Spelling suggestions: "subject:"équations""
451 |
Intégration numérique et éléments finis d'ordre élevé appliqués aux équations de Maxwell en régime harmoniqueDuruflé, Marc 07 February 2006 (has links) (PDF)
Dans cette thèse, nous nous intéressons à la résolution des <br />équations de Maxwell en régime fréquentiel, afin de calculer<br />précisément la signature radar de cibles diverses. Pour avoir<br />une grande précision nécessaire pour des expérience de grande taille,<br /> nous utilisons des méthodes d'ordre élevé.<br /><br />Dans le cas scalaire, les éléments finis spectraux hexaédriques<br />avec condensation de masse, permettent d'obtenir un produit matrice vecteur <br />rapide et peux coûteux en stockage. Dans le cas vectoriel, les hexaèdres<br />de la première famille ne réalisent pas la condensation de masse, mais on peut<br />écrire un algorithme rapide de produit matrice-vecteur. Des résultats<br />numériques 3-D montrent la performance de l'algorithme proposé.<br /><br />Nous traitons également le cas où la géométrie présente<br />une symétrie de révolution. On est alors ramenés à une succession<br />de problèmes 2-D indépendants.<br />Nous proposons une méthode éléments finis d'ordre élevé <br />couplée à des équations intégrales d'ordre élevé.
|
452 |
Isospin Symmetry Breaking in sd Shell NucleiLam, Y.L. 13 December 2011 (has links) (PDF)
Dans cette thèse, nous avons développé une approche microscopique de la description des effets de la brisure de symétrie d'isospin dans les noyaux de la couche sd. Le travail est effectué dans le cadre du modèle en couches.Nous avons ajouté à un Hamiltonien nucléaire traditionnel, qui conserve l'isospin, l'interaction de Coulomb et le potentiel de type Yukawa d'échange de mésons pour modéliser les forces nucléaires dépendantes de la charge. La base de données sur les coefficients expérimentaux de l'équation des multiplets de masse isobariques (IMME) a été mise au point dans le cadre de cette thèse et a été utilisée pour ajuster les paramètres de l'hamiltonien. L'hamiltonien ainsi construit fournit une description théorique très précise du mélange d'isospin dans les états nucléaires. Nous montrons la pertinence de cette approche dans deux applications importantes : (i) le calcul des amplitudes d'émission de proton interdites par isospin, essentiels dans le cadre d'astrophysique nucléaire et (ii) le calcul de corrections (dues au mélange d'isospin) aux transitions bêta superpermises du type Fermi, cruciales pour les tests des symétries fondamentales du Modèle Standard de l'interaction électrofaible.
|
453 |
Modèles numériques à faibles nombres de Mach pour l'étude d'écoulements en convection naturelle et mixteHaddad, Adel 15 December 2011 (has links)
Le modèle numérique que nous avons développé au cours de cette thèse présente deux caractéristiques principales : un modèle dilatable pour l'eau et la prise en compte de domaines ouverts. Les difficultés associées au premier aspect concernent l'adaptation de la loi d'état de l’eau au modèle dilatable sous l’approximation à faibles nombres de Mach, tandis que celles associées au second sont relatives à la mise en œuvre de conditions aux limites numériques de sortie compatibles avec l'algorithme de projection utilisé. Les résultats de simulations d'écoulement de convection mixte en canal horizontal chauffé par le bas ont été confrontés à celles utilisant l'approximation de Boussinesq et aux expériences. / The 3D numerical model which we developed in this thesis presents two main features: a Low-Mach-Number approximation for water along with an open boundary condition formulation. Indeed, the difficulties related to the former point stand in a computationally efficient adaptation of the water equation of state in the framework of Low Mach number approximation, whereas the difficulties related to the latter concern the introduction of Open Boundary Conditions in the projection algorithm used. We have computed a mixed convection flow in a horizontal channel uniformly heated from below and compared the results obtained with both the Boussinesq approximation and experimental results.
