduzir uma formulação de
modelo não-linear multivariado, a qual combina o modelo STVAR (Smooth
Transition Vector Autoregressive) com a metodologia CART (Classification and
Regression Tree) a fim de utilizá-lo para geração de cenários e de previsões. O
modelo resultante é um Modelo Vetorial Auto-Regressivo com Transição Suave
Estruturado por Árvores, denominado STVAR-Tree e tem como base o conceito
de múltiplos regimes, definidos por árvore binária. A especificação do modelo é
feita através do teste LM. Desta forma, o crescimento da árvore é condicionado à
existência de não-linearidade nas séries, que aponta a divisão do nó e a variável de
transição correspondente. Em cada divisão, são estimados os parâmetros lineares,
por Mínimos Quadrados Multivariados, e os parâmetros não-lineares, por
Mínimos Quadrados Não-Lineares. Como forma de avaliação do modelo STVARTree,
foram realizados diversos experimentos de Monte Carlo com o objetivo de
constatar a funcionalidade tanto do teste LM quanto da estimação do modelo.
Bons resultados foram obtidos para amostras médias e grandes. Além dos
experimentos, o modelo STVAR-Tree foi aplicado às séries brasileiras de Vazão
de Rios e Preço Spot de energia elétrica. No primeiro estudo, o modelo foi
comparado estatisticamente com o Periodic Autoregressive (PAR) e apresentou
um desempenho muito superior ao concorrente. No segundo caso, a comparação
foi com a modelagem Neuro-Fuzzy e ganhou em uma das quatro séries. Somando
os resultados dos experimentos e das duas aplicações conclui-se que o modelo
STVAR-Tree pode ser utilizado na solução de problemas reais, apresentando bom
desempenho. / [en] The main goal of the dissertation is to introduce a nonlinear multivariate
model, which combines the model STVAR (Smooth Transition Vector
Autoregressive) with the CART (Classification and Regression Tree) method and
use it for generating scenarios and forecasting. The resulting model is a Tree-
Structured Vector Autoregressive model with Smooth Transition, called STVARTree,
which is based on the concept of multiple regimes, defined by binary tree.
The model specification is based on Lagrange Multiplier tests. Thus, the growth
of the tree is conditioned on the existence of nonlinearity in the time series, which
indicates the node to be split and the corresponding transition variable. In each
division, linear parameters are estimated by Multivariate Least Squares, and
nonlinear parameters by Non-Linear Least Squares. As a way of checking the
STVAR-Tree model, several Monte Carlo experiments were performed in order to
see the functionality of both the LM test and the model estimation. Best results
were obtained with medium and large samples. Besides, the STVAR-Tree model
was applied to Brazilian time series of Rivers Flow and electricity spot price. In
the first study, the model was statistically compared to the Periodic
Autoregressive (PAR) model and had a much higher performance than the
competitor. In the second case, the model comparison was with Neural-Fuzzy
Modeling and the STVAR-Tree model won in one of the four series. Adding both
the experiments and the two applications results we conclude that the STVARTree
model may be applied to solve real problems, having good results.
|
12 |
[en] NCE: AN ALGORITHM FOR CONTENT EXTRACTION IN NEWS PAGES / [pt] NCE: UM ALGORITMO PARA EXTRAÇÃO DE CONTEÚDO DE PÁGINAS DE NOTÍCIASEVELIN CARVALHO FREIRE DE AMORIM 15 September 2017 (has links)
[pt] A extração de entidades de páginas web é comumente utilizada para melhorar a qualidade de muitas tarefas realizadas por máquinas de busca como detecção de páginas duplicadas e ranking. Essa tarefa se torna ainda mais relevante devido ao crescente volume de informação da internet com as quais as máquinas de busca precisam lidar. Existem diversos algoritmos para detecção de conteúdo na literatura, alguns orientados a sites e outros que utilizam uma abordagem mais local e são chamados de algoritmos orientados a páginas. Os algoritmos orientados a sites utilizam várias páginas de um mesmo site para criar um modelo que detecta o conteúdo relevante da página. Os algoritmos orientados a páginas detectam conteúdo avaliando as características de cada página, sem comparar com outras páginas. Neste trabalho apresentamos um algoritmo, chamado NCE ( News Content Extractor), orientado a página e que se propõe a realizar extração de entidades em páginas de notícias. Ele utiliza atributos de uma árvore DOM para localizar determinadas entidades de uma página de notícia, mais especificamente, o título e o corpo da notícia. Algumas métricas são apresentadas e utilizadas para aferir a qualidade do NCE. Quando comparado com outro método baseado em página e que utiliza atributos visuais, o NCE se mostrou superior tanto em relação à qualidade de extração quanto no que diz respeito ao tempo de execução. / [en] The entity extraction of web pages is commonly used to enhance the quality of tasks performed by search engines, like duplicate pages and ranking. The relevance of entity extraction is crucial due to the fact that
search engines have to deal with fast growning volume of information on the web. There are many algorithms that detect entities in the literature, some using site level strategy and others using page level strategy. The site level strategy uses many pages from the same site to create a model that extracts templates. The page level strategy creates a model to extract templates according to features of the page. Here we present an algorithm, called NCE (News Content Extractor), that uses a page level strategy and
its objective is to perform entity extraction on news pages. It uses features from a DOM tree to search for certain entities, namely, the news title and news body. Some measures are presented and used to evaluate how good NCE is. When we compare NCE to a page level algorithm that uses visual features, NCE shows better execution time and extraction quality.
