Spelling suggestions: "subject:"510 mathematik"" "subject:"510 thematik""
61 |
Utility maximization and quadratic BSDEs under exponential momentsMocha, Markus 08 March 2012 (has links)
In der Arbeit befassen wir uns mit der Potenznutzenmaximierung des Endvermögens, wenn die Aktienpreise stetigen Semimartingaldynamiken genügen und die Strategien des Agenten Investitions- und Informationsrestriktionen unterworfen sind. Hauptaugenmerk liegt auf der stochastischen Rückwärtsgleichung (BSDE) für den dynamischen Wertprozess und auf der Übertragung von neuen Ergebnissen zu quadratischen Semimartingal-BSDEs auf das Investitionsproblem. Dieses gelingt unter der Annahme endlicher exponentiellen Momente des Mean-Variance Tradeoff und verallgemeinert frühere Resultate, die Beschränktheit fordern. Wir betrachten dabei zunächst die Beziehung zwischen den Dualitäts- und BSDE-Ansätzen zur Lösung des Problems und gehen dann über zum Studium der quadratischen Semimartingal-BSDE, wenn der Marktpreis des Risikos vom BMO-Typ ist. Wir zeigen, dass es stets ein Kontinuum verschiedener BSDE-Lösungen mit quadratisch integrierbarem Martingalteil gibt. Wir stellen dann eine neue scharfe Bedingung an geeignete dynamische exponentielle Momente vor, die die Beschränktheit der BSDE-Lösungen in einer allgemeinen Filtration garantiert. In weiterer Folge weisen wir Existenz-, Eindeutigkeits-, Stabilitäts- und Maßwechselresultate für allgemeine quadratische stetige BSDEs unter exponentiellen Momenten nach. Diese Ergebnisse verwenden wir, um das Investitionsproblem für den Fall konischer Investitionsrestriktionen zu untersuchen. Ausgehend von der Zerlegung von Elementen des dualen Gebietes erhalten wir die zugehörige BSDE und beweisen, dass der Wertprozess in einem Raum liegt, in dem Lösungen quadratischer BSDEs eindeutig sind. Als Folgerung aus dem Stabilitätsresultat für BSDEs erhalten wir die Stetigkeit der Optimierer in der Semimartingaltopologie in den Parametern des Modells. Schließlich betrachten wir das Investitionsproblem unter exponentiellen Momenten, kompakten Handelsrestriktionen und eingeschränkter Information. Hierbei benutzen wir ausschließlich BSDE-Resultate. / In this thesis we consider the problem of maximizing the power utility from terminal wealth when the stocks have continuous semimartingale dynamics and there are investment and information constraints on the agent''s strategies. The main focus is on the backward stochastic differential equation (BSDE) that encodes the dynamic value process and on transferring new results on quadratic semimartingale BSDEs to the portfolio choice problem. This is accomplished under the assumption of finite exponential moments of the mean-variance tradeoff, generalizing previous results which require boundedness. We first recall the relationship between the duality and BSDE approaches to solving the problem and then study the associated quadratic semimartingale when the market price of risk is of BMO type. We show that there is always a continuum of distinct solutions to this BSDE with square-integrable martingale part. We then provide a new sharp condition on the dynamic exponential moments of the mean-variance tradeoff which guarantees the boundedness of BSDE solutions in a general filtration. In a subsequent step we establish existence, uniqueness, stability and measure change results for general quadratic continuous BSDEs under an exponential moments condition. We use these results to study the portfolio selection problem when there are conic investment constraints. Building on a decomposition result for the elements of the so-called dual domain we derive the associated BSDE and show that the value process is contained in a specific space in which BSDE solutions are unique. A consequence of the stability result for BSDEs is then the continuity of the optimizers with respect to the input parameters of the model in the semimartingale topology. Finally, we study the optimal investment problem under exponential moments, compact constraints and restricted information. This is done by referring to BSDE results only.