|
454 |
Etude expérimentale et modélisation de la longueur de bon mélange. Application à la représentativité des points de prélèvement en conduit / Experimental study and modelling of the well-mixing length. Application to the representativeness of sampling points in ductAlengry, Jonathan 20 March 2014 (has links)
La surveillance des rejets gazeux des installations nucléaires dans l'environnement et de contrôle des dispositifs d'épuration reposent sur des mesures régulières de concentrations des contaminants en sortie de cheminées et dans les réseaux de ventilation. La répartition de la concentration peut être hétérogène au niveau du point de mesure si la distance d'établissement du mélange est insuffisante. La question se pose sur l'évaluation du positionnement des points de piquage et sur l'erreur commise par rapport à la concentration homogène en cas de non-respect de cette distance. Cette étude définit cette longueur dite de « bon mélange » à partir d'expériences menées en laboratoire. Le banc dimensionné pour ces essais a permis de reproduire des écoulements dans des conduits longs circulaire et rectangulaire, comprenant chacun un coude. Une technique de mesure optique a été développée, calibrée puis utilisée pour mesurer la distribution de la concentration d'un traceur injecté dans l'écoulement. Les résultats expérimentaux en conduit cylindrique ont validé un modèle analytique basé sur l'équation de convection-diffusion d'un traceur, et ont permis de proposer des modèles de longueur de bon mélange et de représentativité de points de prélèvement. Dans le conduit à section rectangulaire, les mesures acquises constituent une première base de données sur l'évolution de l'homogénéisation d'un traceur, dans la perspective de simulations numériques explorant des conditions plus réalistes des mesures in situ. / Monitoring of gaseous releases from nuclear installations in the environment and air cleaning efficiency measurement are based on regular measurements of concentrations of contaminants in outlet chimneys and ventilation systems. The concentration distribution may be heterogeneous at the measuring point if the distance setting of the mixing is not sufficient. The question is about the set up of the measuring point in duct and the error compared to the homogeneous concentration in case of non-compliance with this distance. This study defines the so-called "well mixing length" from laboratory experiments. The bench designed for these tests allowed to reproduce flows in long circular and rectangular ducts, each including a bend. An optical measurement technique has been developed, calibrated and used to measure the concentration distribution of a tracer injected in the flow. The experimental results in cylindrical duct have validated an analytical model based on the convection-diffusion equation of a tracer, and allowed to propose models of good mixing length and representativeness of sampling points. In rectangular duct, the acquired measures constitute a first database on the evolution of the homogenization of a tracer, in the perspective of numerical simulations exploring more realistic conditions for measurements in situ.
|
455 |
Dynamique des populations : contrôle stochastique et modélisation hybride du cancer / Population dynamics : stochastic control and hybrid modelling of cancerClaisse, Julien 04 July 2014 (has links)
L'objectif de cette thèse est de développer la théorie du contrôle stochastique et ses applications en dynamique des populations. D'un point de vue théorique, nous présentons l'étude de problèmes de contrôle stochastique à horizon fini sur des processus de diffusion, de branchement non linéaire et de branchement-diffusion. Dans chacun des cas, nous raisonnons par la méthode de la programmation dynamique en veillant à démontrer soigneusement un argument de conditionnement analogue à la propriété de Markov forte pour les processus contrôlés. Le principe de la programmation dynamique nous permet alors de prouver que la fonction valeur est solution (régulière ou de viscosité) de l'équation de Hamilton-Jacobi-Bellman correspondante. Dans le cas régulier, nous identifions également un contrôle optimal markovien par un théorème de vérification. Du point de vue des applications, nous nous intéressons à la modélisation mathématique du cancer et de ses stratégies thérapeutiques. Plus précisément, nous construisons un modèle hybride de croissance de tumeur qui rend compte du rôle fondamental de l'acidité dans l'évolution de la maladie. Les cibles de la thérapie apparaissent explicitement comme paramètres du modèle afin de pouvoir l'utiliser comme support d'évaluation de stratégies thérapeutiques. / The main objective of this thesis is to develop stochastic control theory and applications to population dynamics. From a theoritical point of view, we study finite horizon stochastic control problems on diffusion processes, nonlinear branching processes and branching diffusion processes. In each case we establish a dynamic programmic principle by carefully proving a conditioning argument similar to the strong Markov property for controlled processes. Then we deduce that the value function is a (viscosity or regular) solution of the associated Hamilton-Jacobi-Bellman equation. In the regular case, we further identify an optimal control in the class of markovian strategies thanks to a verification theorem. From a pratical point of view, we are interested in mathematical modelling of cancer growth and treatment. More precisely, we build a hybrid model of tumor growth taking into account the essential role of acidity. Therapeutic targets appear explicitly as model parameters in order to be able to evaluate treatment strategies.