|
13 |
[en] HUMAN POSTURE RECOGNITION PRESERVING PRIVACY: A CASE STUDY USING A LOW RESOLUTION ARRAY THERMAL SENSOR / [pt] RECONHECIMENTO DE POSTURAS HUMANAS PRESERVANDO A PRIVACIDADE: UM ESTUDO DE CASO USANDO UM SENSOR TÉRMICO DE BAIXA RESOLUÇÃOBRUNO SILVA PONTES 27 April 2017 (has links)
[pt] O reconhecimento de posturas é um dos desafios para o sensoriamento humano, que auxilia no acompanhamento de pessoas em ambientes de moradia assistidos. Estes ambientes, por sua vez, auxiliam médicos no diagnóstico de saúde de seus pacientes, principalmente através do reconhecimento de atividades
do dia a dia em tempo real, que é visto na área médica como uma das melhores formas de antecipar situações críticas de saúde. Além disso, o envelhecimento da população mundial, escassez de recursos em hospitais para atender todas as pessoas e aumento dos custos de assistência médica impulsionam o desenvolvimento de sistemas para apoiar os ambientes de moradia assistidos. Preservar a privacidade nestes ambientes monitorados por sensores é um fator crítico para a aceitação do usuário, por isso há uma demanda em soluções que não requerem imagens. Este trabalho evidencia o uso de um sensor térmico de baixa resolução no sensoriamento humano, mostrando que é viável detectar a presença e reconhecer posturas humanas, usando somente os dados deste sensor. / [en] Postures recognition is one of the human sensing challenges, that helps ambient assisted livings in people accompanying. On the other hand, these ambients assist doctors in the diagnosis of their patients health, mainly through activities of daily livings real time recognition, which is seen in the medical field as one of the best ways to anticipate critical health situations. In addition, the world s population aging, lack of hospital resources to meet all people and increased health care costs drive the development of systems to support ambient assisted livings. Preserving privacy in these ambients monitored by sensors is a critical factor for user acceptance, so there is a demand for solutions that does not requires images. This work demonstrates the use of a low resolution thermal array sensor in human sensing, showing that it is feasible to detect the presence and to recognize human postures, using only the data of this sensor.
|
14 |
[en] ALGORITHMS FOR PERFORMING THE COMPUTATION OF GOMORY HU CUT-TREES / [pt] ALGORITMOS PARA ACELERAR A COMPUTAÇÃO DE ÁRVORES DE CORTE DE GOMORY E HUJOAO PAULO DE FREITAS ARAUJO 19 August 2011 (has links)
[pt] O problema do fluxo máximo multiterminal é uma extensão do conhecido
problema de fluxo máximo entre um nó origem e um nó destino de uma rede. Este
problema surge no contexto de fluxos em redes, tema que possui diversas
aplicações, especialmente nos campos de transporte, telecomunicações e energia.
No caso multiterminal, o fluxo máximo é calculado entre todos os pares de nós da
rede. No referente a uma rede simétrica, este problema pode ser resolvido,
obviamente, pela execução do algoritmo de fluxo máximo n(n − 1) 2 vezes, onde
n é o número de nós da rede. Os tradicionais métodos encontrados na literatura o
conseguem com apenas n − 1. O presente trabalho busca elaborar um algoritmo
capaz de resolver o problema multiterminal com uma complexidade menor do que
os métodos da literatura. A recente teoria da análise de sensibilidade, em que se
estuda a influência da variação de capacidade de uma aresta nos fluxos máximos
multiterminais, é utilizada para a construção do algoritmo. Técnicas dos
tradicionais métodos, como a de contração de nós, também compõem o método.
