51 |
Cutting plane methods and dual problemsGladin, Egor 28 August 2024 (has links)
Die vorliegende Arbeit befasst sich mit Schnittebenenverfahren, einer Gruppe von iterativen Algorithmen zur Minimierung einer (möglicherweise nicht glatten) konvexen Funktion über einer kompakten konvexen Menge. Wir betrachten zwei prominente Beispiele, nämlich die Ellipsoidmethode und die Methode der Vaidya, und zeigen, dass ihre Konvergenzrate auch bei Verwendung eines ungenauen Orakels erhalten bleibt. Darüber hinaus zeigen wir, dass es möglich ist, diese Methoden im Rahmen der stochastischen Optimierung effizient zu nutzen.
Eine andere Richtung, in der Schnittebenenverfahren nützlich sein können, sind duale Probleme. In der Regel können die Zielfunktion und ihre Ableitungen bei solchen Problemen nur näherungsweise berechnet werden. Daher ist die Unempfindlichkeit der Methoden gegenüber Fehlern in den Subgradienten von großem Nutzen. Als Anwendungsbeispiel schlagen wir eine linear konvergierende duale Methode für einen Markow-Entscheidungsprozess mit Nebenbedienungen vor, die auf der Methode der Vaidya basiert. Wir demonstrieren die Leistungsfähigkeit der vorgeschlagenen Methode in einem einfachen RL Problem.
Die Arbeit untersucht auch das Konzept der Genauigkeitszertifikate für konvexe Minimierungsprobleme. Zertifikate ermöglichen die Online-Überprüfung der Genauigkeit von Näherungslösungen. In dieser Arbeit verallgemeinern wir den Begriff der Genauigkeitszertifikate für die Situation eines ungenauen Orakels erster Ordnung. Darüber hinaus schlagen wir einen expliziten Weg zur Konstruktion von Genauigkeitszertifikaten für eine große Klasse von Schnittebenenverfahren vor. Als Nebenprodukt zeigen wir, dass die betrachteten Methoden effizient mit einem verrauschten Orakel verwendet werden können, obwohl sie ursprünglich für ein exaktes Orakel entwickelt wurden. Schließlich untersuchen wir die vorgeschlagenen Zertifikate in numerischen Experimenten und zeigen, dass sie eine enge obere Schranke für das objektive Residuum liefern. / The present thesis studies cutting plane methods, which are a group of iterative algorithms for minimizing a (possibly nonsmooth) convex function over a compact convex set. We consider two prominent examples, namely, the ellipsoid method and Vaidya's method, and show that their convergence rate is preserved even when an inexact oracle is used. Furthermore, we demonstrate that it is possible to use these methods in the context of stochastic optimization efficiently.
Another direction where cutting plane methods can be useful is Lagrange dual problems. Commonly, the objective and its derivatives can only be computed approximately in such problems. Thus, the methods' insensitivity to error in subgradients comes in handy. As an application example, we propose a linearly converging dual method for a constrained Markov decision process (CMDP) based on Vaidya's algorithm. We demonstrate the performance of the proposed method in a simple RL environment.
The work also investigates the concept of accuracy certificates for convex minimization problems. Certificates allow for online verification of the accuracy of approximate solutions. In this thesis, we generalize the notion of accuracy certificates for the setting of an inexact first-order oracle. Furthermore, we propose an explicit way to construct accuracy certificates for a large class of cutting plane methods. As a by-product, we show that the considered methods can be efficiently used with a noisy oracle even though they were originally designed to be equipped with an exact oracle. Finally, we illustrate the work of the proposed certificates in numerical experiments highlighting that they provide a tight upper bound on the objective residual.
