• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 263
  • 67
  • 1
  • Tagged with
  • 331
  • 331
  • 238
  • 167
  • 162
  • 96
  • 93
  • 86
  • 63
  • 47
  • 45
  • 44
  • 37
  • 36
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A System of Non-linear Partial Differential Equations Modeling Chemotaxis with Sensitivity Functions

Post, Katharina 03 September 1999 (has links)
Wir betrachten ein System nichtlinearer parabolischer partieller Differentialgleichungen zur Modellierung des biologischen Phänomens Chemotaxis, das unter anderem in Aggregationsprozessen in Lebenszyklen bestimmter Einzeller eine wichtige Rolle spielt. Unser Chemotaxismodell benutzt Sensitivitäts funktionen, die die vorkommenden biologischen Prozesse genauer spezifizieren. Trotz der durch die Sensitivitätsfunktionen eingebrachten, zusätzlichen Nichtlinearitäten in den Gleichungen erhalten wir zeitlich globale Existenz von Lösungen für verschiedene biologisch realistische Klassen von Sensitivitätsfunktionen und können unter unterschiedlichen Bedingungen an die Systemdaten Konvergenz der Lösungen zu trivialen und nicht-trivialen stationären Punkten beweisen. / We consider a system of non-linear parabolic partial differential equations modeling chemotaxis, a biological phenomenon which plays a crucial role in aggregation processes in the life cycle of certain unicellular organisms. Our chemotaxis model introduces sensitivity functions which help describe the biological processes more accurately. In spite of the additional non-linearities introduced by the sensitivity functions into the equations, we obtain global existence of solutions for different classes of biologically realistic sensitivity functions and can prove convergence of the solutions to trivial and non-trivial steady states.
22

Dynamics of high-dimensional covariance matrices

Avanesov, Valeriy 15 February 2018 (has links)
Wir betrachten die Detektion und Lokalisation von plötzlichen Änderungen in der Kovarianzstruktur hochdimensionaler zufälliger Daten. Diese Arbeit schlägt zwei neuartige Ansätze für dieses Problem vor. Die Vorgehensweise beinhaltet im Wesentlichen Verfahren zum Test von Hypothesen, welche ihrerseits die Wahl geeigneter kritischer Werte erfordern. Dafür werden Kalibrierungsschemata vorgeschlagen, die auf unterschiedlichen Nichtstandard-Bootstrap-Verfahren beruhen. Der eine der beiden Ansätze verwendet Techniken zum Schätzen inverser Kovarianzmatrizen und ist durch Anwendungen in der neurowissenschaftlichen Bildgebung motiviert. Eine Beschränkung dieses Ansatzes besteht in der für die Schätzung der „Precision matrix“ wesentlichen Voraussetzung ihrer schwachen Besetztheit. Diese Bedingung ist im zweiten Ansatz nicht erforderlich. Die Beschreibung beider Ansätze wird gefolgt durch ihre theoretische Untersuchung, welche unter schwachen Voraussetzungen die vorgeschlagenen Kalibrierungsschemata rechtfertigt und die Detektion von Änderungen der Kovarianzstruktur gewährleistet. Die theoretischen Resultate für den ersten Ansatz basieren auf den Eigenschaften der Verfahren zum Schätzen der Präzisionsmatrix. Wir können daher die adaptiven Schätzverfahren für die Präzisionsmatrix streng rechtfertigen. Alle Resultate beziehen sich auf eine echt hochdimensionale Situation (Dimensionalität p >> n) mit endlichem Stichprobenumfang. Die theoretischen Ergebnisse werden durch Simulationsstudien untermauert, die durch reale Daten aus den Neurowissenschaften oder dem Finanzwesen inspiriert sind. / We consider the detection and localization of an abrupt break in the covariance structure of high-dimensional random data. The study proposes two novel approaches for this problem. The approaches are essentially hypothesis testing procedures which requires a proper choice of a critical level. In that regard calibration schemes, which are in turn different non-standard bootstrap procedures, are proposed. One of the approaches relies on techniques of inverse covariance matrix estimation, which is motivated by applications in neuroimaging. A limitation of the approach is a sparsity assumption crucial for precision matrix estimation which the second approach does not rely on. The description of the approaches are followed by a formal theoretical study justifying the proposed calibration schemes under mild assumptions and providing the guaranties for the break detection. Theoretical results for the first approach rely on the guaranties for inference of precision matrix procedures. Therefore, we rigorously justify adaptive inference procedures for precision matrices. All the results are obtained in a truly high-dimensional (dimensionality p >> n) finite-sample setting. The theoretical results are supported by simulation studies, most of which are inspired by either real-world neuroimaging or financial data.
23

