81 |
Gieseker-Petri divisors and Brill-Noether theory of K3-sectionsLelli-Chiesa, Margherita 04 October 2012 (has links)
Diese Dissertation untersucht Brill-Noether-Theorie der algebraischen Kurven, unter besonderer Berücksichtigung von Kurven auf K3-Flächen und Del-Pezzo-Flächen. In Kapitel 2 studieren wir den Gieseker-Petri-Ort GP_g im Modulraum M_g der glatten irreduziblen Kurven vom Geschlecht g. Dieser Ort wird definiert durch Kurven mit einer Brill-Noether-Varietät G^r_d(C), die singulär ist oder deren Dimension größer als erwartet ist. Der Satz von Gieseker-Petri impliziert, dass GP_g mindestens Kodimension 1 hat, und es wurde vermutet, dass er von reiner Kodimension 1 ist. Wir beweisen diese Vermutung für Geschlecht höchstens 13. Dies wird dadurch ermöglicht, dass man für kleine Geschlechter die Dimension der irreduziblen Komponenten von GP_g mittels "ad hoc"-Beweisführungen untersuchen kann. Lazarsfelds Beweis des Gieseker-Petri-Theorems mittels Kurven auf allgemeninen K3-Flächen deutet darauf hin, dass die Brill-Noether-Theorie von K3-Schnitten wichtig ist, um den Gieseker-Petri-Ort besser zu verstehen. Linearscharen von Kurven, die auf K3-Flächen liegen, stehen in tiefgehender Beziehung zu sogenannten Lazarsfeld-Mukai-Vektorbündeln. In Kapitel 3 untersuchen wir die Stabilität der Lazarsfeld-Mukai-Vektorbündel vom Rang 3 auf einer K3-Fläche S, und wir zeigen, dass sie viele Informationen über Netze vom Typ g^2_d auf Kurven in S enthalten. Wenn d größ genug ist, erhalten wir eine obere Schranke für die Dimension der Varietät G^2_d(C). Wenn die Brill-Noether-Zahl negativ ist, beweisen wir, dass jedes g^2_d in einer von einem Geradenbündel induzierten Linearschar enthalten ist, wie von Donagi und Morrison vermutet wurde. Kapitel 4 befasst sich mit Syzygien einer gegebenen Kurve C, die auf einer Del-Pezzo-Fläche liegt. Wir insbesondere, dass C die Greens Vermutung erfüllt, die impliziert, dass die Existenz gewisser spezieller Linearscharen auf C von den Gleichungen ihrer kanonischen Einbettung abgelesen werden kann. / We investigate Brill-Noether theory of algebraic curves, with special emphasis on curves lying on $K3$ surfaces and Del Pezzo surfaces. In Chapter 2, we study the Gieseker-Petri locus GP_g inside the moduli space M_g of smooth, irreducible curves of genus g. This consists, by definition, of curves [C] in M_g such that for some r, d the Brill-Noether variety G^r_d(C), which parametrizes linear series of type g^r_d on C, either is singular or has some components exceeding the expected dimension. The Gieseker-Petri Theorem implies that GP_g has codimension at least 1 in M_g and it has been conjectured that it has pure codimension 1. We prove this conjecture up to genus 13; this is possible since, when the genus is low enough, one is able to determine the irreducible components of GP_g and to study their codimension by "ad hoc" arguments. Lazarsfeld''s proof of the Gieseker-Petri-Theorem by specialization to curves lying on general K3 surfaces suggests the importance of the Brill-Noether theory of K3-sections for a better understanding of the Gieseker-Petri locus. Linear series on curves lying on a K3 surface are deeply related to the so-called Lazarsfeld-Mukai bundles. In Chapter 3, we study the stability of rank-3 Lazarsfeld-Mukai bundles on a K3 surface S, and show it encodes much information about nets of type g^2_d on curves C contained in S. When d is large enough and C is general in its linear system, we obtain a dimensional statement for the variety G^2_d(C). If the Brill-Noether number is negative, we prove that any g^2_d is contained in a linear series which is induced from a line bundle on S, as conjectured by Donagi and Morrison. Chapter 4 concerns syzygies of any given curve C lying on a Del Pezzo surface S. In particular, we prove that C satisfies Green''s Conjecture, which implies that the existence of some special linear series on C can be read off the equations of its canonical embedding.
