• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 435
  • 190
  • 43
  • Tagged with
  • 656
  • 249
  • 215
  • 130
  • 106
  • 83
  • 82
  • 78
  • 72
  • 70
  • 69
  • 69
  • 67
  • 66
  • 64
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
431

Analyse de l'impact de la politique d'aide internationale féministe (PAIF) sur les relations commerciales du Canada avec l'Afrique subsaharienne

Hien, Hervé 12 April 2024 (has links)
Titre de l'écran-titre (visionné le 8 avril 2024) / La présente étude a pour objectif de déterminer l'impact de la politique d'aide internationale féministe (PAIF) sur les flux commerciaux et sa contribution à un commerce plus inclusif en Afrique subsaharienne. À partir du modèle de gravité et par l'estimateur PPML, nous avons déterminé d'une part l'apport de la politique d'aide internationale féministe sur les flux commerciaux du Canada en Afrique subsaharienne et, d'autre part analyser l'impact des différentes composantes de la politique sur le commerce inclusif en Afrique subsaharienne. Les résultats de nos estimations montrent que même si les composantes de la politique d'aide internationale féministe n'ont pas d'impact significatif entrainant une augmentation des flux commerciaux, elles fondent cependant les bases d'une pratique commerciale plus inclusive touchant un plus grand nombre de personnes avec pour objectif l'amélioration de leurs conditions socio-économiques. / The purpose of this study is to determine the impact of the feminist international assistance policy (FAIP) on trade flows and its contribution to more inclusive trade in sub-Saharan Africa. Using the gravity model and the PPML estimator, we determined the contribution of the feminist international assistance policy to Canada's trade flows in sub-Saharan Africa and analyzed the impact of the various components of the policy on inclusive trade in sub-Saharan Africa. The results of our estimations show that even if the components of the feminist international aid policy do not have a significant impact leading to an increase in trade flows, they nevertheless lay the foundations for a more inclusive trade practice reaching a greater number of people to improve their socio-economic conditions.
432

Classification analytique de systèmes différentiels linéaires déployant une singularité irrégulière de rang de Poincaré 1

Lambert, Caroline 04 1900 (has links)
Cette thèse traite de la classification analytique du déploiement de systèmes différentiels linéaires ayant une singularité irrégulière. Elle est composée de deux articles sur le sujet: le premier présente des résultats obtenus lors de l'étude de la confluence de l'équation hypergéométrique et peut être considéré comme un cas particulier du second; le deuxième contient les théorèmes et résultats principaux. Dans les deux articles, nous considérons la confluence de deux points singuliers réguliers en un point singulier irrégulier et nous étudions les conséquences de la divergence des solutions au point singulier irrégulier sur le comportement des solutions du système déployé. Pour ce faire, nous recouvrons un voisinage de l'origine (de manière ramifiée) dans l'espace du paramètre de déploiement $\epsilon$. La monodromie d'une base de solutions bien choisie est directement reliée aux matrices de Stokes déployées. Ces dernières donnent une interprétation géométrique aux matrices de Stokes, incluant le lien (existant au moins pour les cas génériques) entre la divergence des solutions à $\epsilon=0$ et la présence de solutions logarithmiques autour des points singuliers réguliers lors de la résonance. La monodromie d'intégrales premières de systèmes de Riccati correspondants est aussi interprétée en fonction des éléments des matrices de Stokes déployées. De plus, dans le second article, nous donnons le système complet d'invariants analytiques pour le déploiement de systèmes différentiels linéaires $x^2y'=A(x)y$ ayant une singularité irrégulière de rang de Poincaré $1$ à l'origine au-dessus d'un voisinage fixé $\mathbb{D}_r$ dans la variable $x$. Ce système est constitué d'une partie formelle, donnée par des polynômes, et d'une partie analytique, donnée par une classe d'équivalence de matrices de Stokes déployées. Pour chaque valeur du paramètre $\epsilon$ dans un secteur pointé à l'origine d'ouverture plus grande que $2\pi$, nous recouvrons l'espace de la variable, $\mathbb{D}_r$, avec deux secteurs et, au-dessus de chacun, nous choisissons une base de solutions du système déployé. Cette base sert à définir les matrices de Stokes déployées. Finalement, nous prouvons un théorème de réalisation des invariants qui satisfont une condition nécessaire et suffisante, identifiant ainsi l'ensemble des modules. / This thesis deals with the analytic classification of unfoldings of linear differential systems with an irregular singularity. It contains two papers related to this subject: the first paper presents results concerning the confluence of the hypergeometric equation and may be viewed as a particular case of the second one; the second paper contains the main theorems and results. In both papers, we study the confluence of two regular singular points into an irregular one and we give consequences of the divergence of solutions at the irregular singular point for the unfolded system. For this study, a full neighborhood of the origin is covered (in a ramified way) in the space of the unfolding parameter $\epsilon$. Monodromy of a well chosen basis of solutions around the regular singular points is directly linked to the unfolded Stokes matrices. These matrices give a complete geometric interpretation to the well-known Stokes matrices: this includes the link (existing at least for the generic cases) between the divergence of the solutions at $\epsilon=0$ and the presence of logarithmic terms in the solutions for resonant values of $\epsilon$. Monodromy of first integrals of related Riccati systems are also interpreted in terms of the elements of the unfolded Stokes matrices. The second paper goes further into the subject, giving the complete system of analytic invariants for the unfoldings of nonresonant linear differential systems $x^2y'=A(x)y$ with an irregular singularity of Poincaré rank $1$ at the origin over a fixed neighborhood $\mathbb{D}_r$ in the space of the variable $x$. It consists of a formal part, given by polynomials, and an analytic part, given by an equivalence class of unfolded Stokes matrices. For each parameter value $\epsilon$ taken in a sector pointed at the origin of opening larger than $2\pi$, we cover the space of the variable, $\mathbb{D}_r$, with two sectors and, over each of them, we construct a well chosen basis of solutions of the unfolded differential system. This basis is used to define the unfolded Stokes matrices. Finally, we give a realization theorem for the invariants satisfying a necessary and sufficient condition, thus identifying the set of modules.
433