|
456 |
Elimination adiabatique pour systèmes quantiques ouverts / Adiabatic elimination for open quantum systemsAzouit, Rémi 27 October 2017 (has links)
Cette thèse traite du problème de la réduction de modèle pour les systèmes quantiquesouverts possédant différentes échelles de temps, également connu sous le nom d’éliminationadiabatique. L’objectif est d’obtenir une méthode générale d’élimination adiabatiqueassurant la structure quantique du modèle réduit.On considère un système quantique ouvert, décrit par une équation maîtresse deLindblad possédant deux échelles de temps, la dynamique rapide faisant converger lesystème vers un état d’équilibre. Les systèmes associés à un état d’équilibre unique ouune variété d’états d’équilibre ("decoherence-free space") sont considérés. La dynamiquelente est traitée comme une perturbation. En utilisant la séparation des échelles de temps,on développe une nouvelle technique d’élimination adiabatique pour obtenir, à n’importequel ordre, le modèle réduit décrivant les variables lentes. Cette méthode, basée sur undéveloppement asymptotique et la théorie géométrique des perturbations singulières, assureune bonne interprétation physique du modèle réduit au second ordre en exprimant ladynamique réduite sous une forme de Lindblad et la paramétrisation définissant la variétélente dans une forme de Kraus (préservant la trace et complètement positif). On obtientainsi des formules explicites, pour calculer le modèle réduit jusqu’au second ordre, dans lecas des systèmes composites faiblement couplés, de façon Hamiltonienne ou en cascade;des premiers résultats au troisième ordre sont présentés. Pour les systèmes possédant unevariété d’états d’équilibre, des formules explicites pour calculer le modèle réduit jusqu’ausecond ordre sont également obtenues. / This thesis addresses the model reduction problem for open quantum systems with differenttime-scales, also called adiabatic elimination. The objective is to derive a generic adiabaticelimination technique preserving the quantum structure for the reduced model.We consider an open quantum system, described by a Lindblad master equation withtwo time-scales, where the fast time-scale drives the system towards an equilibrium state.The cases of a unique steady state and a manifold of steady states (decoherence-free space)are considered. The slow dynamics is treated as a perturbation. Using the time-scaleseparation, we developed a new adiabatic elimination technique to derive at any orderthe reduced model describing the slow variables. The method, based on an asymptoticexpansion and geometric singular perturbation theory, ensures the physical interpretationof the reduced second-order model by giving the reduced dynamics in a Lindblad formand the mapping defining the slow manifold as a completely positive trace-preserving map(Kraus map) form. We give explicit second-order formulas, to compute the reduced model,for composite systems with weak - Hamiltonian or cascade - coupling between the twosubsystems and preliminary results on the third order. For systems with decoherence-freespace, explicit second order formulas are as well derived.
|
457 |
Problèmes de commande optimale stochastique généralisésZitouni, Foued 11 1900 (has links)
No description available.