|
82 |
Self-similar rupture of thin liquid films with slippagePeschka, Dirk 13 May 2009 (has links)
In der vorliegenden Arbeit wird das Entstehen von Singularitäten an Oberflächen von dünnen Flüssigkeitsfilmen studiert. Unter einer Singularität versteht man hier das plötzliche Aufreißen einer Flüssigkeitsoberfläche an einer Stelle. Nach einer Diskussion physikalischer Phänomene, wird ein 2D Modell zur Beschreibung von Flüssigkeitsfilmen hergeleitet. Dieses Modell beinhaltet u.a. Oberflächenspannung, van der Waals''sche Kräfte und eine Navier-slip Randbedingung (Schlupf-Randbedingung) zwischen Substrat und Flüssigkeit, d.h. die Flüssigkeite haftet nicht an der Grenzfläche zum Substrat. Dieses Phänomen wird vor allen Dingen im Nano- und Mikrometerbereich beobachtet. Dieses Modell wird vereinfacht und man erhält die sogenannte "strong-slip" Gleichung. In dieser Dissertation werden verschiedene Ansätze verfolgt, um die Singularität der Flüssigkeitsoberfläche zu beschreiben. Der Entstehungsprozess der Singularität wird durch die lineare Stabilitätsuntersuchung beschrieben. Da die Linearisierung schnell ihre Gültigkeit verliert, wird das nichtlineare Verhalten der Singularität mit einem numerischen Verfahren beschrieben. Das dazu hier konstruierte Finite-Differenzen-Schema besitzt eine hohe räumliche und zeitliche Genauigkeit. Dadurch können verschiedene Regime, in denen die Singularität eine selbstähnliche Dynamik besitzt, untersucht und beschrieben werden. Im zweiten Teil der Arbeit werden die Gleichungen weiter vereinfacht. Dadurch können qualitative Eigenschaften der Singularitätsentstehung bewiesen werden. Weiterhin kann so eine Verbindung zu Modellen der Ostwald-Reifung hergestellt werden und man gelangt zu ähnlichen mathematischen Aussagen wie für selbstähnliche Vergröberungsprozesse. Insbesondere wird in der Arbeit gezeigt, dass die Singularität nach endlicher Zeit auftritt. Für das vereinfachte Problem werden hinreichende und notwendige Bedingungen für selbstähnliches Verhalten angegeben. / In this thesis we study the formation of surface singularites of thin liquid films, i.e., rupture of thin liquid films. First, important physical phenomena are discussed and a two-dimensional model for thin-film rupture is derived . That model contains surface tension, van der Waals forces between a liquid and a underlying substrate, and a Navier-slip condition. Using the thin-film hypothesis, this model is simplified and one obtains the so-called strong-slip equation. The phenomenon slip, where the velocity of the liquid is non-zero at a fluid-solid interface, is particularly important at microscopic length scales. In this text we study interfacial singularities with various approaches. The creation of a singularity is described by a linear stability analysis. The non-linear behavior is investigated by a numerical analysis. A finite-difference scheme is used to study the non-linear self-similar dynamics of the singularity. In the second part of this thesis the equations are further simplified. This allows to study qualitative properties of the singularity formation. Furthermore, we can establish a correspondence to models for Ostwald rippending and obtain similar mathematical statements as they are known for self-similar coarsening processes. In particular it is shown that rupture happens after a finite time. In addition, necessary and sufficient condition for self-similar rupture are proven.
|
83 |
Fraïssé-Hrushovski predimensions on nilpotent Lie algebrasAmantini, Andrea 30 June 2011 (has links)
In dieser Arbeit wird das Fraïssé-Hrushowskis Amalgamationsverfahren in Zusammenhang mit nilpotenten graduierten Lie Algebren über einem endlichen Körper untersucht. Die Prädimensionen die in der Konstruktion auftauchen sind mit dem gruppentheoretischen Begriff der Defizienz zu vergleichen, welche auf homologische Methoden zurückgeführt werden kann. Darüber hinaus wird die Magnus-Lazardsche Korrespondenz zwischen den oben genannten Lie Algebren und nilpotenten Gruppen von Primzahl-Exponenten beschrieben. Dabei werden solche Gruppen durch die Baker-Haussdorfsche Formel in den entsprechenden Algebren definierbar interpretiert. Es wird eine omega-stabile Lie Algebra von Nilpotenzklasse 2 und Morleyrang omega + omega erhalten, indem man eine unkollabierte Version der von Baudisch konstruierten "new uncountably categorical group" betrachtet. Diese wird genau analysiert. Unter anderem wird die Unabhängigkeitsrelation des Nicht-Gabelns durch die Konfiguration des freien Amalgams charakterisiert. Mittels eines induktiven Ansatzes werden die Grundlagen entwickelt, um neue Prädimensionen für Lie Algebren der Nilpotenzklassen größer als zwei zu schaffen. Dies erweist sich als wesentlich schwieriger als im Fall 2. Wir konzentrieren uns daher auf die Nilpotenzklasse 3, als Induktionsbasis des oben genannten Prozesses. In diesem Fall wird die Invariante der Defizienz auf endlich erzeugte Lie Algebren adaptiert. Erstes Hauptergebnis der Arbeit ist der Nachweis dass diese Definition zu einem vernüftigen Begriff selbst-genügender Erweiterungen von Lie Algebren führt und sehr nah einer gewünschten Prädimension im Hrushovskischen Sinn ist. Wir zeigen – als zweites Hauptergebnis – ein erstes Amalgamationslemma bezüglich selbst-genügender Einbettungen. / In this work, the so called Fraïssé-Hrushowski amalgamation is applied to nilpotent graded Lie algebras over the p-elements field with p a prime. We are mainly concerned with the uncollapsed version of the original