|
52 |
K-theoretic methods in the representation theory of p-adic analytic groupsCsige, Tamás 08 February 2017 (has links)
Sei G eine p-adische analytische gruppe, welche die direkte Summe einer torsionfreien p-adische analytische gruppe H mit zerfallender halbeinfacher Liealgebra und einer n-dimensionalen abelschen p-adische analytische gruppe Z ist. In Kapitel 3 zeigen wir folgenden Satz: Sei M ein endlich erzeugter Torsionmodul über der Iwasawaalgebra von G, welcher keine nichtrivialen pseudo-null-Untermoduln besitzt. Dann ist q(M), das Bild von M in der Quotientenkategorie Q, genau dann volltreu, wenn M als Modul über der Iwasawaalgebra von Z torsionsfrei ist. Hierbei bezeichne Q den Serre-Quotienten der Kategorie der Moduln über der Iwasawaalgebra von G nach der Serre-Unterkategorie der pseudo-null-Moduln. In Kapitel 4 zeigen wir folgenden Satz: Es bezeichne T die Kategorie, deren Objekte die endlich erzeugten Modulen über der Iwasawaalgebra von G sind, welche auch als Moduln über der Iwasawaalgebra von H endlich erzeugt sind. Seien M, N zwei Objekte von T. Wir nehmen an, dass M, N keine nichttrivialen pseudo-null-Untermoduln besitzen und q(M) in Q volltreu ist. Dann gilt: Ist [M]=[N] in der Grothendieckgruppe von Q, so ist das Bild von N ebenfalls volltreu. In Kapitel 5 zeugen wir folgenden Satz: Sei G eine beliebige p-adische analytische Gruppe, welche keine Element der Ordung p besitzt. Dann sind die Grothendieckgruppen der Algebra stetiger Distributionen und der Algebra beschränkter Distributionen isomorph zu c Kopien des Rings der ganzen Zahlen, wobei c die Anzahl der p-regulären Konjugationsklassen des Quotienten von G nach einer offenen uniformen pro-p-Untergruppe H bezeichnet. / Let G be a compact p-adic analytic group with no element of order p such that it is the direct sum of a torsion free compact p-adic analytic group H whose Lie algebra is split semisimple and an abelian p-adic analytic group Z of dimension n. In chapter 3, we show that if M is a finitely generated torsion module over the Iwasawa algebra of G with no non-zero pseudo-null submodule, then the image q(M) of M via the quotient functor q is completely faithful if and only if M is torsion free over the Iwasawa algebra of Z. Here the quotient functor q is the unique functor from the category of modules over the Iwasawa algebra of G to the quotient category with respect to the Serre subcategory of pseudo-null modules. In chapter 4, we show the following: Let M, N be two finitely generated modules over the Iwasawa algebra of G such that they are objects of the category Q of those finitely generated modules over the Iwasaw algebra of G which are also finitely generated as modules over the Iwasawa algebra of H. Assume that q(M) is completely faithful and [M] =[N] in the Grothendieck group of Q. Then q(N) is also completely faithful. In chapter 6, we show that if G is any compact p-adic analytic group with no element of order p, then the Grothendieck groups of the algebras of continuous distributions and bounded distributions are isomorphic to c copies of the ring of integers where c denotes the number of p-regular conjugacy classes in the quotient group of G with an open normal uniform pro-p subgroup H of G.