|
62 |
A theory of conditional setsJamneshan, Asgar 25 March 2014 (has links)
Diese Arbeit befasst sich mit der Entwicklung einer Theorie bedingter Mengen. Bedingte Mengenlehre ist reich genug um einen bedingten mathematischen Diskurs zu führen, dessen Möglichkeit wir durch die Konstruktion einer bedingten Topologielehre und bedingter reeller Analysis aufzeigen. Wir beweisen die bedingte Version folgender Sätze: Ultrafilterlemma, Tychonoff, Borel-Lebesgue, Heine-Borel, Bolzano-Weierstraß, und das Gaplemma von Debreu. Darüberhinaus beweisen wir die bedingte Version derjenigen Resultate der klassischen Mathematik, die in den Beweisen dieser Sätze benötigt werden, beginnend mit der Mengenlehre. Wir diskutieren die Verbindung von bedingter Mengenlehre zur Garben-, Topos- und L0-Theorie. / In this thesis, we develop a theory of conditional sets. Conditional set theory is sufficiently rich in order to allow for a conditional mathematical reasoning, the possibility of which we demonstrate by constructing a conditional general topology and a conditional real analysis. We prove the conditional version of the following theorems: Ultrafilter Lemma, Tychonoff, Borel-Lebesgue, Heine-Borel, Bolzano-Weierstraß, and Debreu’s Gap Lemma. Moreover, we prove the conditional version of those results in classical mathematics which are needed in the proofs of these theorems, starting from set theory. We discuss the connection of conditional set theory to sheaf, topos and L0-theory.
|
63 |
Weak approxamation of stochastic delayLorenz, Robert 29 May 2006 (has links)
Wir betrachten die stochastische Differentialgleichung mit Gedächtnis (SDDE) mit Gedächtnislänge r dX(t) = b(X(u);u in [t-r,t])dt + sigma(X(u);u in [t-r,t])dB(t) mit eindeutiger schwacher Lösung. Dabei ist B eine Brownsche Bewegung, b and sigma sind stetige, lokal beschränkte Funktionen mit Definitionsbereich C[-r,0], und X(u);u in [t-r,t] bezeichnet das Segment der Werte von X(u) für Zeitpunkte u im Intervall [t,t-r]. Unser Ziel ist eine Folge von diskreten Zeitreihen Xh höherer Ordung zu konstruieren, so dass mit h gegen 0 die Zeitreihen Xh schwach gegen die Lösung X der stochastischen Differentialgleichung mit Gedächtnis konvergieren. Desweiteren werden wir Bedingungen angeben, unter denen eine gegeben Folge von Zeitreihen Xh höherer Ordung schwach gegen die Lösung X einer stochastischen Differentialgleichung mit Gedächtnis konvergiert. Als ein Beispiel werden wir den schwachen Grenzwert einer Folge von diskreten GARCH-Prozessen höherer Ordnung ermitteln. Dieser Grenzwert wird sich als schwache Lösung einer stochastischen Differentialgleichung mit Gedächtnis herausstellen. / Consider the stochastic delay differential equation (SDDE) with length of memory r dX(t) = b(X(u);u in [t-r,t])dt + sigma(X(u);u in [t-r,t])dB(t), which has a unique weak solution. Here B is a Brownian motion, b and sigma are continuous, locally bounded functions defined on the space C[-r,0], and X(u);u in [t-r,t] denotes the segment of the values of X(u) for time points u in the interval [t,t-r]. Our aim is to construct a sequence of discrete time series Xh of higher order, such that Xh converges weakly to the solution X of the stochastic differential delay equation as h tends to zero. On the other hand we shall establish under which conditions time series Xh of higher order converge weakly to a weak solution X of a stochastic differential delay equation. As an illustration we shall derive a weak limit of a sequence of GARCH processes of higher order. This limit tends out to be the weak solution of a stochastic differential delay equation.