Invariant discretizations of partial differential equations

Rebelo, Raphaël 06 1900 (has links)
Un algorithme permettant de discrétiser les équations aux dérivées partielles (EDP) tout en préservant leurs symétries de Lie est élaboré. Ceci est rendu possible grâce à l'utilisation de dérivées partielles discrètes se transformant comme les dérivées partielles continues sous l'action de groupes de Lie locaux. Dans les applications, beaucoup d'EDP sont invariantes sous l'action de transformations ponctuelles de Lie de dimension infinie qui font partie de ce que l'on désigne comme des pseudo-groupes de Lie. Afin d'étendre la méthode de discrétisation préservant les symétries à ces équations, une discrétisation des pseudo-groupes est proposée. Cette discrétisation a pour effet de transformer les symétries ponctuelles en symétries généralisées dans l'espace discret. Des schémas invariants sont ensuite créés pour un certain nombre d'EDP. Dans tous les cas, des tests numériques montrent que les schémas invariants approximent mieux leur équivalent continu que les différences finies standard. / An algorithm discretizing partial differential equations (PDEs) while preserving their Lie symmetries is provided. This is made possible by the use of discrete partial derivatives transforming as their continuous counterparts under the action of local Lie groups. In applications, many PDEs are invariant under the action of Lie point symmetries of infinite dimension designated as Lie pseudo-groups. To extend the invariant discretization method to such equations, a discretization of pseudo-groups is proposed. The pseudo-group action discretization transforms the continuous point symmetries into generalized symmetries in the discrete space. Invariant schemes are then created for a number of PDEs. In all cases, numerical tests demonstrate that invariant schemes are better approximations of their continuous equivalents than standard finite differences.
434

Sur certains systèmes hamiltoniens liés à l’équation de Szegő cubique / On certain Hamiltonian systems related to the cubic Szegő equation