|
53 |
Uniform sup-norm bounds for Siegel cusp formsMandal, Antareep 25 April 2022 (has links)
Es sei Γ eine torsionsfreie arithmetische Untergruppe der symplektischen Gruppe Sp(n,R), die auf dem Siegelschen oberen Halbraum H_n vom Grad n wirkt. Wir betrachten den d-dimensionalen Raum der Siegelschen Spitzenformen vom Gewicht k zur Gruppe Γ, mit einer Orthonormalbasis {f_1,…,f_d}. In der vorliegenden Dissertation zeigen wir mit Hilfe des Wärmeleitungskerns, dass die Supremumsnorm von S_k(Z):=det(Y)^k (|f_1(Z)|^2+…+|f_d(Z)|^2) (Z∈H_n) für n=2 ohne zusätzliche Bedingungen und für n>2 unter Annahme einer vermuteten Determinanten-Ungleichung nach oben beschränkt ist. Wenn M:=Γ\H_n kompakt ist, dann ist die obere Schranke durch c_(n,Γ) k^{n(n+1)/2} gegeben. Wenn M nicht kompakt und von endlichem Volumen ist, dann ist die obere Schranke durch c_(n,Γ) k^{3n(n+1)/4} gegeben. In beiden Fällen ist c_(n,Γ) eine positive reelle Konstante, die nur vom Grad n und der Gruppe Γ abhängt. Wir zeigen weiter, dass die obere Schranke in dem Sinne gleichmäßig ist, dass bei fixierter Gruppe Γ_0 die Konstante c_(n,Γ) für Untergruppen Γ von endlichem Index nur vom Grad n und der Gruppe Γ_0 abhängt. / Let Γ be a torsion-free arithmetic subgroup of the symplectic group Sp(n,R) acting on the Siegel upper half-space H_n of degree n. Consider the d-dimensional space of Siegel cusp forms of weight k for Γ with an orthonormal basis {f_1,…,f_d}. In this thesis we show using the heat kernel method that for n=2 unconditionally and for n>2 subject to a conjectural determinant-inequality, the sup-norm of the quantity S_k(Z):=det(Y)^k (|f1(Z)|^2+…+|f_d(Z)|^2) (Z∈H_n) is bounded above by c_(n,Γ) k^{n(n+1)/2} when M:=Γ\H_n is compact and by c_(n,Γ) k^{3n(n+1)/4} when M is non-compact of finite volume, where c_(n,Γ) denotes a positive real constant depending only on the degree n and the group Γ. Furthermore, we show that this bound is uniform in the sense that if we fix a group Γ_0 and take Γ to be a subgroup of Γ_0 of finite index, then the constant c_(n,Γ) in these bounds depends only on the degree n and the fixed group Γ_0.
|
54 |
Numerical treatment of the Black-Scholes variational inequality in computational financeMautner, Karin 16 February 2007 (has links)
In der Finanzmathematik hat der Besitzer einer amerikanische Option das Recht aber nicht die Pflicht, eine Aktie innerhalb eines bestimmten Zeitraums, für einen bestimmten Preis zu kaufen oder zu verkaufen. Die Bewertung einer amerikanische Option wird als so genanntes optimale stopping Problem formuliert. Erfolgt die Modellierung des Aktienkurses durch eine geometrische Brownsche Bewegung, wird der Wert einer amerikanischen Option durch ein deterministisches freies Randwertproblem (FRWP), oder einer äquivalenten Variationsungleichung (VU) auf ganz R in gewichteten Sobolev Räumen gegeben. Um Standardmethoden der Numerischen Mathematik anzuwenden, wird das unbeschränkte Gebiet zu einem beschränkten Gebiet abgeschnitten. Mit Hilfe der Fourier-Transformation wird eine Integraldarstellung der Lösung die den freien Rand explizit beinhaltet, hergeleitet. Mittels dieser Integraldarstellung werden Abschneidefehlerschranken bewiesen. Danach werden gewichtete Poincare Ungleichungen mit expliziten Konstanten bewiesen. Der Abschneidefehler und die gewichtete Poincare Ungleichung ermöglichen, einen zuverlässigen a posteriori Fehlerschätzer zwischen der exakten Lösung der VU und der semidiskreten Lösung des penalisierten Problems auf R herzuleiten. Eine hinreichend glatte Lösung der VU garantiert die Konvergenz der Lösung des penaltisierten Problems zur Lösung der VU. Ein a priori Fehlerschätzer für den Fehler zwischen der exakten Lösung der VU und der semidiskreten Lösung des penaltisierten Problems beendet die numerische Analysis. Die eingeführten aposteriori Fehlerschätzer motivieren einen Algorithmus für adaptive Netzverfeinerung. Numerische Experimente zeigen die verbesserte Konvergenz des adaptiven Verfahrens gegenüber der uniformen Verfeinerung. Der zuverlässige a posteriori Fehlerschätzer ermöglicht es, den Abschneidepunkt so zu wählen, dass der Gesamtfehler (Diskretisierungsfehler plus Abschneidefehler) kleiner als eine gegebenen Toleranz ist. / Among the central concerns in mathematical finance is the evaluation of American options. An American option gives the holder the right but not the obligation to buy or sell a certain financial