|
64 |
Geometric constructions and structures associated with twistor spinors on pseudo-Riemannian conformal manifoldsLischewski, Andree 16 February 2015 (has links)
Die Arbeit untersucht lokale Geometrien, die Twistorspinoren zulassen auf pseudo-Riemannschen Mannigfaltigkeiten beliebiger Signatur. Hierzu entwickeln wir die benötigten Methoden, nämlich das konforme Traktorkalkül, welches eine konform-invariante Beschreibung von Twistorspinoren als parallele Objekte ermöglicht, weiter. In diesem Zusammenhang ist unser erstes zentrales Resultat ein Klassifikationssatz für konforme Strukturen, deren Holonomiegruppen einen total ausgearteten Unterraum beliebiger Dimension invariant lassen. Hierauf aufbauend können wir einen partiellen Klassifikationssatz für konforme Strukturen mit Twistorspinoren beweisen. Weiterhin studieren wir die Nullstellenmenge eines Twistorspinors unter Nutzung der Theorie der Orbitzerlegungen für parabolische Geometrien. Wir können die lokale geometrische Struktur der Nullstellenmenge vollständig beschreiben und zeigen, dass lokal jeder Twistorspinor mit Nullstelle konform äquivalent zu einem parallelem Spinor ist. Eine Anwendung dieser Resultate auf niedrig-dimensionale Split-Signaturen führt zu einer vollständigen geometrischen Beschreibung von Mannigfaltigkeiten mit nicht-generischen Twistorspinoren in den Signaturen (3,2) und (3,3) durch parallele Spinoren, was die schon bekannte Analyse des generischen Falls komplementiert. Darüberhinaus wenden wir das Traktorkalkül an, um einer konformen Spin- Mannigfaltigkeit auf natürliche Weise eine konforme Superalgebra zuzuordnen. Dieser Zugang führt zu verschiedenen Resultaten, die algebraische Eigenschaften dieser Superalgebra mit speziellen Geometrien auf der zugrundeliegenden Mannigfaltigkeit in Verbindung bringen. Weiterhin erhält man so neue Konstruktionsprinzipien für Twistorspinoren und konforme Killingformen. Zuletzt führen wir den Begriff der konformen Spin-c-Geometrie ein. Unter anderem liefern spezielle Spin-c-Twistorspinoren eine neue Charakterisierung von Fefferman-Räumen. / The present thesis studies local geometries admitting twistor spinors on pseudo- Riemannian manifolds of arbitrary signature. To this end, we refine and extend the necessary machinery of first prolongation of conformal structures and conformal tractor calculus which allows a conformally-invariant description of twistor spinors as parallel objects. In this context, our first main theorem is a classification result for conformal geometries whose conformal holonomy group admits a totally degenerate invariant subspace of arbitrary dimension. Based on this we are able to prove a partial classification result for conformal structures admitting twistor spinors. Moreover, we study the zero set of a twistor spinor using the theory of curved orbit decompositions for parabolic geometries. We can completely describe the local geometric structure of the zero set and show that locally every twistor spinor with zero is equivalent to a parallel spinor off the zero set. An application of these results in low-dimensional split-signatures leads to a complete geometric description of manifolds admitting non-generic twistor spinors in signatures (3,2) and (3,3) in terms of parallel spinors which complements the well-known analysis of the generic case. Moreover, we apply tractor calculus for the construction of a conformal superalgebra naturally associated to a conformal spin structure. This approach leads to various results linking algebraic properties of the superalgebra to special geometric structures on the underlying manifold. It also exhibits new construction principles for twistor spinors and conformal Killing forms. Finally, we introduce and elaborate on the notion of conformal Spin-c-geometry. Among other aspects, this gives rise to a new characterization of Fefferman spaces in terms of distinguished Spin-c-twistor spinors.
