Spelling suggestions: "subject:"aquation différentielle"" "subject:"cquation différentielle""
51 |
Contributions aux équations d'évolution frac-différentielles / Contributions to frac-differential evolution equationsLassoued, Rafika 08 January 2016 (has links)
Dans cette thèse, nous nous sommes intéressés aux équations différentielles fractionnaires. Nous avons commencé par l'étude d'une équation différentielle fractionnaire en temps. Ensuite, nous avons étudié trois systèmes fractionnaires non linéaires ; le premier avec un Laplacien fractionnaire et les autres avec une dérivée fractionnaire en temps définie au sens de Caputo. Dans le premier chapitre, nous avons établi les propriétés qualitatives de la solution d'une équation différentielle fractionnaire en temps qui modélise l'évolution d'une certaine espèce. Plus précisément, l'existence et l'unicité de la solution globale sont démontrées pour certaines valeurs de la condition initiale. Dans ce cas, nous avons obtenu le comportement asymptotique de la solution en t^α. Sous une autre condition sur la donnée initiale, la solution explose en temps fini. Le profil de la solution et l'estimation du temps d'explosion sont établis et une confirmation numérique de ces résultats est présentée. Les chapitres 4, 5 et 6 sont consacrés à l'étude théorique de trois systèmes fractionnaires : un système de la diffusion anormale qui décrit la propagation d'une épidémie infectieuse de type SIR dans une population confinée, le Brusselator avec une dérivée fractionnaire en temps et un système fractionnaire en temps avec une loi de balance. Pour chaque système, on présente l'existence globale et le comportement asymptotique des solutions. L'existence et l'unicité de la solution locale pour les trois systèmes sont obtenues par le théorème de point fixe de Banach. Cependant, le comportement asymptotique est établi par des techniques différentes : le comportement asymptotique de la solution du premier système est démontré en se basant sur les estimations du semi-groupe et le théorème d'injection de Sobolev. Concernant le Brusselator fractionnaire, la technique utilisée s'appuie sur un argument de feedback. Finalement, un résultat de régularité maximale est utilisé pour l'étude du dernier système. / In this thesis, we are interested in fractional differential equations. We begin by studying a time fractional differential equation. Then we study three fractional nonlinear systems ; the first system contains a fractional Laplacian, while the others contain a time fractional derivative in the sense of Caputo. In the second chapter, we establish the qualitative properties of the solution of a time fractional equation which describes the evolution of certain species. The existence and uniqueness of the global solution are proved for certain values of the initial condition. In this case, the asymptotic behavior of the solution is dominated by t^α. Under another condition, the solution blows-up in a finite time. The solution profile and the blow-up time estimate are established and a numerical confirmation of these results is presented. The chapters 4, 5 and 6 are dedicated to the study of three fractional systems : an anomalous diffusion system which describes the propagation of an infectious disease in a confined population with a SIR type, the time fractional Brusselator and a time fractional reaction-diffusion system with a balance law. The study includes the global existence and the asymptotic behavior. The existence and uniqueness of the local solution for the three systems are obtained by the Banach fixed point theorem. However, the asymptotic behavior is investigated by different techniques. For the first system our results are proved using semi-group estimates and the Sobolev embedding theorem. Concerned the time fractional Brusselator, the used technique is based on an argument of feedback. Finally, a maximal regularity result is used for the last system.