asset within a certain time-frame, for a certain strike price. The valuation of American options is formulated as an optimal stopping problem. If the stock price is modelled by a geometric Brownian motion, the value of an American option is given by a deterministic parabolic free boundary value problem (FBVP) or equivalently a non-symmetric variational inequality (VI) on weighted Sobolev spaces on R. To apply standard numerical methods, the unbounded domain R is truncated to a bounded one. Applying the Fourier transform to the FBVP yields an integral representation of the solution including the free boundary explicitely. This integral representation allows to prove explicit truncation errors. Since the VI is formulated within the framework of weighted Sobolev spaces, we establish a weighted Poincare inequality with explicit determined constants. The truncation error estimate and the weighted Poncare inequality enable a reliable a posteriori error estimate between the exact solution of the VI and the semi-discrete solution of the penalised problem on R. A sufficient regular solution provides the convergence of the solution of the penalised problem to the solution of the VI. An a priori error estimate for the error between the exact solution of the VI and the semi-discrete solution of the penalised problem concludes the numerical analysis. The established a posteriori error estimates motivates an algorithm for adaptive mesh refinement. Numerical experiments show the improved convergence of the adaptive algorithm compared to uniform mesh refinement. The reliable a posteriori error estimate including explicit truncation errors allows to determine a truncation point such that the total error (discretisation and truncation error) is below a given error tolerance.
|
55 |
Algebraic Torsion in Higher-Dimensional Contact ManifoldsMoreno, Agustin 04 April 2019 (has links)
Wir konstruieren Beispiele von Kontaktmannigfaltigkeiten in jeder ungeraden Dimension, welche endliche nicht-triviale algebraische Torsion (im Sinne von Latschev-Wendl) aufweisen, somit straff sind und keine starke symplektische Füllung haben. Wir beweisen, dass Giroux Torsion
algebraische 1-Torsion in jeder ungeraden Dimension impliziert, womit eine Vermutung von Massot-Niederkrüger-Wendl bewiesen wird. Wir konstruieren unendlich viele nicht diffeomorphe Beispiele von 5-dimensionalen Kontaktmannigfaltigkeiten, welche straff sind, keine starke
symplektische Füllung zulassen und keine Giroux Torsion haben. Wir erhalten Obstruktionen für symplektische Kobordismen, ohne für deren Beweis die SFT Maschinerie zu verwenden. Wir geben eine provisorische Definition eines spinalen offenen Buchs in höherer Dimension an, basierend auf der vom 3-dimensionalen Fall aus Lisi-van Horn Morris-Wendl. In einem Anhang geben wir in gemeinsamer Autorenschaft mit Richard Siefring eine wesentliche Zusammenfassung der Schnitttheorie für punktierte holomorphe Kurven und Hyperflächen an, welche die 3-dimensionalen Resultate von Siefring auf höhere Dimensionen verallgemeinert. Mittels der Schnitttheorie erhalten wir eine Anwendung für holomorphe Blätterungen von Kodimension zwei, die wir benutzen um das Verhalten von holomorphem Kurven in unseren Beispielen einzuschränken. / We construct examples in any odd dimension of contact manifolds with finite and non-zero algebraic torsion (in the sense of Latschev-Wendl), which are therefore tight and do not admit strong symplectic fillings. We prove that Giroux torsion implies algebraic 1-torsion in any odd dimension, which proves a conjecture of Massot-Niederkrüger-Wendl. We construct infinitely many non-diffeomorphic examples of 5-dimensional contact manifolds which are tight, admit no strong fillings, and do not have Giroux torsion. We obtain obstruction results for symplectic cobordisms, for which we give a proof not relying on SFT machinery. We give a tentative definition of a higher-dimensional spinal open book decomposition, based on the 3-dimensional one of Lisi-van Horn Morris-Wendl. An appendix written in co-authorship with Richard Siefring gives a basic outline of the intersection theory for punctured holomorphic curves and hypersurfaces, which generalizes his 3-dimensional results to higher dimensions. From the intersection theory we obtain an application to codimension-2 holomorphic foliations, which we use to restrict the behaviour of holomorphic curves in our examples.