Nichtkommutative Blochtheorie

Gruber, Michael 01 October 1998 (has links)
In der vorliegenden Arbeit "Nichtkommutative Blochtheorie" beschäftigen wir uns mit der Spektraltheorie bestimmter Klassen von Hilbertraumoperatoren, den elliptischen Operatoren auf Darstellungsräumen von Hilbert-C*-Moduln. Die auftretenden C*-Algebren kodieren dabei Symmetrieeigenschaften der entsprechenden Operatoren.Für kommutative Symmetrien ist die Blochtheorie ein geeignetes Hilfsmittel. Wir schildern diese Methode zunächst in einem geometrischen Kontext, der allgemein genug ist, um die bekannten Ergebnisse über die Abwesenheit singulärstetigen Spektrums im Hinblick auf physikalische Anwendungen zu erweitern. Wir lassen uns dann durch eine Neuinterpretation der Blochtheorie aus einem nichtkommutativen Blickwinkel inspirieren zur Entwicklung einer nichtkommutativen Blochtheorie. Dabei werden bestimmte Eigenschaften von C*-Algebren verknüpft mit Eigenschaften des Spektrums elliptischer Operatoren. Diese Blochtheorie für Hilbert-C*-Moduln erlaubt es, verschiedene bekannte Resultate aus dem Bereich kommutativer (diskreter und kontinuierlicher) Geometrien mit nichtkommutativen Symmetrien in einem neuen gemeinsamen Rahmen zusammenzufassen, der Raum läßt für Modelle nichtkommutativer Geometrien mit nichtkommutativen Symmetrien. Wichtigstes Beispiel für die behandelte Klasse von Operatoren in der mathematischen Physik sind die Schrödingeroperatoren mit periodischem Magnetfeld und Potential. Wir ordnen sie in den Rahmen kommutativer und nichtkommutativer Blochtheorie ein und wenden die zuvor bereitgestellten Methoden an. / In this doctoral thesis "Nichtkommutative Blochtheorie'' (non-commutative Bloch theory) we investigate the spectral theory of a certain class of operators on Hilbert space: the elliptic operators associated with representations of Hilbert C*-modules. The C*-algebras that arise encode symmetry properties of the corresponding operators. For commutative symmetries Bloch theory is a proper tool. We describe this method in a geometric context which is general enough to extend known results about absence of singular continuous spectrum in view of physical applications. Then --- inspired by a new interpretation of Bloch theory from a non-commutative point of view --- we develop a non-commutative Bloch theory. Here certain properties of C*-algebras get linked to spectral properties of elliptic operators. This Bloch theory for Hilbert \CS-modules allows to unite, in a new common framework, several known results from the field of commutative (discrete and continuous) geometries having non-commutative symmetries; this leaves ample room for models of non-commutative geometries having non-commutative symmetries. In mathematical physics, the most important example for the class of operators considered is given by the Schrödinger operators with periodic magnetic field and potential. We place them into the framework of commutative and non-commutative Bloch theory and apply the methods developed before.
24