|
52 |
Inverse problems for fractional order differential equations / Problèmes inverses pour des équations différentielles aux dérivées fractionnairesTapdigoglu, Ramiz 18 January 2019 (has links)
Dans cette thèse, nous nous intéressons à résoudre certains problèmes inverses pour des équations différentielles aux dérivées fractionnaires. Un problème inverse est généralement mal posé. Un problème mal posé est un problème qui ne répond pas à l’un des trois critères de Hadamard pour être bien posé, c’est-à-dire, soit l’existence, l’unicité ou une dépendance continue aux données n'est plus vraie, à savoir, des petits changements dans les données de mesure entraînent des changements indéfiniment importants dans la solution. La plupart des difficultés à résoudre des problèmes mal posés sont causées par l’instabilité de la solution. D’autre part, les équations différentielles fractionnaires deviennent un outil important dans la modélisation de nombreux problèmes de la vie réelle et il y a eu donc un intérêt croissant pour l’étude des problèmes inverses avec des équations différentielles fractionnaires. Le calcul fractionnaire est une branche des mathématiques qui fait référence à l’extension du concept de dérivation classique à la dérivation d’ordre non entier. Calculer une dérivée fractionnaire à un certain moment exige tous les processus précédents avec des propriétés de mémoire. C’est l’avantage principal du calcul fractionnaire d’expliquer les processus associés aux systèmes physiques complexes qui ont une mémoire à long terme et / ou des interactions spatiales à longue distance. De plus, les équations différentielles fractionnaires peuvent nous aider à réduire les erreurs découlant de paramètres négligés dans la modélisation des phénomènes physiques. / In this thesis, we are interested in solving some inverse problems for fractional differential equations. An inverse problem is usually ill-posed. The concept of an ill-posed problem is not new. While there is no universal formal definition for inverse problems, Hadamard [1923] defined a problem as being ill-posed if it violates the criteria of a well-posed problem, that is, either existence, uniqueness or continuous dependence on data is no longer true, i.e., arbitrarily small changes in the measurement data lead to indefinitely large changes in the solution. Most difficulties in solving ill-posed problems are caused by solution instability. Inverse problems come into various types, for example, inverse initial problems where initial data are unknown and inverse source problems where the source term is unknown. These unknown terms are to be determined using extra boundary data. Fractional differential equations, on the other hand, become an important tool in modeling many real-life problems and hence there has been growing interest in studying inverse problems of time fractional differential equations. The Non-Integer Order Calculus, traditionally known as Fractional Calculus is the branch of mathematics that tries to interpolate the classical derivatives and integrals and generalizes them for any orders, not necessarily integer order. The advantages of fractional derivatives are that they have a greater degree of flexibility in the model and provide an excellent instrument for the description of the reality. This is because of the fact that the realistic modeling of a physical phenomenon does not depend only on the instant time, but also on the history of the previous time, i.e., calculating timefractional derivative at some time requires all the previous processes with memory and hereditary properties.
|
53 |
Classification analytique de systèmes différentiels linéaires déployant une singularité irrégulière de rang de Poincaré 1Lambert, Caroline 04 1900 (has links)
Cette thèse traite de la classification analytique du déploiement de systèmes différentiels linéaires ayant une singularité irrégulière. Elle est composée de deux articles sur le sujet: le premier présente des résultats obtenus lors de l'étude de la confluence de l'équation hypergéométrique et peut être considéré comme un cas particulier du second; le deuxième contient les théorèmes et résultats principaux.
Dans les deux articles, nous considérons la confluence de deux points singuliers réguliers en un point singulier irrégulier et nous étudions les conséquences de la divergence des solutions au point singulier irrégulier sur le comportement des solutions du système déployé. Pour ce faire, nous recouvrons un voisinage de l'origine (de manière ramifiée) dans l'espace du paramètre de déploiement $\epsilon$. La monodromie d'une base de solutions bien choisie est directement reliée aux matrices de Stokes déployées. Ces dernières donnent une interprétation géométrique aux matrices de Stokes, incluant le lien (existant au moins pour les cas génériques) entre la divergence des solutions à $\epsilon=0$ et la présence de solutions logarithmiques autour des points singuliers réguliers lors de la résonance. La monodromie d'intégrales premières de systèmes de Riccati correspondants est aussi interprétée en fonction des éléments des matrices de Stokes déployées.
De plus, dans le second article, nous donnons le système complet d'invariants analytiques pour le déploiement de systèmes différentiels linéaires $x^2y'=A(x)y$ ayant une singularité irrégulière de rang de Poincaré $1$ à l'origine au-dessus d'un voisinage fixé $\mathbb{D}_r$ dans la variable $x$. Ce système est constitué d'une partie formelle, donnée par des polynômes, et d'une partie analytique, donnée par une classe d'équivalence de matrices de Stokes déployées. Pour chaque valeur du paramètre $\epsilon$ dans un secteur pointé à l'origine d'ouverture plus grande que $2\pi$, nous recouvrons l'espace de la variable, $\mathbb{D}_r$, avec deux secteurs et, au-dessus de chacun, nous choisissons une base de solutions du système déployé. Cette base sert à définir les matrices de Stokes déployées. Finalement, nous prouvons un théorème de réalisation des invariants qui satisfont une condition nécessaire et suffisante, identifiant ainsi l'ensemble des modules. / This thesis deals with the analytic classification of unfoldings of linear differential systems with an irregular singularity. It contains two papers related to this subject: the first paper presents results concerning the confluence of the hypergeometric equation and may be viewed as a particular case of the second one; the second paper contains the main theorems and results.