Xu, Haiyan 14 September 2015 (has links)
Cette thèse est principalement consacrée à l’étude du comportement en temps long de solutions de certaines équations aux dérivées partielles hamiltoniennes, du type i∂_t u=X_H (u), en particulier l’existence globale, la croissance des normes de Sobolev, la diffusion et l’approximation par la dynamique résonante.Dans ce contexte, nous considérons d’abord une perturbation de l’équation de Szegő cubique par un potentiel linéaire, i∂_t u=∏ |u|² u+α∫ u,α∈R, (α-Szegő) où ∏▒ désigne le projecteur de Szegő sur les fréquences positives. Pour α=0, cette équation est l’équation de Szegő cubique, étudiée récemment par Gérard et Grellier comme modèle mathématique d’équation non linéaire et non dispersive. Pour l’équation (α–Szegő), nous établissons le caractère bien posé et la complète intégrabilité, et étudions la dynamique des valeurs singulières des opérateurs de Hankel associés. En outre, nous montrons les propriétés suivantes pour cette équation, sur une classe de sous–variétés invariantes de dimensions finies arbitrairement grandes : si α<0, toute trajectoire est relativement compacte, et toute norme de Sobolev est bornée le long de cette trajectoire. Siα>0, il existe des trajectoires le long desquelles toutes les normes de Sobolev de régularité plus grande que ½ tendent exponentiellement vers l’infini en temps.Dans une seconde partie, nous étudions un système mixte Schrödinger–ondes sur le cylinder (x,y)∈R×T , i∂_t U+∂_xx U-|D_y |U=|U|² U,(WS)En adaptant une idée de Hani–Pausader–Tzvetkov–Visciglia, nous établissons une théorie du scattering modifiée reliant les petites solutions de cette équation et les petites solutions de l’équation de Szegő cubique. En combinant cette théorie du scattering avec un résultat récent de Gérard–Grellier, nous en déduisons l’existence de solutions globales de (WS) qui sont non bornées dans l’espace L_x² H_y^s (R×T) pour tout s>½ . / The main purpose of this Ph.D. thesis is to study the long time behavior of solutionsto some Hamiltonian PDEs, i∂_t u=X_H (u), including global existence, growth of high Sobolev norms, scattering and long time approximation by resonant dynamics.In this context, at first we consider the Szegő equation on the circle S1 perturbed bya linear potential, i∂_t u=∏ |u|² u+α∫ u,α∈R, (α-Szegő) where ∏ is the projector onto the non-negative frequencies. For α=0, it turns out tobe the cubic Szegő equation, which was recently introduced by Gérard and Grellier as amathematical toy model of a non-linear totally non dispersive equation.We study the global well-posedness, the integrability and the dynamics of the singularvalues of the related Hankel operators of the α –Szegő equation. Moreover, we establishthe following properties for this equation on a class of invariant submanifolds, with anarbitrary large dimension. For α<0, any trajectory is relatively compact, and all theSobolev norms are bounded on it. For α>0, there exist trajectories on which everySobolev norm of regularity s>½ , exponentially tends to infinity in time.Second, we study the wave-guide Schrödinger equation posed on the spatial domain(x,y)∈R×T ,i∂_t U+∂_xx U-|D_y |U=|U|² U,(WS)Adapting an idea by Hani–Pausader–Tzvetkov–Visciglia, we establish a modified scattering theory between small solutions to this equation and small solutions to the cubic Szegő equation. Combining this scattering theory with a recent result by Gérard–Grellier, we infer existence of global solutions to (WS) which are unbounded in the space L_x^2 H_y^s (R×T) for every s>½ .
435

Comportement asymptotique des solutions globales pour quelques problèmes paraboliques non linéaires singuliers / Asymptotic behavior of global solutions for some singular nonlinear parabolic problems