|
458 |
Differential calculus on h-deformed spaces / Calcul différentiel sur des espaces h-déformésHerlemont, Basile 16 November 2017 (has links)
L'anneau $\Diff(n)$ des opérateurs différentiels $\h$-déformés apparaît dans la théorie des algèbres de réduction.Dans cette thèse, nous construisons les anneaux des opérateurs différentiels généralisés sur les espaces vectoriels $\h$-déformés de type $\gl$. Contrairement aux espaces vectoriels $q$-déformés pour lequel l'anneau des opérateurs différentiels est unique \`a isomorphisme pr\`es, l'anneau généralisé des opérateurs différentiels $\h$-déformés $\Diffs(n)$ est indexée par une fonction rationnelle $\sigma$ en $n$ variables, solution d'un syst\`eme d\'eg\'en\'er\'e d'\'equations aux diff\'erences finies. Nous obtenons la solution g\'en\'erale de ce syst\`eme. Nous montrons que le centre de $\Diffs(n)$ est un anneau des polynômes en $n$ variables. Nous construisons un isomorphisme entre des localisations de l'anneau $\Diffs(n)$ et de l’algèbre de Weyl $\text{W}_n$ l’étendue par $n$ indéterminés. Nous présentons des conditions irréductibilité des modules de dimension fini de $\Diffs(n)$. Finalement, nous discutons des difficultés a trouver les constructions analogues pour l'anneau $\Diff(n,N)$ correspondant \`a $N$ copies de $\Diff(n)$. / The ring $\Diff(n)$ of $\h$-deformed differential operators appears in the theory of reduction algebras. In this thesis, we construct the rings of generalized differential operators on the $\h$-deformed vector spaces of $\gl$-type. In contrast to the $q$-deformed vector spaces for which the ring of differential operators is unique up to an isomorphism, the general ring of $\h$-deformed differential operators $\Diffs(n)$ is labeled by a rational function $\sigma$ in $n$ variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system. We show that the center of $\Diffs(n)$ is a ring of polynomials in $n$ variables. We construct an isomorphism between certain localizations of $\Diffs(n)$ and the Weyl algebra $\W_n$ extended by $n$ indeterminates. We present some conditions for the irreducibility of the finite dimensional $\Diffs(n)$-modules. Finally, we discuss difficulties for finding analogous constructions for the ring $\Diff(n, N)$ formed by several copies of $\Diff(n)$.
|
459 |
Analyse et simulation d'équations de Schrödinger déterministes et stochastiques. Applications aux condensats de Bose-Einstein en rotation / Analysis and simulation of deterministic and stochastic Schrödinger equations. Applications to rotating Bose-Einstein condensatesDuboscq, Romain 28 November 2013 (has links)
Dans cette thèse, nous étudions différents aspects mathématiques et numériques des équations de Gross-Pitaevskii et de Schrödinger non linéaire. Nous commençons (chapitre 1) par introduire différents modèles à partir des systèmes physiques que sont les condensats de Bose-Einstein et les impulsions lumineuses dans les fibres optiques. Cette modélisation conduit aux équations aux dérivées partielles stochastiques suivantes : l'équation de Gross-Pitaevskii stochastique et l'équation de Schrödinger non linéaire avec dispersion aléatoire. Ensuite, dans le second chapitre, nous nous intéressons au problème de l'existence et l'unicité d'une solution de ces équations. On montre notamment que le problème de Cauchy a une solution pour l'équation de Gross-Pitaevskii stochastique avec rotation grâce à la construction de la solution associée au problème. Nous abordons ensuite dans le troisième chapitre le problème du calcul des états stationnaires pour l'équation de Gross-Pitaevskii. Nous développons une méthode pseudo-spectrale de discrétisation du Continuous Normalized Gradient Flow, associée à une résolution itérative préconditionnée des sous-espaces de Krylov. Le quatrième chapitre concerne l'étude de schémas pseudo-spectraux pour la dynamique de l'équation de Gross-Pitaevskii et de Schrödinger non linéaire. On procède à une étude numérique de ces schémas (schéma de splitting de Lie et de Strang, ainsi qu'un schéma de relaxation). De plus, on analyse le schéma de Lie dans le cadre de l'équation de Schrödinger non linéaire avec dispersion aléatoire. Finalement, nous présentons, dans le cinquième chapitre, une boîte à outils Matlab (GPELab) développée dans le but de fournir les méthodes numériques que nous avons étudiées / The aim of this Thesis is to study various mathematical and numerical aspects related to the Gross-Pitaevskii and nonlinear Schrödinger equations. We begin (chapter 1) by introducing a few models starting from the physics of Bose-Einstein condensates and optical fibers. This naturally leads