In both papers, we study the confluence of two regular singular points into an irregular one and we give consequences of the divergence of solutions at the irregular singular point for the unfolded system. For this study, a full neighborhood of the origin is covered (in a ramified way) in the space of the unfolding parameter $\epsilon$. Monodromy of a well chosen basis of solutions around the regular singular points is directly linked to the unfolded Stokes matrices. These matrices give a complete geometric interpretation to the well-known Stokes matrices: this includes the link (existing at least for the generic cases) between the divergence of the solutions at $\epsilon=0$ and the presence of logarithmic terms in the solutions for resonant values of $\epsilon$. Monodromy of first integrals of related Riccati systems are also interpreted in terms of the elements of the unfolded Stokes matrices.
The second paper goes further into the subject, giving the complete system of analytic invariants for the unfoldings of nonresonant linear differential systems $x^2y'=A(x)y$ with an irregular singularity of Poincaré rank $1$ at the origin over a fixed neighborhood $\mathbb{D}_r$ in the space of the variable $x$. It consists of a formal part, given by polynomials, and an analytic part, given by an equivalence class of unfolded Stokes matrices. For each parameter value $\epsilon$ taken in a sector pointed at the origin of opening larger than $2\pi$, we cover the space of the variable, $\mathbb{D}_r$, with two sectors and, over each of them, we construct a well chosen basis of solutions of the unfolded differential system. This basis is used to define the unfolded Stokes matrices. Finally, we give a realization theorem for the invariants satisfying a necessary and sufficient condition, thus identifying the set of modules.
|
54 |
Processus de Markov diffusifs par morceaux: outils analytiques et numériquesBect, Julien 18 June 2007 (has links) (PDF)
Ce travail de thèse a pour objet l'étude de modèles markoviens qui résultent de la prise en compte d'incertitudes dans des systèmes possédant une dynamique hybride : entrées bruitées, dynamique mal connue, ou évènements aléatoires par exemple. De tels modèles, parfois qualifiés de Systèmes Hybrides Stochastiques (SHS), sont utilisés principalement en automatique et en recherche opérationnelle.<br /><br />Nous introduisons dans la première partie du mémoire la notion de processus diffusif par morceaux, qui fournit un cadre théorique général qui unifie les différentes classes de modèles "hybrides" connues dans la littérature. Différents aspects de ces modèles sont alors envisagés, depuis leur construction mathématique (traitée grâce au théorème de renaissance pour les processus de Markov) jusqu'à l'étude de leur générateur étendu, en passant par le phénomène de Zénon.<br /><br />La deuxième partie du mémoire s'intéresse plus particulièrement à la question de la "propagation de l'incertitude", c'est-à-dire à la manière dont évolue la loi marginale de l'état au cours du temps. L'équation de Fokker-Planck-Kolmogorov (FPK) usuelle est généralisée à diverses classes de processus diffusifs par morceaux, en particulier grâce aux notions d'intensité moyenne de sauts et de courant de probabilité. Ces résultats sont illustrés par deux exemples de modèles multidimensionnels, pour lesquels une résolution numérique de l'équation de FPK généralisée a été effectuée grâce à une discrétisation en volumes finis. La comparaison avec des méthodes de type Monte-Carlo est également discutée à partir de ces deux exemples.
|
55 |
Nouveaux modèles de chemins minimaux pour l'extraction de structures tubulaires et la segmentation d'images / New Minimal Path Model for Tubular Extraction and Image SegmentationChen, Da 27 September 2016 (has links)
Dans les domaines de l’imagerie médicale et de la vision par ordinateur, la segmentation joue un rôle crucial dans le but d’extraire les composantes intéressantes d’une image ou d’une séquence d’images. Elle est à l’intermédiaire entre le traitement d’images de bas niveau et les applications cliniques et celles de la vision par ordinateur de haut niveau. Ces applications de haut niveau peuvent inclure le diagnostic, la planification de la thérapie, la détection et la reconnaissance d'objet, etc. Parmi les méthodes de segmentation existantes, les courbes géodésiques minimales possèdent des avantages théoriques et pratiques importants tels que le minimum global de l’énergie géodésique et la méthode bien connue de Fast Marching pour obtenir une solution numérique. Dans cette thèse, nous nous concentrons sur les méthodes géodésiques basées sur l’équation aux dérivées partielles, l’équation Eikonale, afin d’étudier des méthodes précises, rapides et robustes, pour l’extraction de structures tubulaires et la segmentation d’image, en développant diverses métriques géodésiques locales pour des applications cliniques et la segmentation d’images en général. / In the fields of medical imaging and computer vision, segmentation plays a crucial role with the goal of separating the interesting components from one image or a sequence of image frames. It bridges the gaps between the low-level image processing and high level clinical and computer vision applications. Among the existing segmentation methods, minimal geodesics have important theoretical and practical advantages such as the global minimum of the geodesic energy and the well-established fast marching method for numerical solution. In this thesis, we focus on the Eikonal partial differential equation based geodesic methods to investigate accurate, fast and robust tubular structure extraction and image segmentation methods, by developing various local geodesic metrics for types of clinical and segmentation tasks. This thesis aims to applying different geodesic metrics based on the Eikonal framework to solve different image segmentation problems especially for tubularity segmentation and region-based active contours models, by making use of more information from the image feature and prior clinical knowledges. The designed geodesic metrics basically take advantages of the geodesic orientation or anisotropy, the image feature consistency, the geodesic curvature and the geodesic asymmetry property to deal with various difficulties suffered by the classical minimal geodesic models and the active contours models. The main contributions of this thesis lie at the deep study of the various geodesic metrics and their applications in medical imaging and image segmentation. Experiments on medical images and nature images show the effectiveness of the presented contributions.