Ao final, o algoritmo é testado computacionalmente com todas as suas variações e
heurísticas adicionadas. Para um determinado caso, o algoritmo se mostrou com
eficiência semelhante a dos métodos tradicionais. Novas variações e heurísticas
são listadas para futuras pesquisas. / [en] The multi-terminal maximum flow problem is an extension of the well
known single source-single terminal maximum flow problem. These problems
arise in the context of network flows, theme which has various applications,
especially in the fields of transport, telecommunications and energy. In the multiterminal
case, the maximum flow is calculated between all pairs of nodes. Clearly,
this problem can be solved, in a symmetric network, by computing the maximum
flow algorithm n(n − 1) 2 times, where n is the number of nodes of the network,
but the traditional methods found in the literature can do it with only n − 1
computations. This paper seeks to elaborate an algorithm able to solve the multiterminal
problem with a complexity lower than the methods of the literature. The
recent theory of sensitivity analysis, which studies the influence of an edge
capacity variation on multi-terminals maximum flows, is employed on the
construction of the algorithm. Techniques of the traditional methods, such as the
contraction of nodes, are also part of the method. Finally, the algorithm is
computationally tested with all its variations and added heuristics. For a given
case, the algorithm showed an efficiency very close to the ones of traditional
methods. New variations and heuristics are listed for future research.
|
15 |
[en] DECISION DIAGRAMS FOR CLASSIFICATION: NEW CONSTRUCTIVE APPROACHES / [pt] DIAGRAMAS DE DECISÃO PARA CLASSIFICAÇÃO: NOVAS ABORDAGENS CONSTRUTIVASPEDRO SARMENTO BARBOSA MARTINS 16 October 2023 (has links)
[pt] Diagramas de decisão são uma generalização de árvores de decisão, já
propostos como um modelo de aprendizado de máquina para classificação supervisionada mas não largamente adotados. A razão é a dificuldade em treinar
o modelo, já que o requerimento de decidir splits (partições) e merges (uniões
de nós) em conjunto pode levar a problemas difíceis de otimização combinatória. Um diagrama de decisão tem importantes vantagens sobre árvores de
decisão, pois melhor expressa conceitos binários disjuntos, evitando o problema
de duplicação de subárvores e, portanto, apresentando menos fragmentação em
nós internos. Por esse motivo, desenvolver algoritmos efetivos de construção é
um esforço importante. Nesse contexto, o algoritmo Optimal Decision Diagram
(ODD) foi recentemente proposto, formulando a construção do diagrama com
programação inteira mista (MILP na sigla em inglês), com um warm start proveniente de uma heurística construtiva gulosa. Experimentos mostraram que
essa heurística poderia ser aperfeiçoada, a fim de encontrar soluções próximas
do ótimo de maneira mais efetiva, e por sua vez prover um warm start melhor.
Nesse estudo, reportamos aperfeiçoamentos para essa heurística construtiva,
sendo eles a randomização das decisões de split, a poda de fluxos puros (ou
seja, fluxos de exemplos pertencentes a uma única classe), e aplicando uma
poda bottom-up (de baixo para cima), que considera a complexidade do modelo além da sua acurácia. Todos os aperfeiçoamentos propostos têm efeitos
positivos na acurácia e generalização, assim como no valor objetivo do algoritmo ODD. A poda bottom-up, em especial, tem impacto significativo no valor
objetivo, e portanto na capacidade da formulação MILP de encontrar soluções
ótimas. Ademais, provemos experimentos sobre a expressividade de diagramas
de decisão em comparação a árvores no contexto de pequenas funções booleanas em Forma Normal Disjuntiva (DNF na sigla em inglês), assim como uma
aplicação web para a exploração visual dos métodos construtivos propostos. / [en] Decision diagrams are a generalization of decision trees. They have
been repeatedly proposed as a supervised classification model for machine
learning but have not been widely adopted. The reason appears to be the
difficulty of training the model, as the requirement of deciding splits and
merging nodes can lead to difficult combinatorial optimization problems.