|
56 |
Stochastische Teilchensysteme zur Approximation der KoagulationsgleichungEibeck, Andreas 24 May 2002 (has links)
Koagulation ist physikalisch bedeutsam für eine Vielzahl von technischen und naturwissenschaftlichen Anwendungen und bezeichnet die paarweise Verschmelzung von Clustern unterschiedlicher Masse. Der zeitliche Verlauf der Clusterkonzentration läßt sich durch Smoluchowskis Koagulationsgleichung beschreiben, einem unendliches System nichtlinearer Differentialgleichungen. Ausgangspunkt dieser Arbeit ist eine nichtlineare maßwertige Gleichung, die die Koagulations- und andere kinetische Gleichungen beinhaltet und verschiedene physikalische und chemische Mechanismen integriert. Sie ermöglicht einen allgemeinen Zugang zu Fragen bezüglich der Existenz von Lösungen und ihrer Approximation durch stochastische Partikelsysteme. Die Teilchensysteme werden dabei als reguläre Sprungprozesse modelliert, welche eine Menge diskreter Maße auf einem lokal-kompakten Raum als Zustandsraum besitzen. Die Arbeit untergliedert sich in drei Teile: Unter geeigneten Voraussetzungen an die Sprungraten werden zunächst für wachsende Teilchenzahlen Approximations- und Konvergenzaussagen unter Verwendung von Kompaktheitsargumenten, Martingaltheoremen und Lokalisierungstechniken bewiesen. Ihre Anwendung auf die Koagulationsgleichung mit Fragmentation, Quellen und Senken erlaubt anschließend die Herleitung neuer Existenzresultate und stochastischer Algorithmen. Der letzte Abschnitt illustriert die numerischen Eigenschaften und die Effizienz der neuen Algorithmen im Vergleich zu bisherigen Monte Carlo Methoden und ihre besondere Eignung zur Analyse des Gelationsphänomens, einem Phasenübergang, welcher zum Masseverlust im Clustersystem führt. / Coagulation is an important physical process for a wide range of technical and scientific applications and denotes the pairwise merging of clusters with different mass. The dynamic behaviour of the cluster concentration can be described by Smoluchowski's coagulation equation which is an infinite system of nonlinear differential equations. In this thesis we start with a nonlinear measure-valued equation generalizing the coagulation and other kinetic equations and integrating various physical and chemical processes. This equation allows a unified treatment of questions concerning existence of solutions and their approximation by means of stochastic particle systems. Here, the particle systems are defined as regular jump processes living on a set of point measures on a locally compact space. The thesis consists of three parts: First of all, approximation and convergence results for suitable jump rates and increasing particle numbers are proved by means of compactness theorems, martingale techniques and localizing procedures. Then, an application to the coagulation equation with fragmentation, source and efflux terms leads to new existence results and stochastic algorithms. Finally, their numerical features and efficiency are compared to known Monte Carlo methods and their specific convergence properties are presented with respect to a phase transition which is called gelation and leads to a loss of total cluster mass.