Information and semimartingales

Ankirchner, Stefan 22 July 2005 (has links)
Die stochastische Analysis gibt Methoden zur Erfassung und Beschreibung von zufälligen numerischen Prozessen an die Hand. Die Beschreibungen hängen dabei sehr stark von der Informationsstruktur ab, die den Prozessen in Gestalt von Filtrationen zugrunde gelegt wird. Der 1. Teil der vorliegenden Arbeit handelt davon, wie sich ein Wechsel der Informationsstruktur auf das Erscheinungsbild eines stochastischen Prozesses auswirkt. Konkret geht es darum, wie sich eine Filtrationsvergrößerung auf die Semimartingalzerlegung eines Prozesses auswirkt. In dem 2. und 3. Teil der Arbeit wird die Rolle von Information im finanzmathematischen Nutzenkalkül untersucht. Im 2. Teil werden unter der Annahme, dass der maximale erwartete Nutzen eines Händlers beschränkt ist, qualitative Erkenntnisse über den Preisprozess hergeleitet. Es wird gezeigt, dass endlicher Nutzen einige strukturelle Implikationen für die intrinsische Sichtweise hat. Im 3. Teil wird quantitativ untersucht, wie sich Information auf den Nutzen auswirkt. Aus extrinsischer Sicht werden Händler mit unterschiedlichem Wissen verglichen. Falls die Präferenzen durch die logarithmische Nutzenfunktion beschrieben werden, stimmt der Nutzenzuwachs mit der gemeinsamen Information zwischen dem zusätzlichen Wissen und dem ursprünglichen Wissen überein, wobei `gemeinsame Information' im Sinne der Informationstheorie verstanden wird. / Stochastic Analysis provides methods to describe random numerical processes. The descriptions depend strongly on the underlying information structure, which is represented in terms of filtrations. The first part of this thesis deals with impacts of changes in the information structure on the appearance of a stochastic process. More precisely, it analyses the consequences of a filtration enlargement on the semimartingale decomposition of the process. The second and third part discuss the role of information in financial utility calculus. The second part is of a qualitative nature: It deals with implications of the assumption that the maximal expected utility of an investor is bounded. It is shown that finite utility implies some structure properties of the price process viewed from the intrinsic perspective. The third part is of a quantitative nature: It analyzes the impact of information on utility. From an extrinsic point of view traders with different knowledge are compared. If the preferences of the investor are described by the logarithmic utility function, then the utility increment coincides with the mutual information between the additional knowledge and the original knowledge.
25

Intersection cohomology of hypersurfaces

Wotzlaw, Lorenz 28 January 2008 (has links)
Bekannte Theoreme von Carlson und Griffiths gestatten es, die Variation von Hodgestrukturen assoziiert zu einer Familie von glatten Hyperflächen sowie das Cupprodukt auf der mittleren Kohomologie explizit zu beschreiben. Wir benutzen M. Saitos Theorie der gemischten Hodgemoduln, um diesen Kalkül auf die Variation der Hodgestruktur der Schnittkohomologie von Familien nodaler Hyperflächen zu verallgemeinern. / Well known theorems of Carlson and Griffiths provide an explicit description of the variation of Hodge structures associated to a family of smooth hypersurfaces together with the cupproduct pairing on the middle cohomology. We give a generalization to families of nodal hypersurfaces using M. Saitos theory of mixed Hodge modules.
26

Measures and models of financial risk

Weber, Stefan 01 December 2004 (has links)
Thema der Dissertation ist zum einen die Quantifizierung und zum anderen die endogene Modellierung von Finanzrisiken. Die mathematische Analyse führt unter anderem auf Zusammenhänge finanzmathematischer Probleme mit der Theorie großer Abweichungen, der Choquet-Theorie, der Theorie interagierender Teilchensysteme und der Theorie dynamischer Systeme. Die ersten zwei Kapitel der Arbeit beleuchten die Bemessung von Finanzrisiken aus zwei unterschiedlichen Perspektiven. In Kapitel 1 analysieren wir die Berechnung von Risikomaßen mittels Monte Carlo Methoden. In Kapitel 2 wird die Rolle von Information und Zeit bei der Bewertung von Finanzrisiken untersucht. Die Modellierung von Finanzrisiken auf Märkten interagierender Akteure wird in den beiden letzten Kapiteln der Arbeit in zwei Fallstudien betrachtet. In der ersten Fallstudie in Kapitel 3 befassen wir uns dabei mit dem Zusammenhang von Kreditrisiken und Ansteckungsprozessen von Firmen, die mit ihren Geschäftspartnern interagieren. In der zweiten Fallstudie in Kapitel 4 beleuchten wir die Marktinteraktion von eingeschränkt rationalen Investoren in einem evolutionären Marktselektionsmodell. / In this thesis, we study monetary measures and endogenous models of financial risk. The mathematical analysis identifies connections between problems in mathematical finance on the one hand and large deviations, Choquet-theory, interacting particle systems, and dynamical systems on the other hand. The first part of the thesis considers two aspects of the quantification of financial risk. In the first chapter, we focus on the calculation of risk measurements by Monte Carlo simulation. In the second chapter, we investigate a particular class of dynamic risk measures. In the second part we analyze two models of financial risk in economies with interacting agents. First, we focus in the third chapter on credit contagion of firms which interact with each other in a network of business partners. Second, we investigate in the fourth chapter the market interaction of investors with bounded rationality in an evolutionary selection market model.
27