A decision diagram has marked advantages over decision trees because it
better models disjoint binary concepts, avoiding the replication of subtrees
and thus has less sample fragmentation in internal nodes. Because of this,
devising an effective construction algorithm is important. In this context, the
Optimal Decision Diagram (ODD) algorithm was recently proposed, which
formulates the problem of building a diagram as a mixed-integer linear program
(MILP), with a warm start provided by a greedy constructive heuristic. Initial
experiments have shown that this heuristic can be improved upon, in order
to find close-to-optimal solutions more effectively and in turn provide the
MILP with a better warm start. In this study, we report improvements to this
constructive heuristic, by randomizing the split decisions, pruning pure flows
(i.e. flows with samples from a single class), and applying bottom-up pruning,
which considers the complexity of the model in addition to its accuracy. All
proposed improvements have positive effects on accuracy and generalization,
as well as the objective value of the ODD algorithm. The bottom-up pruning
strategy, in particular, has a substantial impact on the objective value, and
thus on the ability of the MILP solver to find optimal solutions. In addition, we
provide experiments on the expressiveness of decision diagrams when compared
to trees in the context of small boolean functions in Disjoint Normal Form
(DNF), as well as a web application for the visual exploration of the proposed
constructive approaches.
|
16 |
[en] CAREER CHOICE: A REAL OPTIONS APPROACH / [pt] ESCOLHA DE CARREIRA: UMA ABORDAGEM POR OPÇÕES REAISMATHEUS SILVEIRA CATAULI DOS SANTOS 31 October 2013 (has links)
[pt] A escolha de uma carreira é uma das decisões mais importantes na vida de
uma pessoa, e é feita em um ambiente repleto de incertezas em relação ao futuro.
Este trabalho analisa o aspecto financeiro da escolha entre uma carreira numa
empresa privada e uma carreira em um órgão público, com ingresso por meio de
um concurso. A análise pelo tradicional fluxo de caixa descontado apresenta uma
série de limitações por não captar aspectos como a incerteza e a flexibilidade da
tomada de decisão. Assim é aplicada uma abordagem segundo a teoria das Opções
Reais, que se mostra mais adequada a este caso, pois permite que a flexibilidade
de escolha seja modelada e considerada na escolha de carreira de um indivíduo.
Neste estudo, os ganhos em uma empresa privada são modelados por meio de um
processo estocástico enquanto a carreira pública tem um valor determinístico.
Existe flexibilidade de data em relação ao ingresso na carreira pública, porém esta
decisão é irreversível. Os resultados sugerem que a opção de ingressar na carreira
pública pode ter valor significativo em relação à carreira privada. / [en] Choosing a career is one of the most important decisions in a person s life,
and is done in an environment full of uncertainties about the future. This study
analyzes the financial aspect of a career choice between a private company and a
career in the government, with admission through a contest. The analysis through
the traditional discounted cash flow would bring a lot of limitations, not capturing
aspects such as uncertainty and flexibility of decision making. So real options
theory approach is applied, which appears more appropriate in this case because it
allows the flexibility of choice to be modeled and considered in the choice of an
individual s career. In this study earnings in a private company are modeled
through a stochastic process while public career has a deterministic value. There
is flexibility regarding the date of entry into public career, but this decision is
irreversible. The results suggest that the option of joining the public career may
have significant value in relation to private career.
|
17 |
[en] RELATIONSHIP MARKETING: CROSS-SELLING ON MOBILE TELECOM / [pt] MARKETING DE RELACIONAMENTO: CROSS-SELLING NA TELEFONIA MÓVELMANOELA BRANDAO DE OLIVEIRA 20 April 2015 (has links)
[pt] Com rápido crescimento nos últimos anos, o mercado de telecomunicações está ficando cada vez mais saturado. Como a comunicação tradicional por meio de serviços de voz já é amplamente utilizada, as operadoras têm enfrentado dificuldades em atrair novos usuários. Neste cenário, as operadoras têm direcionado cada vez mais esforços nas ações de cross-selling para rentabilizar sua base de clientes, oferecendo e estimulando o uso de novos serviços. Nesta pesquisa, serão utilizados dados existentes no banco de dados de uma operadora de telefonia móvel do mercado brasileiro para testar um modelo que facilita a identificação dos clientes mais propensos à contratação de novos serviços. Os dados foram tratados por meio de técnicas de mineração de dados e árvore de decisão. Os resultados sugerem que, com base na modelagem proposta, ações de cross-selling podem ser otimizadas com o aumento da taxa de retorno e, conseqüentemente, redução no custo das abordagens e menos desgaste da base de clientes com contatos irrelevantes. / [en] Due to its fast growth in recent years, the wireless market is becoming increasingly saturated. Since traditional communication through voice services is already widely used by most individuals, wireless carriers are facing difficulties in finding and attracting new users for such services. Given this scenario, enterprises are turning their attention to cross-selling campaigns to monetize their client base, offering and stimulating the use of new services. In this research, an existent data set from a Brazilian mobile telecom carrier was used to test a model that could facilitate the identification of current customers more likely to be interested in acquiring new services. The data were analyzed and modeled via data mining and decision tree. The results suggest that, if the proposed model is used, cross-selling campaigns could be optimized, achieving an increased rate of return, reduction in the cost of contacts and less wear of the client base with irrelevant offers.