|
56 |
Émergence du bruit dans les systèmes ouverts classiques et quantiques / Appearance of noise in classical and quantum open systemsDeschamps, Julien 22 March 2013 (has links)
Nous nous intéressons dans cette thèse à certains modèles mathématiques permettant une description de systèmes ouverts classiques et quantiques. Dans l'étude de ces systèmes en interaction avec un environnement, nous montrons que la dynamique induite par l'environnement sur le système donne lieu à l'apparition de bruits. Dans une première partie de la thèse, dédiée aux systèmes classiques, le modèle décrit est le schéma d'interactions répétées. Etant à la fois hamiltonien et markovien, ce modèle en temps discret permet d'implémenter facilement la dissipation dans des systèmes physiques. Nous expliquons comment le mettre en place pour des systèmes physiques avant d'en étudier la limite en temps continu. Nous montrons la convergence Lp et presque sûre de l'évolution de certains systèmes vers la solution d'une équation différentielle stochastique, à travers l'étude de la limite de la perturbation d'un schéma d'Euler stochastique. Dans une seconde partie de la thèse sur les systèmes quantiques, nous nous intéressons dans un premier temps aux actions d'environnements quantiques sur des systèmes quantiques aboutissant à des bruits classiques. A cette fin, nous introduisons certains opérateurs unitaires appelés « classiques », que nous caractérisons à l'aide de variables aléatoires dites obtuses. Nous mettons en valeur comment ces variables classiques apparaissent naturellement dans ce cadre quantique à travers des 3-tenseurs possédant des symétries particulières. Nous prouvons notamment que ces 3-tenseurs sont exactement ceux diagonalisables dans une base orthonormée. Dans un second temps, nous étudions la limite en temps continu d'une variante des interactions répétées quantiques dans le cas particulier d'un système biparti, c'est-à-dire composé de deux systèmes isolés sans interaction entre eux. Nous montrons qu'à la limite du temps continu, une interaction entre ces sous-systèmes apparaît explicitement sous forme d'un hamiltonien d'interaction; cette interaction résulte de l'action de l'environnement et de l'intrication qu'il crée / This dissertation is dedicated to some mathematical models describing classical and quantum open systems. In the study of these systems interacting with an environment, we particularly show that the dynamics induced by the environment leads to the appearance of noises. In a first part of this thesis, devoted to classical open systems, the repeated interaction scheme is developed. This discrete-time model, being Hamiltonian and Markovian at the same time, has the advantage to easily implement the dissipation in physical systems. We explain how to set this scheme up in some physical examples. Then, we investigate the continuous-time limit of these repeated interactions. We show the Lp and almost sure convergences of the evolution of the system to the solution of a stochastic differential equation, by studying the limit of a perturbed Stochastic Euler Scheme. In a second part of this dissertation on quantum systems, we characterize in a first work classical actions of a quantum environment on a quantum system. In this study, we introduce some “classical” unitary operators representing these actions and we highlight a strong link between them and some random variables, called obtuse random variables. We explain how these random variables are naturally connected to some 3-tensors having some particular symmetries. We particularly show that these 3 tensors are exactly the ones that are diagonalizable in some orthonormal basis. In a second work of this part, we study the continuous-time limit of a variant of the repeated interaction scheme in a case of a bipartite system, that is, a system made of two isolated systems not interaction together. We prove that an explicit Hamiltonian interaction between them appears at the limit. This interaction is due to the action of the environment and the entanglement between the two systems that it creates
|
57 |
Conception d'un Pro Logiciel Interactif sous R pour la Simulation de Processus de DiffusionGuidoum, Arsalane 25 February 2012 (has links) (PDF)
Dans ce travail, on propose un nouveau package Sim.DiffProc pour la simulation des processus de diffusion, muni d'une interface graphique (GUI), sous langage R. Le développement de l'outil informatique (logiciels et matériels) ces dernières années, nous a motivé de réaliser ce travail. A l'aide de ce package, nous pouvons traiter beaucoup de problèmes théoriques difficiles liée à l'utilisation des processus de diffusion, pour des recherches pratiques, tels que la simulation numérique trajectoires de la solution d'une ÉDS. Ce qui permet à beaucoup d'utilisateurs dans différents domaines à l'employer comme outil sophistiqué à la modélisation de leurs problèmes pratiques. Le problème de dispersion d'un polluant, en présence d'un domaine attractif que nous avons traité dans ce travail en est un bon exemple. Cet exemple montre l'utilité et l'importance pratique des processus de diffusion dans la modélisation simulation de situations réelles complexes. La fonction de densité de la variable aléatoire tau(c) "instant de premier passage" de la frontière de domaine d'attraction peut être utilisée pour déterminer le taux de concentration des particules polluantes à l'intérieur du domaine. Les études de simulation et les analyses statistiques mises en application à l'aide du package Sim.DiffProc, se présentent efficaces et performantes, comparativement aux résultats théoriques explicitement ou approximativement déterminés par les modèles de processus de diffusion considérés.