|
65 |
Optimal liquidation problems and HJB equations with singular terminal conditionGraewe, Paulwin 05 May 2017 (has links)
Gegenstand dieser Arbeit sind stochastische Kontrollprobleme im Kontext von optimaler Portfolioliquidierung in illiquiden Märkten. Dabei betrachten wir sowohl Markovsche sowie nicht-Markovsche Preiseinflussfunktionale und berücksichtigen den Handel sowohl im Primärmarkt als auch in Dark Pools. Besonderes Merkmal von Liquidierungsproblemen ist die durch die Liquidierungsbedingung induzierte singuläre Endbedingung an die Wertfunktion. Der Standardansatz für linear-quadratische Probleme reduziert die HJB-Gleichungen für die Wertfunktion - je nach Zustandsdynamik - auf (ein System) partielle(r) Differentialgleichungen, stochastische(r) Rückwärtsdifferentialgleichungen beziehungsweise stochastische(r) partielle(r) Rückwärtsdifferentialgleichungen (BSPDE). Wir beweisen neue Existenz-, Eindeutigkeits- und Regularitätsresultate für diese zur Lösung optimaler Liquidierungsprobleme verwendeten Differentialgleichungen mit singulärer Endbedingung, verifizieren die Charakterisierung der zugehörigen Wertfunktion anhand dieser Differentalgleichungen und geben die optimale Handelsstrategie in Feedbackform. Für Markovsche und nicht-Markovsche Preiseinflussmodelle wird eine neuartiger Ansatz basierend auf der genauen singulären Asymptotik der Wertfunktion vorgelegt. Für vollständig Markovsche Liquidierungsprobleme erlaubt uns dieser, die Existenz glatter Lösungen der singulären partiellen Differentialgleichungen zu zeigen. Für eine Klasse von Problemen mit Markovscher/nicht-Markovscher Struktur charakterisieren wir die HJB-Gleichungen durch eine singuläre BSPDE, für die wir die Existenz und Eindeutigkeit einer Lösung über einen Bestrafungsansatz herleiten. / We study stochastic optimal control problems arising in the framework of optimal portfolio liquidation under limited liquidity. Our framework is flexible enough to allow for Markovian and non-Markovian impact functions and for simultaneous trading in primary venues and dark pools. The key characteristic of portfolio liquidation models is the singular terminal condition of the value function that is induced by the liquidation constraint. For linear-quadratic models, the standard ansatz reduces the HJB equation for the value to a (system of) partial differential equation(s), backward stochastic differential equation(s) or backward stochastic partial differential equation(s) with singular terminal condition, depending on the choice of the cost coefficients. We establish novel existence, uniqueness and regularity results for (BS)PDEs with singular terminal conditions arising in models of optimal portfolio liquidation, prove that the respective value functions can indeed be described by a (BS)PDE, and give the optimal trading strategies in feedback form. For Markovian and non-Markovian impact models we establish a novel approach based on the precise asymptotics of the value function at the terminal time. For purely Markovian liquidation problems this allows us to establish the existence smooth solutions to singular PDEs. For a class mixed Markovian/non-Markovian models we characterize the HJB equation in terms of a singular BSPDE for which we establish existence and uniqueness of a solution using a stochastic penalization method.
|
66 |
Enumerative formulas of de Jonquières type on algebraic curvesUngureanu, Mara 14 January 2019 (has links)
Diese Arbeit widmet sich der Untersuchung von zwei Problemen der abzählenden Geometrie im Zusammenhang mit linearen Systemen auf algebraischen Kurven.
Das erste Problem besteht darin, die Frage der Gültigkeit der Jonquières-Formeln zu klären. Diese Formeln berechnen die Anzahl von Divisoren mit vorgeschriebener Multiplizität, genannt de Jonquières-Divisoren, die in einem linearen System auf einer glatten projektiven Kurve enthalten sind. Um dies zu tun, konstruieren wir den Raum der de Jonquières-Divisoren als einen Determinantenzyklus des symmetrischen Produkts der Kurve und beweisen, dass er für eine allgemeine Kurve die erwartete Dimension hat. Dabei beschreiben wir die Degenerationen der Jonquières-Divisoren zu den Knotenkurven sowohl mit linearen Systemen als auch mit kompaktifizierten Picard-Schemata.