|
18 |
[en] CONTRACTING STRATEGIES IN ENERGY AUCTIONS FOR DISTRIBUTION COMPANIES UNDER DEMAND UNCERTAINTY / [pt] ESTRATÉGIA DE CONTRATAÇÃO DAS DISTRIBUIDORAS EM LEILÕES DE ENERGIA SOB INCERTEZA NA DEMANDAANDRE RESENDE GUIMARAES 16 October 2006 (has links)
[pt] O objetivo desta dissertação de mestrado é analisar o novo
marco regulatório do
setor elétrico brasileiro e seus impactos para as empresas
distribuidoras de energia.
Para isto, foi desenvolvida uma ferramenta computacional
para elaborar estratégias de
atuação das distribuidoras nos leilões de compra de
energia instituídos pela nova
regulamentação. Desta forma, é possível simular o processo
de contratação das
distribuidoras no âmbito do ACR e, com os resultados,
realizar análises do impacto
das novas regras na alocação dos riscos as distribuidoras.
O problema consiste, em um
ambiente de incerteza da demanda e dado um conjunto de
instrumentos de risco,
determinar a estratégia de contratação das distribuidoras,
fornecendo o montante de
energia a ser comprado em cada leilão anteriormente
descrito e resultado da melhor
compra dados os contratos candidatos. A metodologia de
solução é otimização
estocástica multi-estágio, levando em consideração,
principalmente, os diversos
horizontes de contratação e preços da energia, visando
minimizar uma ponderação
entre tarifa para consumidor e custos para distribuidora. / [en] The objective of this work is to analyze the new
regulatory framework of the
Brazilian electric sector. In this sense, it was developed
a computational tool in order
to elaborate strategies for the distribution companies
(DISCOs) in the energy auctions
instituted by the new regulation. The computational tool
was used to simulate the
contracts acquisition process by the DISCOs and the
results were analyzed to measure
impact of new rules and risks allocation for the
distribution companies. The problem
consists, considering the demand uncertainty and the
available risk management
instruments, in determining the contracting strategy of
the DISCOs, i.e., the amount
of energy to be bought in each auction that results from
the best purchase given the
candidate contracts. The solution methodology is based on
a multi-stage stochastic
optimization algorithm, minimizing the tariff for consumer
and costs for DISCO,
taking into account different prices and horizons of the
energy contracts.
