• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 263
  • 67
  • 1
  • Tagged with
  • 331
  • 331
  • 238
  • 167
  • 162
  • 96
  • 93
  • 86
  • 63
  • 47
  • 45
  • 44
  • 37
  • 36
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

The Geometry of the Milnor Number / Die Geometrie der Milnorzahl

Szawlowski, Adrian 19 April 2012 (has links)
No description available.
42

Locating median lines and hyperplanes with a restriction on the slope / Platzierung von Mediangeraden und Medianhyperebenen mit einer Beschränkung der Steigung

Krempasky, Thorsten 17 May 2012 (has links)
No description available.
43

Explicit GL(2) trac formulas and uniform, mixed Weyl laws / Exlpizite GL(2) Spurformeln und uniforme, gemischte Weyl'sche Gesetze

Palm, Marc 21 September 2012 (has links)
No description available.
44

Algorithms and Concepts for Robust Optimization / Algorithmen und Konzepte für die robuste Optimierung

Goerigk, Marc 24 September 2012 (has links)
No description available.
45

Identifying dependencies among delays / Bestimmung von Abhängigkeiten zwischen Zugverspätungen

Conte, Carla 17 January 2008 (has links)
No description available.
46

Some Aspects on Coarse Homotopy Theory / Einige Aspekte der groben Homotopietheorie

Norouzizadeh, Behnam 28 August 2009 (has links)
No description available.
47

Zeit- und Volatilitätsstruktur von Zinssätzen - Modellierung, Implementierung, Kalibrierung / Term and Volatility Structure of Interest Rates - Modelling, Implementation, Calibration

Zyapkov, Lyudmil 05 December 2007 (has links)
No description available.
48

Large deviations and exit time asymptotics for diffusions and stochastic resonance

Peithmann, Dierk 10 December 2007 (has links)
Diese Arbeit behandelt die Asymptotik von Austritts- und Übergangszeiten für gewisse schwach zeitinhomogene Diffusionsprozesse. Darauf basierend wird ein probabilistischer Begriff der stochastischen Resonanz (SR) studiert. Techniken der großen Abweichungen spielen eine zentrale Rolle. Im ersten Teil der Arbeit (Kapitel 1-3) werden Resultate aus der Theorie der großen Abweichungen für zeithomogene Diffusionen rekapituliert. Es werden die klassischen Resultate von Freidlin und Wentzell und Erweiterungen dieser Theorie präsentiert, und es wird an das Kramers''sche Austrittszeitengesetz erinnert. Teil II befasst sich mit dem Phänomen der SR, d.h. mit Periodizitätseigenschaften von Diffusionen. In Kapitel 4 werden physikalische Maße zur Messung der Periodizität diskutiert. Deren Nachteile legen es nahe, einem alternativen, probabilistischen Ansatz zu folgen, der hier behandelt wird. Das 5. Kapitel dient der Herleitung eines gleichmäßigen Prinzips der großen Abweichungen für Diffusionen mit schwach zeitabhängigem, periodischem Drift. Die Gleichmäßigkeit des Prinzips ermöglicht die exakte Bestimmung exponentieller Übergangsraten in Kapitel 6, das die zentralen Ergebnisse des 2. Teils beinhaltet. Hierdurch wird die Maximierung gewisser Übergangswahrscheinlichkeiten ermöglicht, was zum in Kapitel 7 studierten Resonanzbegriff führt. Teil III der Arbeit setzt sich mit der Asymptotik von Austrittszeiten sogenannter selbststabilisierender Diffusionen auseinander. In Kapitel 8 wird der Zusammenhang zwischen interagierenden Teilchensystemen und selbststabilisierenden Diffusionen erläutert und die Existenz- und Eindeutigkeitsfrage behandelt. Das 9. Kapitel dient dem Studium der großen Abweichungen dieser Klasse von Diffusionen. In Kapitel 10 wird das Kramers''sche Austrittszeitengesetz auf selbststabilisierende Diffusionen übertragen, und in Kapitel 11 wird der Einfluß der selbststabilisierenden Komponente auf das Austrittszeitengesetz illustriert. / In this thesis, we study the asymptotic behavior of exit and transition times of certain weakly time inhomogeneous diffusion processes. Based on these asymptotics, a probabilistic notion of stochastic resonance (SR) is investigated. Large deviations techniques play the key role throughout this work. In the first part (Chapters 1-3) we recall the large deviations theory for time homogeneous diffusions. We present the classical results due to Freidlin and Wentzell and extensions thereof, and we remind of Kramers'' exit time law. Part II deals with the phenomenon of stochastic resonance. That is, we study periodicity properties of diffusion processes. In Chapter 4 we explain the paradigm of stochastic resonance and discuss physical notions of measuring periodicity of diffusions. Their drawbacks suggest to follow an alternative probabilistic approach, which is treated in this work. In Chapter 5 we derive a large deviations principle for diffusions subject to a weakly time dependent periodic drift term. The uniformity of the obtained large deviations bounds w.r.t. the system''s parameters plays a key role for the treatment of transition time asymptotics in Chapter 6, which contains the main result of the second part. The exact exponential transition rates obtained here allow for maximizing transition probabilities, which finally leads to the announced probabilistic notion of resonance studied in Chapter 7. In the third part we investigate the exit time asymptotics of a certain class of so-called self-stabilizing diffusions. In Chapter 8 we explain the connection between interacting particle systems and self-stabilizing diffusions, and we address the question of existence. The following Chapter 9 is devoted to the study of the large deviations behavior of these diffusions. In Chapter 10 Kramers'' exit law is carried over to our class of self-stabilizing diffusions. Finally, the influence of self-stabilization is illustrated in Chapter 11.
49