process. The predimension used in the construction is compared with the group theoretical notion of deficiency, arising from group Homology. We also describe in detail the Magnus-Lazard correspondence, to switch between the aforementioned Lie algebras and nilpotent groups of prime exponent. In this context, the Baker-Hausdorff formula allows such groups to be definably interpreted in the corresponding algebras. Starting from the structures which led to Baudisch’ new uncountably categorical group, we obtain an omega-stable Lie algebra of nilpotency class 2, as the countable rich Fraïssé limit of a suitable class of finite Lie algebras. We study the theory of this structure in detail: we show its Morley rank is omega+omega and a complete description of non-forking independence is given, in terms of free amalgams. In a second part, we develop a new framework for the construction of deficiency-predimensions among graded Lie algebras of nilpotency class higher than 2. This turns out to be considerably harder than the previous case. The nil-3 case in particular has been extensively treated, as the starting point of an inductive procedure. In this nilpotency class, our main results concern a suitable deficiency function, which behaves for many aspects like a Hrushovski predimension. A related notion of self-sufficient extension is given. We also prove a first amalgamation lemma with respect to self-sufficient embeddings.
|
84 |
Utility maximization and quadratic BSDEs under exponential moments / existence, uniqueness and stability of constrained problemsMocha, Markus 08 March 2012 (has links)
In der Arbeit befassen wir uns mit der Potenznutzenmaximierung des Endvermögens, wenn die Aktienpreise stetigen Semimartingaldynamiken genügen und die Strategien des Agenten Investitions- und Informationsrestriktionen unterworfen sind. Hauptaugenmerk liegt auf der stochastischen Rückwärtsgleichung (BSDE) für den dynamischen Wertprozess und auf der Übertragung von neuen Ergebnissen zu quadratischen Semimartingal-BSDEs auf das Investitionsproblem. Dieses gelingt unter der Annahme endlicher exponentiellen Momente des Mean-Variance Tradeoff und verallgemeinert frühere Resultate, die Beschränktheit fordern. Wir betrachten dabei zunächst die Beziehung zwischen den Dualitäts- und BSDE-Ansätzen zur Lösung des Problems und gehen dann über zum Studium der quadratischen Semimartingal-BSDE, wenn der Marktpreis des Risikos vom BMO-Typ ist. Wir zeigen, dass es stets ein Kontinuum verschiedener BSDE-Lösungen mit quadratisch integrierbarem Martingalteil gibt. Wir stellen dann eine neue scharfe Bedingung an geeignete dynamische exponentielle Momente vor, die die Beschränktheit der BSDE-Lösungen in einer allgemeinen Filtration garantiert. In weiterer Folge weisen wir Existenz-, Eindeutigkeits-, Stabilitäts- und Maßwechselresultate für allgemeine quadratische stetige BSDEs unter exponentiellen Momenten nach. Diese Ergebnisse verwenden wir, um das Investitionsproblem für den Fall konischer Investitionsrestriktionen zu untersuchen. Ausgehend von der Zerlegung von Elementen des dualen Gebietes erhalten wir die zugehörige BSDE und beweisen, dass der Wertprozess in einem Raum liegt, in dem Lösungen quadratischer BSDEs eindeutig sind. Als Folgerung aus dem Stabilitätsresultat für BSDEs erhalten wir die Stetigkeit der Optimierer in der Semimartingaltopologie in den Parametern des Modells. Schließlich betrachten wir das Investitionsproblem unter exponentiellen Momenten, kompakten Handelsrestriktionen und eingeschränkter Information. Hierbei benutzen wir ausschließlich BSDE-Resultate. / In this thesis we consider the problem of maximizing the power utility from terminal wealth when the stocks have continuous semimartingale dynamics and there are investment and information constraints on the agent''s strategies. The main focus is on the backward stochastic differential equation (BSDE) that encodes the dynamic value process and on transferring new results on quadratic semimartingale BSDEs to the portfolio choice problem. This is accomplished under the assumption of finite exponential moments of the mean-variance tradeoff, generalizing previous results which require boundedness. We first recall the relationship between the duality and BSDE approaches to solving the problem and then study the associated quadratic semimartingale when the market price of risk is of BMO type. We show that there is always a continuum of distinct solutions to this BSDE with square-integrable martingale part. We then provide a new sharp condition on the dynamic exponential moments of the mean-variance tradeoff which guarantees the boundedness of BSDE solutions in a general filtration. In a subsequent step we establish existence, uniqueness, stability and measure change results for general quadratic continuous BSDEs under an exponential moments condition. We use these results to study the portfolio selection problem when there are conic investment constraints. Building on a decomposition result for the elements of the so-called dual domain we derive the associated BSDE and show that the value process is contained in a specific space in which BSDE solutions are unique. A consequence of the stability result for BSDEs is then the continuity of the optimizers with respect to the input parameters of the model in the semimartingale topology. Finally, we study the optimal investment problem under exponential moments, compact constraints and restricted information. This is done by referring to BSDE results only.