|
57 |
Double Field Theory as the Double Copy of Yang-Mills Theory via Homotopy AlgebrasDíaz-Jaramillo, Felipe 17 July 2024 (has links)
Diese Arbeit befasst sich mit der sogenannten Doppelkopie, welche erstmals im Rahmen von Streuamaplituden formuliert wurde und eine Beziehung zwischen Yang-Mills-Theorie und der Gravitation herstellt. Yang-Mills-Streuamplituden tragen sowohl kinematische Informationen als auch Informationen, die mit einer Eigenschaft namens Farbe verbunden sind. Die Doppelkopie besagt, dass die Ersetzung der Farbinformation in Yang-Mills-Amplituden durch eine andere Kopie ihrer kinematischen Information zu Gravitationsamplituden führt, sofern bestimmte algebraische Bedingungen erfüllt sind. Die algebraischen Bedingungen, die für die Doppelkopie erforderlich sind, deuten auf die Existenz einer Algebra hin, die der Kinematik der Yang-Mills-Theorie zugrunde liegt und die kinematische Algebra genannt wird. In den letzten fünfzehn Jahren hat die Doppelkopie die Art und Weise, wie Streuungsberechnungen in der Gravitation durchgeführt werden, revolutioniert, und dennoch bleibt ein grundsätzliches Verständnis der Doppelkopie und der kinematischen Algebra schwer zu fassen. In dieser Arbeit verlassen wir den Rahmen der Streuamplituden und behandeln dieses Problem mit Hilfe von Homotopie-Algebren, den mathematischen Strukturen, die perturbativen Feldtheorien, einschließlich ihrer Off-Shell Struktur, zugrunde liegen. Insbesondere die der Yang-Mills-Theorie zugrunde liegende Algebra lässt sich in algebraische Strukturen für Farbe und Kinematik faktorisieren. Unter Verwendung dieser Faktorisierung konstruieren wir explizit eine kinematische Algebra für die Yang-Mills Theorie bis zur quartischen Ordnung in der Störungstheorie. Dann ersetzen wir die Farbalgebra durch eine zweite Kopie der kinematischen Algebra und erhalten eine Gravitationstheorie bis hinzu und einschließlich der quartischen Wechselwirkungen. Außerdem erklären wir, inwiefern die kinematische Algebra die Struktur ist, die für die Konsistenz der resultierenden Gravitationstheorie verantwortlich ist. Unsere algebraische Herangehensweise an die Doppelkopie ist vollständig Off-Shell, eichunabhängig und lokal und bietet eine neue Perspektive auf die algebraischen Grundlagen und Ursprünge der Doppelkopie. / This thesis deals with a relation between Yang-Mills theory and gravity called the double copy, which was first formulated in the framework of scattering amplitudes. Yang-Mills scattering amplitudes carry kinematic information as well as information associated with a property called color. The double copy states that, provided that certain algebraic conditions are met, replacing the color information of Yang-Mills amplitudes with another copy of their kinematic information yields gravitational amplitudes. The algebraic conditions required by the double copy hint at the existence of an algebra underlying the kinematics of Yang-Mills called the kinematic algebra. In the last fifteen years, the double copy has revolutionized the way that scattering computations are performed in gravity, and, yet, a first principle understanding of the double copy and the kinematic algebra remains elusive. In this thesis we divert from scattering amplitudes and address this problem in the framework of homotopy algebras, which are the mathematical structures underlying perturbative field theories, including their off-shell structure. In particular, the algebra underlying Yang-Mills theory factorizes into color and kinematic algebraic structures. Using this factorization, we construct explicitly a kinematic algebra for Yang-Mills theory to quartic order in perturbation theory. Then, following the double copy, we replace the color algebra with a second copy of the kinematic algebra and we obtain gravity up to and including quartic interactions. Moreover, we explain how the kinematic algebra is responsible for the consistency of the resulting gravity theory. Our algebraic approach to the double copy is completely off-shell, gauge independent and local, and provides a novel perspective on the algebraic foundations and origins of the double copy.