The exponent of Hölder calmness for polynomial systems

Heerda, Jan 27 April 2012 (has links)
Diese Arbeit befasst sich mit Untersuchung der Hölder Calmness, eines Stabilitätskonzeptes das man als Verallgemeinerung des Begriffs der Calmness erhält. Ausgehend von Charakterisierungen dieser Eigenschaft für Niveaumengen von Funktionen, werden, unter der Voraussetzung der Hölder Calmness, Prozeduren zur Bestimmung von Elementen dieser Mengen analysiert. Ebenso werden hinreichende Bedingungen für Hölder Calmness studiert. Da Hölder Calmness (nichtleerer) Lösungsmengen endlicher Ungleichungssysteme mittels (lokaler) Fehlerabschätzungen beschrieben werden kann, werden auch Erweiterungen der lokalen zu globalen Ergebnissen diskutiert. Als Anwendung betrachten wir speziell den Fall von Niveaumengen von Polynomen bzw. allgemeine Lösungsmengen polynomialer Gleichungen und Ungleichungen. Eine konkrete Frage, die wir beantworten wollen, ist die nach dem Zusammenhang zwischen dem größten Grad der beteiligten Polynome sowie dem Typ, d.h. dem auftretenden Exponenten, der Hölder Calmness des entsprechenden Systems. / This thesis is concerned with an analysis of Hölder calmness, a stability property derived from the concept of calmness. On the basis of its characterization for (sub)level sets, we will cogitate about procedures to determine points in such sets under a Hölder calmness assumption. Also sufficient conditions for Hölder calmness of (sub)level sets and of inequality systems will be given and examined. Further, since Hölder calmness of (nonempty) solution sets of finite inequality systems may be described in terms of (local) error bounds, we will as well amplify the local propositions to global ones. As an application we investigate the case of (sub)level sets of polynomials and of general solution sets of polynomial equations and inequalities. A concrete question we want to answer here is, in which way the maximal degree of the involved polynomials is connected to the exponent of Hölder calmness or of the error bound for the system in question.
50

Generic pro-p Hecke algebras, the Hecke algebra of PGL(2, Z), and the cohomology of root data

Schmidt, Nicolas Alexander 08 February 2019 (has links)
Es wird die Theorie der generischen pro-$p$ Hecke-Algebren und ihrer Bernstein-Abbildungen entwickelt. Für eine Unterklasse diese Algebren, der \textit{affinen} pro-$p$ Hecke-Algebren wird ein Struktursatz bewiesen, nachdem diese Algebren unter anderem stets noethersch sind, wenn es der Koeffizientenring ist. Hilfsmittel ist dabei der Nachweis der Bernsteinrelationen, der in abstrakter Weise geführt wird und so die bestehende Theorie verallgemeinert. Ferner wird der top. Raum der Orientierungen einer Coxetergruppe eingeführt und im Falle der erweiterten modularen Gruppe $\operatorname{PGL}_2(\mathds{Z})$ untersucht, und ausgenutzt um Kenntnisse über die Struktur der zugehörigen Hecke-Algebra als Modul über einer gewissen Unteralgebra, welche zur Spitze im Unendlichen zugeordnet ist, zu erlangen. Schließlich wird die Frage des Zerfallens des Normalisators eines maximalen zerfallenden Torus innerhalb einer zerfallenden reduktiven Gruppe als Erweiterung der Weylgruppe durch die Gruppe der rationalen Punkte des Torus untersucht, und mittels zuvor erreichter Ergebnisse auf eine kohomologische Frage zurückgeführt. Zur Teilbeantwortung dieser werden dann die Kohomologiegruppen bis zur Dimension drei der Kocharaktergitter der fasteinfachen halbeinfachen Wurzeldaten einschließlich des Rangs 8 berechnet. Mittels der Theorie der $\mathbf{FI}$-Moduln wird daraus die Berechnung der Kohomologie der mod-2-Reduktion der Kowurzelgitter für den Typ $A$ in allen Rängen bewiesen. / The theory of generic pro-$p$ Hecke algebras and their Bernstein maps is developed. For a certain subclass, the \textit{affine} pro-$p$ Hecke algebras, we are able to prove a structure theorem that in particular shows that the latter algebras are always noetherian if the ring of coefficients is. The crucial technical tool are the Bernstein relations, which are proven in an abstract way that generalizes the known cases. Moreover, the topological space of orientations is introduced and studied in the case of the extended modular group $\operatorname{PGL}_2(\mathds{Z})$, and used to determine the structure of its Hecke algebra as a module over a certain subalgebra, attached to the cusp at infinity. Finally, the question of the splitness of the normalizer of a maximal split torus inside a split reductive groups as an extension of the Weyl group by the group of rational points is studied. Using results obtained previously, this questioned is then reduced to a cohomological one. A partial answer to this question is obtained via computer calculations of the cohomology groups of the cocharacter lattices of all almost-simple semisimple root data of rank up to $8$. Using the theory of $\mathbf{FI}$-modules, these computations are used to determine the cohomology of the mod 2 reduction of the coroot lattices for type $A$ and all ranks.

Page generated in 0.0525 seconds