Realisierbarer Portfoliowert in illiquiden Finanzmärkten

Baum, Dietmar 23 July 2001 (has links)
Wir untersuchen eine zeitstetige Variante des zeitlich diskreten Modells von Jarrow für einen illiquiden Finanzmarkt. In dieser kann mit einem Bond und einer Aktie gehandelt werden. Während im Standardmodell eines liquiden Finanzmarktes die stochastische Dynamik des Aktienpreises durch ein festes Semimartingal modelliert wird, hängt der Aktienpreis in unserem Modell einerseits von einem fundamentalen Semimartingal, das sich als kumulative Nachfrage vieler kleiner Investoren interpretieren läßt, andererseits aber auch monoton wachsend vom Aktienbestand der Handelsstrategie eines ökonomischen Agenten ab. Wegen des damit verbundenen Rückkopplungseffekts ist es, im Gegensatz zu liquiden Finanzmärkten, nicht möglich, die bekannten Darstellungssätze der Stochastischen Analysis zu verwenden, um Zufallsvariablen als stochastische Integrale bezüglich des Prozesses der abdiskontierten Aktienpreise darzustellen und auf dieser Basis Absicherungsstrategien für Derivate zu konstruieren. Wir definieren den realisierbaren Portfoliowert als den abdiskontierten Erlös einer idealisierten, in einem gewissen Sinne optimalen, Liquidationsstrategie. Mit Hilfe der Ito-Formel leiten wir eine Zerlegung der Dynamik des realisierbaren Portfoliowertes selbstfinanzierender Strategien in ein stochastisches Integral und einen fallenden Prozeß her. Dabei ist der Integrator des stochastischen Integrals ein von der betrachteten Strategie unabhängiges lokales Martingal unter einem äquivalenten Martingalmaß . Aus dieser Zerlegung ergibt sich ein Beweis für die Arbitragefreiheit des Modells. Der Zerlegungssatz zeigt insbesondere, daß der realisierbare Portfoliowert stetiger Strategien von beschränkter Variation ein lokales Martingal unter einem äquivalenten Martingalmaß ist. Wir beweisen deshalb einen Approximationssatz für stochastische Integrale, der es erlaubt, sich bei der Absicherung von Derivaten auf solche Strategien zu beschränken. Durch Kombination des Approximationssatzes und des Zerlegungssatzes können wir Superreplikationspreise von Derivaten bestimmen und die relevanten Portfoliooptimierungsprobleme lösen. / We study a continuous time version of Jarrows model for an illiquid financial market in discrete time. In this model one can trade with a bond and a stock. In standard models for liquid financial markets, the stochastic dynamic of stock prices is modelled as a given semimartingale. In contrast, stock prices in our model depend on a fundamental semimartingale that can be interpreted as the cumulative demand of small investors and, in a monotone increasing way, on the strategy of an economic agent. Because of the resulting feedback effects, it is no longer possible to use the well known representation theorems of stochastic analysis to write random variables as stochastic integrals with respect to discounted stock prices and to use this to find hedging strategies for derivatives. We define realisable portfolio wealth as the discounted proceeds of an idealised liquidation strategy that is optimal in a certain sense. Using Itos formula, we can write the dynamics of the realisable portfolio wealth of self-financing strategies as the sum of a stochastic integral and a decreasing process. The integrator in the stochastic integral is a local martingale under an equivalent martingale measure that does not depend on the self-financing strategy. This decomposition yields a proof for the fact that our model is arbitrage free. The decomposition theorem shows that the realisable portfolio wealth of continuous strategies of bounded variation is a local martingale under an equivalent martingale measure. Therefore, we proof an approximation result for stochastic integrals that shows that we can restrict the search for hedging strategies to continuous strategies of bounded variation. By combining the approximation result and the decomposition theorem we can calculate superreplication prices for derivatives and solve the relevant portfolio optimisation problems.
28