|
58 |
Geraden in komplexen MannigfaltigkeitenRadtke, Achim 09 November 2001 (has links)
Gegenstand dieser Arbeit sind Geraden in komplexen Mannigfaltigkeiten. Dabei wird zum einen ein Geradenbegriff verwendet, der sich aus der Theorie der Twistorräume herleitet. Demnach ist eine Gerade in einer n-dimensionalen Mannigfaltigkeit eine rationale Kurve, deren Normalenbündel isomorph zu dem Normalenbündel einer Geraden im n-dimensionalen komplexen projektiven Raum ist. Einen engeren Geradenbegriff erhält man, wenn man darüberhinaus fordert, dass eine Umgebung der Kurve isomorph zu einer Umgebung einer Geraden im projektiven Raum ist. Solche Geraden heissen tubular. In der Arbeit wird gezeigt, dass die beiden Geradenbegriffe nicht äquivalent sind und ein Kriterium dafür angegeben, wann eine Gerade nicht tubular ist. Mit der Deformationstheorie folgt aus der Existenz einer Geraden in einer Mannigfaltigkeit die Existenz einer Familie von Geraden, wobei die Geraden eine offene Menge überdecken. Daher gibt es auf solchen Mannigfaltigkeiten keine holomorphen Differentialformen und somit sind die meisten Methoden der Klassifikationstheorie nicht anwendbar. Als einziger Zugang bleibt die algebraische Reduktion, die in dieser Arbeit für dreidimensionale Mannigfaltigkeiten mit Geraden untersucht wird, wobei sich zunächst eine grobe Charakterisierung dieser Räume ergibt. Der Fall der algebraischen Dimension 2 erweisst sich dann als besonders günstig, da solche Mannigfaltigkeiten elliptische Faserungen über komplexen Flächen sind und die Existenz der Geraden impliziert, dass diese Flächen rational sind. Elliptische Hauptfaserbündel mit Geraden können dann vollständig beschrieben werden. Allgemeine Faserungen lassen sich auf Faserungen über Hirzebruch-Flächen zurückführen. Für diese werden notwendige Bedingungen an die Existenz von Geraden hergeleitet. / In this work we study lines in complex manifolds. Mostly we use a definition of lines which comes from the thory of twistor spaces. That means a line is a rational curve in a complex manifold with the same normal bundle as a line in a projective space. Another possibility for the definition of lines is to demand that a complete neighbourhood of the rational curve is biholomorphic equivalent to a neighbourhood of a line in a projective space. Such lines a called tubular lines. In this work we show that these two definitions of lines are not equivalent and we give a criterion for a line not to be tubular. From deformation theory follows that the existence of a line in a manifold induces a family of lines which covers an open subset. Therefore there are no non-trivial homolorphic differential forms on the manifold and most of the techniques of classification theory do not work. Therefore we study the algebraic reduction of the manifold. For 3 dimensional complex manifolds with lines we get a rough description. In the case of algebraic dimension 2 the algebraic reduction is an elliptic fibration over a surface and from the existence of lines we can conclude that this surface is rational. For such fibrations we have good descriptions and we can generalize the situation to fibrations over minimal rational surfaces. For them we give necessary condtions for the exitence of lines.
|
59 |
Ein Mikro-Makro-Übergang für die nichtlineare atomare Kette mit TemperaturHerrmann, Michael 19 October 2005 (has links)
Diese Arbeit betrachtet einen Mikro-Makro-Übergang für die atomare Kette mit Wechselwirkungen zwischen nächsten Nachbarn, deren Dynamik durch ein nichtlineares aber konvexes Wechselwirkungspotential und durch die Newtonschen Bewegungsgleichungen bestimmt ist. Um einen Mikro-Makro-Übergang zu etablieren, wählen wir eine geeignete Skalierung und lassen die Zahl der Teilchen gegen Unendlich laufen. Dabei steht der Fall mit Temperatur im Vordergrund, so dass auf der makroskopischen Skala mikroskopische Oszillationen beschrieben werden müssen. Nach einer Einführung werden im zweiten Kapitel die Grundlagen der atomaren Kette zusammengefasst, und die wesentlichen Probleme beim Mikro-Makro-Übergang mit Temperatur diskutiert. Dabei wird besonders auf die Skalierung, die mikroskopischen Anfangsdaten und die Beschreibung der mikroskopischen Oszillationen eingegangen. Im dritten Kapitel werden so genannte Traveling-Waves betrachtet: Das sind exakte, hochgradig symmetrische Lösungen der atomaren Kette, die generisch von vier Parametern abhängen, und die als Lösungen von Differenzen-Differentialgleichungen bestimmt werden. Im Einzelnen werden die Existenz von Traveling-Waves, ihre thermodynamischen Eigenschaften und ihre Approximierbarkeit untersucht. Im vierten Kapitel werden modulierte Traveling-Waves betrachtet, mit deren Hilfe dann makroskopische Modulationsgleichungen abgeleitet werden. Diese lassen sich als die Erhaltungssätze für Masse, Impuls, Wellenzahl