Ben slimene, Byrame 15 December 2017 (has links)
Dans cette thèse, nous étudions l’équation parabolique non linéaire ∂ t u = ∆u + a |x|⎺⥾ |u|ᵅ u, t > 0, x ∈ Rᴺ \ {0}, N ≥ 1, ⍺ ∈ R, α > 0, 0 < Ƴ < min(2,N) et avec une donnée initiale u(0) = φ. On établit l’existence et l’unicité locale dans Lq(Rᴺ) et dans Cₒ(Rᴺ). En particulier, la valeur q = N ⍺/(2 − γ) joue un rôle critique. Pour ⍺ > (2 − γ)/N, on montre l’existence de solutions auto-similaires globales avec données initiales φ(x) = ω(x) |x|−(2−γ)/⍺, où ω ∈ L∞(Rᴺ) homogène de degré 0 et ||ω||∞ est suffisamment petite. Nous montrons ainsi que si φ(x)∼ω(x) |x| ⎺(²⎺⥾)/⍺ pour |x| grande, alors la solution est globale et asymptotique dans L∞(Rᴺ) à une solution auto-similaire de l’équation non linéaire. Tandis que si φ(x)∼ω(x) |x| (x)|x|−σ pour des |x| grandes avec (2 − γ)/⍺ < σ < N, alors la solution est globale, mais elle est asymptotique dans L∞(Rᴺ) à eᵗ∆(ω(x) |x|−σ). L’équation avec un potentiel plus général, ∂ t u = ∆u + V(x) |u|ᵅ u, V(x) |x |⥾ ∈ L∞(Rᴺ), est également étudiée. En particulier, pour des données initiales φ(x)∼ω(x) |x| ⎺(²⎺⥾)/⍺, |x| grande, nous montrons que le comportement à grand temps est linéaire si V est à support compact au voisinage de l’origine, alors qu’il est non linéaire si V est à support compact au voisinage de l’infini. Nous étudions également le système non linéaire ∂ t u = ∆u + a |x|⎺⥾ |v|ᴾ⎺¹v, ∂ t v = ∆v + b |x|⎺ ᴾ |u|q⎺¹ u, t > 0, x ∈ Rᴺ \ {0}, N ≥ 1, a,b ∈ R, 0 < y < min(2,N)? 0 < p < min(2,N), p,q > 1. Sous des conditions sur les paramètres p, q, γ et ρ nous montrons l’existence et l’unicité de solutions globales avec données initiales petites par rapport à certaines normes. En particulier, on montre l’existence de solutions auto-similaires avec donnée initiale Φ = (φ₁, φ₂), où φ₁, φ₂ sont des données initiales homogènes. Nous montrons également que certaines solutions globales sont asymptotiquement auto-similaires. Comme deuxième objectif, nous considérons l’équation de la chaleur non linéaire ut = ∆u + |u|ᴾ⎺¹u - |u| q⎺¹u, avec t ≥ 0 et x ∈ Ω, la boule unité de Rᴺ, N ≥ 3, avec des conditions aux limites de Dirichlet. Soit h une solution stationnaire à symétrie radiale avec changement de signe de (E). On montre que la solution de (E) avec donnée initiale λh explose en temps fini si |λ − 1| > 0 est suffisamment petit et si 1 < q < p < Ps = N+2/N−2 et p suffisamment proche de Ps. Ceci prouve que l’ensemble des données initiales pour lesquelles la solution est globale n’est pas étoilé au voisinage de 0. / In this thesis, we study the nonlinear parabolic equation ∂ t u = ∆u + a |x|⎺⥾ |u|ᵅ u, t > 0, x ∈ Rᴺ \ {0}, N ≥ 1, ⍺ ∈ R, α > 0, 0 < Ƴ < min(2,N) and with initial value u(0) = φ. We establish local well-posedness in Lq(Rᴺ) and in Cₒ(Rᴺ). In particular, the value q = N ⍺/(2 − γ) plays a critical role.For ⍺ > (2 − γ)/N, we show the existence of global self-similar solutions with initial values φ(x) = ω(x) |x|−(2−γ)/⍺, where ω ∈ L∞(Rᴺ) is homogeneous of degree 0 and ||ω||∞ is sufficiently small. We then prove that if φ(x)∼ω(x) |x| ⎺(²⎺⥾)/⍺ for |x| large, then the solution is global and is asymptotic in the L∞-norm to a self-similar solution of the nonlinear equation. While if φ(x)∼ω(x) |x| (x)|x|−σ for |x| large with (2 − γ)/α < σ < N, then the solution is global but is asymptotic in the L∞-norm toe t(ω(x) |x|−σ). The equation with more general potential, ∂ t u = ∆u + V(x) |u|ᵅ u, V(x) |x |⥾ ∈ L∞(Rᴺ), is also studied. In particular, for initial data φ(x)∼ω(x) |x| ⎺(²⎺⥾)/⍺, |x| large , we show that the large time behavior is linear if V is compactly supported near the origin, while it is nonlinear if V is compactly supported near infinity. we study also the nonlinear parabolic system ∂ t u = ∆u + a |x|⎺⥾ |v|ᴾ⎺¹v, ∂ t v = ∆v + b |x|⎺ ᴾ |u|q⎺¹ u, t > 0, x ∈ Rᴺ \ {0}, N ≥ 1, a,b ∈ R, 0 < y < min(2,N)? 0 < p < min(2,N), p,q > 1. Under conditions on the parameters p, q, γ and ρ we show the existence and uniqueness of global solutions for initial values small with respect of some norms. In particular, we show the existence of self-similar solutions with initial value Φ = (φ₁, φ₂), where φ₁, φ₂ are homogeneous initial data. We also prove that some global solutions are asymptotic for large time to self-similar solutions. As a second objective we consider the nonlinear heat equation ut = ∆u + |u|ᴾ⎺¹u - |u| q⎺¹u, where t ≥ 0 and x ∈ Ω, the unit ball of Rᴺ, N ≥ 3, with Dirichlet boundary conditions. Let h be a radially symmetric, sign-changing stationary solution of (E). We prove that the solution of (E) with initial value λ h blows up in finite time if |λ − 1| > 0 is sufficiently small and if 1 < q < p < Ps = N+2/N−2 and p sufficiently close to Ps. This proves that the set of initial data for which the solution is global is not star-shaped around 0.
436