Asymptotische Aequivalenz fuer ein Modell unabhaengiger nicht identisch verteilter Daten

Jähnisch, Michael 01 January 1999 (has links)
Die Dissertation ``Asymptotische \Äquivalenz f\ür ein Modell unabh\ängiger nicht identisch verteilter Daten'' besch\äftigt sich mit der Le Camschen Theorie der Experimente. Le Cam hat den sogenannten $\Delta$-Abstand zwischen statistischen Experimenten definiert; ist dieser Abstand f\ür zwei Modelle klein, so sind ihre statistischen Eigenschaften \ähnlich. Zwei Folgen von Experimenten nennt man asymptotisch \äquivalent, falls ihr $\Delta$-Abstand gegen Null konvergiert.\\ In dieser Arbeit beweisen wir asymptotische \Äquivalenz zwischen einem Modell mit unabh\ängigen, nicht identisch verteilten Beobachtungen und einem Gaußschen Shift-Modell. Die i-te Beobachtung des ersten Experimentes ist dabei gem\äß einer Dichte $h(i/n,.)$ verteilt, wobei die Funktion h eine Schar von Dichten bildet. Wir approximieren also ein kompliziertes statistisches Experiment durch ein einfacheres, n\äymlich ein Gaußsches Shift-Modell. Die Dichten h geh\ören einer Menge h\ölderstetiger Funktionen an, so daß wir es mit einem nichtparametrischen Problem zu tun haben. Das von uns bewiesene \Äquivalenzresultat kann auch als eine nichtparametrische Version der ebenfalls von Le Cam eingef\ührten LAN Bedingung aufgefaßt werden. Ein wichtiges Hilfsmittel zum Beweis des oben beschriebenen Resultats ist das sogenannte Coupling von stochastischen Prozessen, d.h. die Konstruktion solcher Prozesse auf einem gemeinsamen Wahrscheinlichkeitsraum, so daß die Prozesse nahe beieinander liegen. Im zweiten Teil der Arbeit beweisen wir eine funktionale Version eines solchen Coupling Resultats f\ür den sequentiellen empirischen Prozeß und den Kiefer-M\üller Prozeß unter Verwendung der sogenannten Ungarischen Konstruktion. / The thesis "Asymptotic Equivalence of Experiments for a Model with Independent and Nonidentically distributed Observations" deals with the theory of experiments that was developped by Le Cam. \\ Le Cam defined the so called $\Delta$-distance between experiments. If this distance is small for two given models it means that their statistical properties are similar. We call two sequences of experiments asymptotic equivalent if their $\Delta$-distance converges to zero.\\ In this thesis we prove asymptotic equivalence between a model with independent and nonidentically distributed observations and a Gaussian shift model. The i-th observation in the first model is distributed according to a density $h(i/n,.)$ where $h$ is a bunch of densities on the unit interval. This means that we approximate a complicated statistical experiment by a simpler one, namely a Gaussian shift model. The densites h belong to a H\"older ball such that we have a nonparametric problem. Our result can also be viewed as a nonparametric version of the LAN property which was also defined by Le Cam. An important tool for proving our result is the coupling of stochastic processes, i.e. the construction of processes on a common probability space such that they are close in a strong sense. In the second part of the thesis we prove a functional version of such a coupling result for the sequential empirical process and the Kiefer-M\"uller process by using the Hungarian construction.
29

Komplexität und Stabilität von kernbasierten Rekonstruktionsmethoden / Complexity and Stability of Kernel-based Reconstructions

Müller, Stefan 21 January 2009 (has links)
No description available.
30

Maximum Likelihood Analysis for Bivariate Exponential Distributions / Maximale Wahrscheinlichkeits Analyse für bivariate Exponentialverteilung

Okyere, Ebenezer 31 July 2007 (has links)
No description available.

Page generated in 0.051 seconds