|
58 |
Metapopulation dynamics of dengue epidemics in French Polynesia / Dynamique métapopulationelle des épidémies de dengue en Polynésie françaiseTeissier, Yoann 22 May 2017 (has links)
La dengue circule en Polynésie française sur un mode épidémique depuis plus de 35 ans. Néanmoins, en dépit de la taille relativement faible de la population de Polynésie française, la circulation de la dengue peut persister à de faibles niveaux pendant de nombreuses années. L’objectif de ce travail de thèse est de déterminer si l'épidémiologie de la dengue dans le système insulaire de la Polynésie française répond aux critères d’un contexte de métapopulation. Après avoir constitué une base de données regroupant les cas de dengue répertoriés sur les 35 dernières années, nous avons réalisé des analyses épidémiologiques descriptives et statistiques. Celles-ci ont révélé des disparités spatio-temporelles distinctes pour l’incidence de la dengue des archipels et des îles, mais la structure de l'épidémie globale à l’échelle de la Polynésie française pour un même sérotype ne semble pas être affectée. Les analyses de la métapopulation ont révélé l'incidence asynchrone de la dengue dans un grand nombre d’îles. Celle-ci s’observe plus particulièrement par la différence de dynamique de l’incidence entre les îles plus peuplées et celles ayant une population plus faible. La taille critique de la communauté nécessaire à la persistance de la dengue n’est même pas atteinte par la plus grande île de Polynésie Française, Tahiti. Ce résultat suggère que la dengue peut uniquement persister grâce à sa propagation d’île en île. L'incorporation de la connectivité des îles à travers des modèles de migration humaine dans un modèle mathématique a produit une dynamique de la dengue davantage en adéquation avec les données observées, que les tentatives de modélisation traitant la population dans son ensemble. Le modèle de la métapopulation a été capable de simuler la même dynamique que les cas de dengue observés pour l'épidémie et la transmission endémique qui a suivi pour la période de 2001 à 2008. Des analyses complémentaires sur la différenciation de l'incidence de la maladie et de l'infection seront probablement instructives pour affiner le modèle de métapopulation de l'épidémiologie de la dengue en Polynésie française. / Dengue has been epidemic in French Polynesia for the past 35 years. Despite the relatively small population size in French Polynesia, dengue does not disappear and can persist at low levels for many years. In light of the large number of islands comprising French Polynesia, this thesis addresses the extent to which a metapopulation context may be the most appropriate to describe the epidemiology and persistence of dengue in this case. After compiling a database of dengue cases over the last 35 years, we used a number of descriptive and statistical epidemiological analyses that revealed distinct spatio-temporal disparity in dengue incidence for archipelago and islands. But the global structure of the epidemics of the same serotype were not affected. Metapopulation analyses revealed asynchronous dengue incidence among many of the islands and most notably larger islands lagged behind the smaller islands. The critical community size, which determines dengue persistence, was found to exceed even the largest island of Tahiti, suggesting that dengue can only exist by island-hopping. Incorporation of island connectedness through patterns of human migration into a mathematical model enabled a much better fit to the observed data than treating the population as a whole. The metapopulation model was able to capture to some extent the epidemic and low level transmission dynamics observed for the period of 2001-2008. Further analyses on differentiating incidence of disease and infection will likely prove informative for the metapopulation model of dengue epidemiology in French Polynesia.
|
Page generated in 0.144 seconds