Étude mathématique de quelques équations cinétiques collisionnelles

Mouhot, Clément 25 November 2004 (has links) (PDF)
On s'intéresse dans cette thèse à l'étude des solutions des équations de Boltzmann (élastiques et inélastiques) et Landau. Les axes de cette étude sont la régularité des solutions et leur comportement asymptotique, et nous nous attachons systématiquement à quantifier les résultats obtenus. Dans la première partie, d'une part nous considérons les solutions spatialement homogènes de l'équation de Boltzmann, pour lesquelles nous montrons la propagation de la régularité et la décroissance des singularités pour des interactions à courte portée, et la propagation de bornes <br />d'intégrabilité pour des interactions à longue portée. D'autre part, nous quantifions la positivité des solutions spatialement <br />inhomogènes, sous des hypothèses de régularité. Dans la deuxième partie, nous donnons des estimations de trou spectral et de coercivité sur les opérateurs de Boltzmann et Landau linéarisés, puis nous prouvons la convergence exponentielle vers l'équilibre avec taux explicite pour un gaz de sphères dures spatialement homogènes. Dans la troisième partie, nous considérons l'équation de Boltzmann spatialement homogène pour les gaz granulaires, pour laquelle nous construisons des solutions pour des modèles d'inélasticité réalistes (mais fortement non-linéaires) et discutons la possibilité de « gel » en temps fini ou asymptotiquement. Puis nous montrons l'existence de profils auto-similaires et étudions le comportement de la solution pour les grandes vitesses. Dans la quatrième partie, nous utilisons une semi-discrétisation de l'opérateur de Boltzmann pour proposer <br />des schémas numériques rapides basés sur les méthodes spectrales ou les méthodes par discrétisation des vitesses.
437

Classification analytique de systèmes différentiels linéaires déployant une singularité irrégulière de rang de Poincaré 1