|
85 |
A theory of conditional setsJamneshan, Asgar 25 March 2014 (has links)
Diese Arbeit befasst sich mit der Entwicklung einer Theorie bedingter Mengen. Bedingte Mengenlehre ist reich genug um einen bedingten mathematischen Diskurs zu führen, dessen Möglichkeit wir durch die Konstruktion einer bedingten Topologielehre und bedingter reeller Analysis aufzeigen. Wir beweisen die bedingte Version folgender Sätze: Ultrafilterlemma, Tychonoff, Borel-Lebesgue, Heine-Borel, Bolzano-Weierstraß, und das Gaplemma von Debreu. Darüberhinaus beweisen wir die bedingte Version derjenigen Resultate der klassischen Mathematik, die in den Beweisen dieser Sätze benötigt werden, beginnend mit der Mengenlehre. Wir diskutieren die Verbindung von bedingter Mengenlehre zur Garben-, Topos- und L0-Theorie. / In this thesis, we develop a theory of conditional sets. Conditional set theory is sufficiently rich in order to allow for a conditional mathematical reasoning, the possibility of which we demonstrate by constructing a conditional general topology and a conditional real analysis. We prove the conditional version of the following theorems: Ultrafilter Lemma, Tychonoff, Borel-Lebesgue, Heine-Borel, Bolzano-Weierstraß, and Debreu’s Gap Lemma. Moreover, we prove the conditional version of those results in classical mathematics which are needed in the proofs of these theorems, starting from set theory. We discuss the connection of conditional set theory to sheaf, topos and L0-theory.
|
86 |
Microlocal analyticity of Feynman integralsSchultka, Konrad 18 September 2019 (has links)
Wir geben eine rigorose Konstruktion von analytisch-regularisierten
Feynman-Integralen im D-dimensionalen Minkowski-Raum als meromorphe
Distributionen in den externen Impulsen, sowohl in der Impuls- als auch in der
parametrischen Darstellung. Wir zeigen, dass ihre Pole durch die üblichen
Power-counting Formeln gegeben sind, und dass ihr singulärer Träger in
mikrolokalen Verallgemeinerungen der (+alpha)-Landauflächen enthalten ist.
Als weitere Anwendungen geben wir eine Konstruktion von dimensional
regularisierten Integralen im Minkowski-Raum und beweisen Diskontinuitätsformeln
für parametrische Amplituden. / We give a rigorous construction of analytically regularized Feynman integrals in
D-dimensional Minkowski space as meromorphic distributions in the external
momenta, both in the momentum and parametric representation. We show that their
pole structure is given by the usual power-counting formula and that their
singular support is contained in a microlocal generalization of the
alpha-Landau surfaces. As further applications, we give a construction of
dimensionally regularized integrals in Minkowski space and prove discontinuity
formula for parametric amplitudes.