und Entropie interpretieren. Anschließend wird das Rechtfertigungsproblem diskutiert und für einen Spezialfall auch gelöst. Im fünften Kapitel werden numerische Simulationen von Anfangswertproblemen, unter anderem Riemann--Probleme, ausführlich untersucht, wobei die Strukturuntersuchung der auftretenden mikroskopischen Oszillationen im Vordergrund steht. Es zeigt sich, dass die mikroskopischen Oszillationen in vielen Fällen durch modulierte Traveling-Waves beschrieben werden können. / The subject matter of this thesis is a micro-macro transition for the atomic chain with nearest neighbor interaction. The interaction potential is assumed to be nonlinear but convex, and the dynamics of the chain is governed by Newton''s law of motion. To establish the micro-macro transition we choose an appropriate scaling, and let the number of particles tend to infinity. We mainly concentrate on the case with temperature, and therefore we have to describe microscopic oscillations on the macroscopic scale. We start with an introduction in the first chapter. Afterwards in the second chapter we summarize the basics of the atomic chain, and discuss the most important problems concerning a micro-macro transition with temperature. In particular we emphasize the scaling, the microscopic initial data, and the description of the microscopic oscillations. In the third chapter we consider traveling waves: These are highly symmetric solutions of the atomic chain depending on four parameters, and they result as solutions of difference-differential equations. We study the existence of traveling waves, their thermodynamic properties, and we derive schemes for their approximation. The fourth chapter is devoted to modulated traveling waves, because they allow to derive macroscopic modulation equations. These modulation equations can be interpreted as the macroscopic conservations laws for mass, momentum, wave number and entropy. Afterwards we discuss the justification problem, which is moreover solved for a special example. Within the fifth chapter we investigate several numerical simulations of initial value problems for the atomic chain including some Riemann problems. We mainly focus on the structure of the resulting microscopic oscillations, and we will identify many situations in which the microscopic oscillations can be described in terms of modulated traveling waves.
|
60 |
Enumerative geometry of double spin curvesSertöz, Emre Can 11 October 2017 (has links)
Diese Dissertation hat zwei Teile. Im ersten Teil untersuchen wir die Modulräume von Kurven mit multiplen Spinstrukturen. Wir stellen eine neue Kompaktifizierung dieser Räume mit geometrisch sinnvollem Grenzverhalten vor. Die irreduziblen Komponenten dieser Räume werden vollstandig klassifiziert. Die Ergebnisse aus diesem ersten Teil der Dissertation sind fundamental für die Degenerationstechniken im zweiten Teil.
Im zweiten Teil untersuchen wir eine Reihe von Problemen, die von der klassischen Geometrie inspiriert werden. Unser Hauptaugenmerk liegt hierbei auf dem Fall von zwei Hyperebenen, die eine kanonische Kurve in jedem Schnittpunkt tangential berühren. Wir fragen, ob eingemensamer Tangentialpunk existieren kann. Unsere Analyse zeigt, dass so ein gemeinsamer Punkt nur in Kodimension 1 im Modulraum existieren kann. Wir berechen dann weiter die Klasse dieses Divisors.
Insbesonders zeigen wir, dass diese Klasse eine hinreichend kleine Steigung hat, sodass die kanonischen Klassen von Modulräumen von Kurven mit zwei ungeraden Spinstrukturen gross ist, wenn der Genus grösser ist als neun. Falls die zugehörigen groben Modulräume gutartige Singularitäten haben, dann haben sie in diesem Intervall maximale Kodaria Dimension. / This thesis has two parts. In Part I we consider the moduli spaces of curves with multiple spin structures and provide a compactification using geometrically meaningful limiting objects. We later give a complete classification of the irreducible components of these spaces. The moduli spaces built in this part provide the basis for the degeneration techniques required in the second part.
In the second part we consider a series of problems inspired by projective geometry. Given two hyperplanes tangential to a canonical curve at every point of intersection, we ask if there can be a common point of tangency. We show that such a common point can appear only in codimension 1 in moduli and proceed to compute the class of this divisor. We then study the general properties of curves in this divisor.
Our divisor class has small enough slope to imply that the canonical class of the moduli space of curves with two odd spin structures is big when the genus is greater than 9. If the corresponding coarse moduli spaces have mild enough singularities, then they have maximal Kodaira dimension in this range.
|
Page generated in 0.0533 seconds