to introducing a stochastic Gross-Pitaevskii equation and a nonlinear Schrödinger equation with random dispersion. Next, in the second chapter, we analyze the existence and uniqueness problem for these two equations. We prove that the Cauchy problem admits a solution for the stochastic Gross-Pitaevskii equation with a rotational term by constructing the solution associated with the linear. The third chapter is concerned with the computation of stationary states for the Gross-Pitaevskii equation. We develop a pseudo-spectral approximation scheme for the Continuous Normalized Gradient Flow formulation, combined with preconditioned Krylov subspace methods. This original approach leads to the robust and efficient computation of ground states for fast rotations and strong nonlinearities. In the fourth chapter, we consider some pseudo-spectral schemes for computing the dynamics of the Gross-Pitaevskii and nonlinear Schrödinger equations. These schemes (the Lie's and Strang's splitting schemes and the relaxation scheme) are numerically studied. Moreover, we proceed to a rigorous numerical analysis of the Lie scheme for the associated stochastic PDEs. Finally, we present in the fifth chapter a Matlab toolbox (called GPELab) that provides computational solutions based on the schemes previously introduced in the Thesis
|
460 |
Contrôle d'équations dispersives pour les ondes de surface / Control of dispersive equations for surface wavesCapistrano Filho, Roberto De Almeida 20 February 2014 (has links)
Dans cette thèse, nous prouvons des résultats concernant le contrôle et la stabilisation d'équations dispersives étudiées sur un intervalle borné. Pour commencer, nous étudions la stabilisation interne du système de Gear-Grimshaw, qui est un système de deux équations de Korteweg-de-Vries (KdV) couplées. Nous obtenons une décroissance exponentielle de l'énergie totale associée au modèle en introduisant une fonction de Lyapunov convenable. Nous prouvons aussi des résultats de contrôlabilité à zéro et exacte pour l'équation de Korteweg-de Vries avec un contrôle distribué à support dans un sous-intervalle du domaine. Pour la contrôlabilité à zéro du système linéarisé, nous utilisons l'approche classique basée sur la dualité qui ramène le problème à l'étude d'une inégalité d'observabilité qui, dans ce travail, est établie à l'aide d'une inégalité de Carleman. Ensuite, utilisant des fonctions plateau, nous prouvons un résultat de contrôlabilité exacte. Dans les deux cas, le résultat concernant le système non linéaire est obtenu à l'aide d'un argument de point fixe. Enfin, dans la lignée du résultat de contrôlabilité au bord obtenu par L. Rosier pour KdV, nous prouvons que le système linéaire de Boussinesq de type KdV-KdV est exactement contrôlable lorsque des contrôles sont appliqués au bord. Notre méthode repose sur l'utilisation de multiplicateurs et l'approche de la dualité mentionnée ci-dessus. Lorsqu'un mécanisme d'amortissement est introduit au bord, nous montrons que le système non linéaire est aussi exactement contrôlable et que l'énergie associée au modèle décroit exponentiellement / This work is devoted to prove a series of results concerning the control and stabilization properties of dispersive models posed on a bounded interval. Initially, we study the internal stabilization of a coupled system of two Korteweg-de Vries equations (KdV), the so-called Gear-Grimshaw system. Defining a convenient Lyapunov function we obtain the exponential decay of the total energy associated to the model. We also prove results of null and exact controllability for the Korteweg-de Vries equation with a control acting internally on a subset of the domain. In the case of the null controllability for the linear model, we use a classical duality approach which reduces the problem to the study of an observability inequality that, in this work, is proved by means of a Carleman inequality. Then, making use of cut-off functions, the exact controllability is also investigated. In both cases, the result for the nonlinear system is obtained by means of fixed-point argument. Finally, in view of the result of the boundary controllability obtained by L. Rosier for the KdV equation, we prove that the linear Boussinesq system of KdV-KdV type is exactly controllable when the controls act in the boundary conditions. Our analysis is performed using multipliers and the duality approach mentioned above. Adding a damping mechanism in the boundary, it is proved that the nonlinear system is also exactly controllable and that the energy associated to the model decays exponentially
|
Page generated in 0.073 seconds