Das zweite Problem behandelt Zyklen von Untergeordneten-, oder allgemeiner, Sekanten-Divisoren zu einem gegebenen linearen System auf einer Kurve. Wir betrachten den Durchschnitt zweier solcher Zyklen, die Sekanten-Divisoren von zwei verschiedenen linearen Systemen auf der gleichen Kurve entsprechen, und untersuchen die Gültigkeit der enumerativen Formeln, die die Anzahl der Teiler im Durchschnitt zählen. Wir untersuchen einige interessante Fälle mit unerwarteten Transversalitätseigenschaften und etablieren eine allgemeine Methode, um zu überprüfen, wann dieser Durchschnitt leer ist. / This thesis is dedicated to the study of two enumerative geometry problems in the context of linear series on algebraic curves.
The first problem is that of settling the issue of the validity of the de Jonquières formulas. These formulas compute the number of divisors with prescribed multiplicity, or de Jonquières divisors, contained in a linear series on a smooth projective curve. To do so, we construct the space of de Jonquières divisors as a determinantal cycle of the symmetric product of the curve and prove that, for a general curve with a general linear series, it is of expected dimension. In doing so, we describe the degenerations of de Jonquières divisors to nodal curves using both limit linear series and compactified Picard schemes.
The second problem deals with cycles of subordinate or, more generally, secant divisors to a
given linear series on a curve. We consider the intersection of two such cycles corresponding to secant divisors of two different linear series on the same curve and investigate the validity of the enumerative formulas counting the number of divisors in the intersection. We study some interesting cases, with unexpected transversality properties, and establish a general method to verify when this intersection is empty.
|
67 |
On the singularitys set of Lorentzian almost Einstein structuresSchemel, Peter 22 June 2016 (has links)
Eine almost Einstein-Struktur (M,g,sigma) ist eine n-dimensionale zusammenhängende Mannigfaltigkeit M mit einer pseudo-riemannschen Metrik g und einer glatten Skalenfunktion sigma deren almost Einstein-Tensor A[g,sigma] (der spurfreie Anteil von Hess[g] sigma + sigma P[g], wobei P[g] den Schouten-Tensor bezeichnet) verschwindet. Sie verallgemeinert die Idee einer Einsteinmannigfaltigkeit in dem Sinne, dass die konform geänderte Metrik 1/sigma^2 g außerhalb der Nullstellenmenge Sigma = sigma^(-1)(0) eine Einstein-Metrik ist. Ziel dieser Doktorarbeit ist es, ein detailiertes Bild von Sigma in Lorentzsignatur (-+...+) zu erhalten. Teil dieser Arbeit ist zudem eine indexfreie Darstellung ausgewählter Resultate für konform kompaktifizierbare Einsteinmannigfaltigkeiten in Lorentzsignatur im Rahmen von almost Einstein-Strukturen. Diese Umformulierung wird dann benutzt, um eine Verallgemeinerung der konformen Wellengleichungen für beliebige gerade Dimensionen n = 2m > 4 vorzuschlagen. / An almost Einstein structure (M,g,sigma) is an n-dimensional connected manifold M equipped with a pseudo-Riemannian metric g and a scale factor sigma in C^infty(M) such that the almost Einstein tensor A[g,sigma] (the trace-free part of Hess[g] sigma + sigma P[g], with Schouten tensor P[g]) vanishes. It generalises the idea of an Einstein manifold in the way that 1/sigma^2 g is an Einstein metric away from the singularity set Sigma = sigma^(-1)(0). The purpose of this thesis is to get a detailed picture of Sigma in Lorentzian signature (-+...+). Part of this thesis is also an index-free survey of selected results on conformally compact Einstein manifolds in Lorentzian signature in the framework of almost Einstein structures. This reformulation is used to suggest a generalisation of the conformal wave equations to arbitrary even dimensions n = 2m > 4.