Lambert, Caroline 04 1900 (has links)
Cette thèse traite de la classification analytique du déploiement de systèmes différentiels linéaires ayant une singularité irrégulière. Elle est composée de deux articles sur le sujet: le premier présente des résultats obtenus lors de l'étude de la confluence de l'équation hypergéométrique et peut être considéré comme un cas particulier du second; le deuxième contient les théorèmes et résultats principaux. Dans les deux articles, nous considérons la confluence de deux points singuliers réguliers en un point singulier irrégulier et nous étudions les conséquences de la divergence des solutions au point singulier irrégulier sur le comportement des solutions du système déployé. Pour ce faire, nous recouvrons un voisinage de l'origine (de manière ramifiée) dans l'espace du paramètre de déploiement $\epsilon$. La monodromie d'une base de solutions bien choisie est directement reliée aux matrices de Stokes déployées. Ces dernières donnent une interprétation géométrique aux matrices de Stokes, incluant le lien (existant au moins pour les cas génériques) entre la divergence des solutions à $\epsilon=0$ et la présence de solutions logarithmiques autour des points singuliers réguliers lors de la résonance. La monodromie d'intégrales premières de systèmes de Riccati correspondants est aussi interprétée en fonction des éléments des matrices de Stokes déployées. De plus, dans le second article, nous donnons le système complet d'invariants analytiques pour le déploiement de systèmes différentiels linéaires $x^2y'=A(x)y$ ayant une singularité irrégulière de rang de Poincaré $1$ à l'origine au-dessus d'un voisinage fixé $\mathbb{D}_r$ dans la variable $x$. Ce système est constitué d'une partie formelle, donnée par des polynômes, et d'une partie analytique, donnée par une classe d'équivalence de matrices de Stokes déployées. Pour chaque valeur du paramètre $\epsilon$ dans un secteur pointé à l'origine d'ouverture plus grande que $2\pi$, nous recouvrons l'espace de la variable, $\mathbb{D}_r$, avec deux secteurs et, au-dessus de chacun, nous choisissons une base de solutions du système déployé. Cette base sert à définir les matrices de Stokes déployées. Finalement, nous prouvons un théorème de réalisation des invariants qui satisfont une condition nécessaire et suffisante, identifiant ainsi l'ensemble des modules. / This thesis deals with the analytic classification of unfoldings of linear differential systems with an irregular singularity. It contains two papers related to this subject: the first paper presents results concerning the confluence of the hypergeometric equation and may be viewed as a particular case of the second one; the second paper contains the main theorems and results. In both papers, we study the confluence of two regular singular points into an irregular one and we give consequences of the divergence of solutions at the irregular singular point for the unfolded system. For this study, a full neighborhood of the origin is covered (in a ramified way) in the space of the unfolding parameter $\epsilon$. Monodromy of a well chosen basis of solutions around the regular singular points is directly linked to the unfolded Stokes matrices. These matrices give a complete geometric interpretation to the well-known Stokes matrices: this includes the link (existing at least for the generic cases) between the divergence of the solutions at $\epsilon=0$ and the presence of logarithmic terms in the solutions for resonant values of $\epsilon$. Monodromy of first integrals of related Riccati systems are also interpreted in terms of the elements of the unfolded Stokes matrices. The second paper goes further into the subject, giving the complete system of analytic invariants for the unfoldings of nonresonant linear differential systems $x^2y'=A(x)y$ with an irregular singularity of Poincaré rank $1$ at the origin over a fixed neighborhood $\mathbb{D}_r$ in the space of the variable $x$. It consists of a formal part, given by polynomials, and an analytic part, given by an equivalence class of unfolded Stokes matrices. For each parameter value $\epsilon$ taken in a sector pointed at the origin of opening larger than $2\pi$, we cover the space of the variable, $\mathbb{D}_r$, with two sectors and, over each of them, we construct a well chosen basis of solutions of the unfolded differential system. This basis is used to define the unfolded Stokes matrices. Finally, we give a realization theorem for the invariants satisfying a necessary and sufficient condition, thus identifying the set of modules.
438

Limites diffusives pour des équations cinétiques stochastiques

De Moor, Sylvain 11 June 2014 (has links) (PDF)
Cette thèse présente quelques résultats dans le domaine des équations aux dérivées partielles stochastiques. Une majeure partie d'entre eux concerne l'étude de limites diffusives de modèles cinétiques perturbés par un terme aléatoire. On présente également un résultat de régularité pour une classe d'équations aux dérivées partielles stochastiques ainsi qu'un résultat d'existence et d'unicité de mesures invariantes pour une équation de Fokker-Planck stochastique. Dans un premier temps, on présente trois travaux d'approximation-diffusion dans le contexte stochastique. Le premier s'intéresse au cas d'une équation cinétique avec opérateur de relaxation linéaire dont l'équilibre des vitesses a un comportement de type puissance à l'infini. L'équation est perturbée par un processus Markovien. Cela donne lieu à une limite fluide stochastique fractionnaire. Les deux autres résultats concernent l'étude de l'équation de transfert radiatif qui est un problème cinétique non linéaire. L'équation est bruitée dans un premier temps avec un processus de Wiener cylindrique et dans un second temps par un processus Markovien. Dans les deux cas, on obtient à la limite une équation de Rosseland stochastique. Dans la suite, on présente un résultat de régularité pour les équations aux dérivées partielles quasi-linéaires de type parabolique dont la partie aléatoire est gouvernée par un processus de Wiener cylindrique. Enfin, on étudie une équation de Fokker-Planck qui présente un terme de forçage aléatoire régi par un processus de Wiener cylindrique. On prouve d'une part l'existence et l'unicité des solutions de ce problème et d'autre part l'existence et l'unicité de mesures invariantes pour la dynamique de cette équation.
439