|
19 |
[en] MODELS AND ALGORITHMS FOR THE DIAMETER CONSTRAINED MINIMUM SPANNING TREE PROBLEM / [pt] MODELOS E ALGORITMOS PARA O PROBLEMA DA ÁRVORE GERADORA DE CUSTO MÍNIMO COM RESTRIÇÃO DE DIÂMETROANDREA CYNTHIA DOS SANTOS 01 November 2006 (has links)
[pt] Nesta tese são propostos modelos e algoritmos aproximados
para o Problema da Árvore Geradora de Custo Mínimo com
Restrição de Diâmetro (AGMD). Este problema modela
tipicamente aplicações em projetos de redes de
computadores onde todos os vértices devem comunicar-se
entre si a um custo mínimo, garantindo um certo nível de
serviço. Os modelos propostos por Achuthan e Caccetta para
o AGMD são reforçados através da introdução de restrições
válidas. Uma relaxação lagrangeana é proposta para o
modelo de multifluxo básico de Gouveia e Magnanti. Essa
relaxação é utilizada para o desenvolvimento de
heurísticas lagrangeanas. Adaptações são realizadas nas
heurísticas construtivas propostas por Deo e Abdalla, e
por Raidl e Julstrom. São propostas ainda quatro
estratégias de busca local, uma heurística do tipo GRASP e
outra híbrida. São obtidos limites superiores a menos de
2% do ótimo para as classes de instâncias usadas nos
trabalhos de Gouveia e Magnanti, e de Santos, Lucena e
Ribeiro. Além disto, obteve-se os melhores resultados
conhecidos até o presente momento para 11 instâncias de
grafos completos usadas por Raidl, Julstrom e Gruber. / [en] In this work, models and approximation algorithms to solve
the Diameter
Constrained Minimum Spanning Tree Problem (AGMD) are
proposed. This
problem typically models network design applications where
all vertices
must communicate with each other at a minimum cost, while
meeting a
given quality requirement. The formulations proposed by
Achuthan and
Caccetta are strengthened with valid inequalities. A
lagrangean relaxation
is proposed for the multicommodity flow model developed by
Gouveia and
Magnanti. Adaptations are made in the constructive
heuristics proposed by
Deo and Abdalla and by Raidl and Julstrom. Four local
search procedures,
a GRASP algorithm and a hybrid heuristic are proposed.
Upper bounds
within 2% of the optimal solution values are obtained for
the two classes
of instances used by Gouveia and Magnanti and by Santos,
Lucena and
Ribeiro. Moreover, stronger upper bounds are reported for
11 instances in
complete graphs used by Raidl, Julstrom and Gruber
|
20 |
[en] HOURLY LOAD FORECASTING A NEW APPROACH THROUGH DECISION TREE / [pt] PREVISÃO DE CARGA HORÁRIA UMA NOVA ABORDAGEM POR ÁRVORE DE DECISÃOANA PAULA BARBOSA SOBRAL 08 July 2003 (has links)
[pt] A importância da previsão de carga a curto prazo (até uma
semana à frente) em crescido recentemente. Com os processos
de privatização e implantação de ompetição no setor
elétrico brasileiro, a previsão de tarifas de energia vai se
tornar extremamente importante. As previsões das cargas
elétricas são fundamentais para alimentar as ferramentas
analíticas utilizadas na sinalização das tarifas. Em
conseqüência destas mudanças estruturais no setor, a
variabilidade e a não-estacionaridade das cargas elétricas
tendem a aumentar devido à dinâmica dos preços da energia.
Em função das mudanças estruturais do setor elétrico,
previsores mais autônomos são necessários para o novo
cenário que se aproxima.
As ferramentas disponíveis no mercado internacional para
previsão de carga elétrica requerem uma quantidade
significativa de informações on-line, principalmente no que
se refere a dados meteorológicos. Como a realidade
brasileira ainda não permite o acesso a essas informações
será proposto um previsor de carga para o curto-prazo,
considerando restrições na aquisição dos dados de
temperatura.
Logo, tem-se como proposta um modelo de previsão de carga
horária de curto prazo (um dia a frente) empregando dados
de carga elétrica e dados meteorológicos (temperatura)
através de modelos de árvore de decisão. Decidiu-se
pelo modelo de árvore de decisão, pois este modelo além de
apresentar uma grande facilidade de interpretação dos
resultados, apresenta pouquíssima ênfase em sua utilização
na área de previsão de carga elétrica. / [en] The importance of load forecasting for the short term (up
to one-week ahead) has been steadily growing in the last
years. Load forecasts are the basis for the forecasting of
energy prices, and the privatisation, and the introduction
of competitiveness in the Brazilian electricity sector,
have turned price forecasting into an extremely important
task.
As a consequence of structural changes in the electricity
sector, the variability and the non-stationarity of the
electrical loads have tended to increase, because of the
dynamics of the energy prices. As a consequence of these
structural changes, new forecasting methods are needed to
meet the new scenarios.
The tools that are available for load forecasting in the
international market require a large amount of online
information, specially information about weather data.
Since this information is not yet readily available in
Brazil, this thesis proposes a short-term load forecaster
that takes into consideration the restrictions in the
acquisition of temperature data.
A short-term (one-day ahead) forecaster of hourly loads is
proposed that combines load data and weather data
(temperature), by means of decision tree models. Decision
trees were chosen because those models, despite being easy
to interpret, have been very rarely used for load
forecasting.
|
Page generated in 0.0427 seconds