|
68 |
Quasi-random hypergraphs and extremal problems for hypergraphsPerson, Yury 06 December 2010 (has links)
In dieser Arbeit wird zuerst das Theorem von Chung, Graham und Wilson über quasi-zufällige Graphen zur sogenannten schwachen Quasi-Zufälligkeit für k-uniforme Hypergraphen verallgemeinert und somit eine Reihe äquivalenter Eigenschaften bestimmt. Basierend auf diesen Resultaten werden nichtbipartite Graphen gefunden, welche die Quasi-Zufälligkeit für Graphen ``forcieren''''. Zuvor waren nur bipartite Graphen mit dieser Eigenschaft bekannt. Desweiteren ist ein konzeptionell einfacher Algorithmus zum Verifizieren nicht erfüllbarer zufälliger k-SAT Formeln angegeben. Dann richtet sich der Fokus auf Anwendungen verschiedener Regularitätslemmata für Hypergraphen. Zuerst wird die Menge aller bezeichneten 3-uniformen Hypergraphen auf n Knoten, die keine Kopie des Hypergraphen der Fano Ebene enthalten, studiert. Es wird gezeigt, dass fast jedes Element aus dieser Menge ein bipartiter Hypergraph ist. Dies führt zu einem Algorithmus, der in polynomiell erwarteter Zeit einen zufälligen Fano-freien (und somit einen zufälligen bipartiten 3-uniformen) Hypergraphen richtig färbt. Schließlich wird die folgende extremale Funktion studiert. Es sind r Farben gegeben sowie ein k-uniformer Hypergraph F. Auf wie viele verschiedene Arten kann man die Kanten eines k-uniformen Hypergraphen H färben, so dass keine monochromatische Kopie von F entsteht? Welche Hypergraphen H maximieren die Anzahl erlaubter Kantenfärbungen? Hier wird ein strukturelles Resultat für eine natürliche Klasse von Hypergraphen bewiesen. Es wird für viele Hypergraphen F, deren extremaler Hypergraph bekannt ist, gezeigt, dass im Falle von zwei oder drei Farben die extremalen Hypergraphen die oben beschriebene Funktion maximieren, während für vier oder mehr Farben andere Hypergraphen mehr Kantenfärbungen zulassen. / This thesis presents first one possible generalization of the result of Chung, Graham and Wilson to k-uniform hypergraphs, and studies the so-called weak quasi-randomness. As applications we obtain a simple strong refutation algorithm for random sparse k-SAT formulas and we identify first non-bipartite forcing pairs for quasi-random graphs. Our focus then shifts from the study of quasi-random objects to applications of different versions of the hypergraph regularity lemmas; all these versions assert decompositions of hypergraphs into constantly many quasi-random parts, where the meaning of ``quasi-random'''' takes different contexts in different situations. We study the family of hypergraphs not containing the hypergraph of the Fano plane as a subhypergraph, and show that almost all members of this family are bipartite. As a consequence an algorithm for coloring bipartite 3-uniform hypergraphs with average polynomial running time is given. Then the following combinatorial extremal problem is considered. Suppose one is given r colors and a fixed hypergraph F. The question is: In at most how many ways can one color the hyperedges of a hypergraph H on n vertices such that no monochromatic copy of F is created? What are the extremal hypergraphs for this function? Here a structural result for a natural family of hypergraphs F is proven. For some special classes of hypergraphs we show that their extremal hypergraphs (for large n) maximize the number of edge colorings for 2 and 3 colors, while for at least 4 colors other hypergraphs are optimal.