Théorèmes asymptotiques pour les équations de Boltzmann et de Landau

Carrapatoso, Kléber 09 December 2013 (has links) (PDF)
Nous nous intéressons dans cette thèse à la théorie cinétique et aux systèmes de particules dans le cadre des équations de Boltzmann et Landau. Premièrement, nous étudions la dérivation des équations cinétiques comme des limites de champ moyen des systèmes de particules, en utilisant le concept de propagation du chaos. Plus précisément, nous étudions les probabilités chaotiques sur l'espace de phase de ces systèmes de particules : la sphère de Boltzmann, qui correspond à l'espace de phase d'un système de particules qui évolue conservant le moment et l'énergie ; et la sphère de Kac, correspondant à un système de particules qui conserve seulement l'énergie. Ensuite, nous nous intéressons à la propagation du chaos, avec des estimations quantitatives et uniforme en temps, pour les équations de Boltzmann et Landau. Deuxièmement, nous étudions le comportement asymptotique en temps grand des solutions de l'équation de Landau.
440

Sub-gradient diffusion equations / Des équations de diffusion sous-gradient

Ta, Thi nguyet nga 18 December 2015 (has links)
Ce mémoire de thèse est consacrée à l'étude des problèmes d'évolution où la dynamique est régi par l'opérateur de diffusion de sous-gradient. Nous nous intéressons à deux types de problèmes d'évolution. Le premier problème est régi par un opérateur local de type Leray-Lions avec un domaine borné. Dans ce problème, l'opérateur est maximal monotone et ne satisfait pas la condition standard de contrôle de la croissance polynomiale. Des exemples typiques apparaît dans l'étude de fluide non-Neutonian et aussi dans la description de la dynamique du flux de sous-gradient. Pour étudier le problème nous traitons l'équation dans le contexte de l'EDP non linéaire avec le flux singulier. Nous utilisons la théorie de gradient tangentiel pour caractériser l'équation d'état qui donne la relation entre le flux et le gradient de la solution. Dans le problème stationnaire, nous avons l'existence de la solution, nous avons également l'équivalence entre le problème minimisation initial, le problème dual et l'EDP. Dans l'équation de l'évolution, nous proposons l'existence, l'unicité de la solution. Le deuxième problème est régi par un opérateur discret. Nous étudions l'équation d'évolution discrète qui décrivent le processus d'effondrement du tas de sable. Ceci est un exemple typique de phénomènes auto-organisés critiques exposées par une slope critique. Nous considérons l'équation d'évolution discrète où la dynamique est régie par sous-gradient de la fonction d'indicateur de la boule unité. Nous commençons par établir le modèle, nous prouvons existence et l'unicité de la solution. Ensuite, en utilisant arguments de dualité nous étudions le calcul numérique de la solution et nous présentons quelques simulations numériques. / This thesis is devoted to the study of evolution problems where the dynamic is governed by sub-gradient diffusion operator. We are interest in two kind of evolution problems. The first problem is governed by local operator of Leray-Lions type with a bounded domain. In this problem, the operator is maximal monotone and does not satisfied the standard polynomial growth control condition. Typical examples appears in the study of non-Neutonian fluid and also in the description of sub-gradient flows dynamics. To study the problem we handle the equation in the context of nonlinear PDE with singular flux. We use the theory of tangential gradient to characterize the state equation that gives the connection between the flux and the gradient of the solution. In the stationary problem, we have the existence of solution, we also get the equivalence between the initial minimization problem, the dual problem and the PDE. In the evolution one, we provide the existence, uniqueness of solution and the contractions. The second problem is governed by a discrete operator. We study the discrete evolution equation which describe the process of collapsing sandpile. This is a typical example of Self-organized critical phenomena exhibited by a critical slop. We consider the discrete evolution equation where the dynamic is governed by sub-gradient of indicator function of the unit ball. We begin by establish the model, we prove existence and uniqueness of the solution. Then by using dual arguments we study the numerical computation of the solution and we present some numerical simulations.

Page generated in 0.0983 seconds