|
69 |
Rabinowitz-Floer homology on Brieskorn manifoldsFauck, Alexander 19 May 2016 (has links)
In dieser Dissertation werden Kontaktstrukturen auf beliebigen differenzierbaren Mannigfaltigkeiten ungerader Dimension untersucht. Dies geschiet vermöge der Rabinowitz-Floer-Homologie (RFH), welche 2009 von Cieliebak und Frauenfelder eingeführt wurde. Ein großer Teil der Arbeit widmet sich den technischen Problemen bei der Definition von RFH. Insbesondere wird die Transversalität für die benötigten Modulräume gezeigt. In einem weiteren Abschnitt wird bewiesen, dass RFH im wesentlichen invariant unter subkrittischer Henkelanklebung ist. Schließlich enthält die Arbeit die Berechnung von RFH für einige Brieskorn-Mannigfaltigkeiten. Die dabei gewonnenen Resultate werden dazu verwendet zu zeigen, dass es auf jeder Mannigfaltigkeit, welche füllbare Kontaktstukturen zulässt, entweder unendlich viele verschiedene füllbare Kontaktstrukturen gibt, oder eine Kontaktstruktur mit unendlich vielen verschiedenen Füllungen oder das für alle füllbaren Kontaktstrukturen die RFH von unendlicher Dimension ist für alle Grade. / This thesis considers fillable contact structures on odd-dimensional manifolds. For that purpose, Rabinowitz-Floer homology (RFH) is used which was introduced by Cieliebak and Frauenfelder in 2009. A major part of the thesis is devoted to technical problems in the definition of RFH. In particular, it is shown that the moduli spaces involved are cut out transversally. Moreover, it is proved that RFH is essentially invariant under subcritical handle attachment. Finally, RFH is calculated for some Brieskorn manifolds. The obtained results are then used to show for every manifold, which supports fillable contact structures, that there exist either infinitely many different fillable contact structures, or one contact structure with infinitely many different fillings or for every fillable contact structure holds that RFH is infinite dimensional in every degree.
|
70 |
Modelling and optimisation of the design and topology of flexible frames with rigid jointsKulshreshtha, Kshitij 22 November 2010 (has links)
Strukturoptimierung ist momentan stark auf Diskretisierungsmethoden angewiesen. In einfachen Fällen, wie die Simulation von Rahmen und Stabwerke, wo eine Diskretisierung nicht notwendig ist, werden nur die Dehnung oder die Stauchung der Stäbe betrachtet, und die Verbindungen sind frei, wie Kugelgelenke, um die Biegungen der Stäbe zu vermeiden. In dieser Dissertation wird eine diskretisierungsfreie Methode zur Modellierung und Optimierung eines Rahmens entwickelt, die die Biegung der Balken sowie die Dehnung oder Stauchung zusammen betrachtet, wobei starre Verbindungen angenommen werden. Starre Verbindungen entstehen, wenn die Balken zusammen geschweißt oder mit mehrere Nieten verbunden sind. Die Optimierungsprobleme, sowohl das Zustands- und als auch das Entwurfsproblem, sind durch die gesamte elastische Energie und die Arbeit der äußeren Kräfte gegeben. Für das Problem der optimalen Größeneinteilung wird darüber hinaus eine topologische Sensitivität zur Einführung neuer Balken zwischen zwei beliebigen Punkten auf dem Rahmen diskutiert. / Structural optimisation currently relies heavily on methods based on discretisation. In simpler cases like the simulation of frames and trusses, where discretisation is not necessary, only the elongation or compression is considered and the joints are free, like ball and socket joints, in order to avoid bending the trusses. In this dissertation a discretisation free method for the modelling and optimisation of frames is developed which considers bending of the beams along with compression or elongation with joints between the beams being rigid. Rigid joints are commonly the result of welding two beams together or connecting them using mutiple rivets. The optimisation problems, both state and design optimisation, are formulated via the total elastic energy and the work done by external forces. Moreover, for the optimal sizing problem a topological sensitivity for introduction of new beams between any two arbitrary positions in the frame is discussed.
|
Page generated in 0.066 seconds