|
87 |
Wavelet-Konstruktion als Anwendung der algorithmischen reellen algebraischen GeometrieLehmann, Lutz 24 April 2007 (has links)
Im Rahmen des TERA-Projektes (Turbo Evaluation and Rapid Algorithms) wurde ein neuartiger, hochgradig effizienter probabilistischer Algorithmus zum Lösen polynomialer Gleichungssysteme entwickelt und für den komplexen Fall implementiert. Die Geometrie polarer Varietäten gestattet es, diesen Algorithmus zu einem Verfahren zur Charakterisierung der reellen Lösungsmengen polynomialer Gleichungssysteme zu erweitern. Ziel dieser Arbeit ist es, eine Implementierung dieses Verfahrens zur Bestimmung reeller Lösungen auf eine Klasse von Beispielproblemen anzuwenden. Dabei wurde Wert darauf gelegt, dass diese Beispiele reale, praxisbezogene Anwendungen besitzen. Diese Anforderung ist z.B. für polynomiale Gleichungssysteme erfüllt, die sich aus dem Entwurf von schnellen Wavelet-Transformationen ergeben. Die hier betrachteten Wavelet-Transformationen sollen die praktisch wichtigen Eigenschaften der Orthogonalität und Symmetrie besitzen. Die Konstruktion einer solchen Wavelet-Transformation hängt von endlich vielen reellen Parametern ab. Diese Parameter müssen gewisse polynomiale Gleichungen erfüllen. In der veröffentlichten Literatur zu diesem Thema wurden bisher ausschließlich Beispiele mit endlichen Lösungsmengen behandelt. Zur Berechnung dieser Beispiele war es dabei ausreichend, quadratische Gleichungen in einer oder zwei Variablen zu lösen. Zur Charakterisierung der reellen Lösungsmenge eines polynomialen Gleichungssystems ist es ein erster Schritt, in jeder reellen Zusammenhangskomponente mindestens einen Punkt aufzufinden. Schon dies ist ein intrinsisch schweres Problem. Es stellt sich heraus, dass der Algorithmus des TERA-Projektes zur Lösung dieser Aufgabe bestens geeignet ist und daher eine größere Anzahl von Beispielproblemen lösen kann als die besten kommerziell erhältlichen Lösungsverfahren. / As a result of the TERA-project on Turbo Evaluation and Rapid Algorithms a new type, highly efficient probabilistic algorithm for the solution of systems of polynomial equations was developed and implemented for the complex case. The geometry of polar varieties allows to extend this algorithm to a method for the characterization of the real solution set of systems of polynomial equations. The aim of this work is to apply an implementation of this method for the determination of real solutions to a class of example problems. Special emphasis was placed on the fact that those example problems possess real-life, practical applications. This requirement is satisfied for the systems of polynomial equations that result from the design of fast wavelet transforms. The wavelet transforms considered here shall possess the practical important properties of symmetry and orthogonality. The specification of such a wavelet transform depends on a finite number of real parameters. Those parameters have to obey certain polynomial equations. In the literature published on this topic, only example problems with a finite solution set were presented. For the computation of those examples it was sufficient to solve quadratic equations in one or two variables. To characterize the set of real solutions of a system of polynomial equations it is a first step to find at least one point in each connected component. Already this is an intrinsically hard problem. It turns out that the algorithm of the TERA-project performes very well with this task and is able to solve a larger number of examples than the best known commercial polynomial solvers.
|
88 |
Arithmetic aspects of period maps and their special subvarietiesKreutz, Tobias 02 January 2023 (has links)
Diese Dissertation behandelt arithmetische Eigenschaften von Familien algebraischer Varietäten und deren speziellen Untervarietäten.
Im ersten Kapitel definieren wir sogenannte absolut spezielle Untervarietäten mithilfe von Delignes Begriff der absoluten Hodgeklassen.
Ausgehend von der Vermutung, dass alle Hodgeklassen absolute Hodgeklassen sind, erwarten wir, dass alle speziellen Untervarietäten absolut speziell sind.
Wir beweisen diese Erwartung für Untervarietäten, die eine bestimmte Monodromiebedingung erfüllen.
Das zweite Kapitel führt eine l-adische Version von speziellen Untervarietäten ein, die wir l-Galois spezielle Untervarietäten nennen. Wir studieren bewiesene und vermutete Eigenschaften dieser Untervarietäten und deren Zusammenhang zur Struktur des l-Galois exzeptionellen Locus und zur Mumford-Tate Vermutung.
Im dritten Kapitel beweisen wir eine Rapoport-Zink Uniformisierung für den Modulraum der primitiv polarisierten K3 Flächen und kubischen Vierfaltigkeiten mit supersingulärer Reduktion.
In beiden Fällen ist der Modulraum uniformisiert von einer explizit definierten rigid analytischen Untervarietät einer lokalen Shimura-Varietät von orthogonalem Typ. / This thesis studies arithmetic aspects of families of algebraic varieties and their special subvarieties. In the first part, we use Deligne's framework of absolute Hodge classes to define a notion of absolutely special subvarieties.
The conjecture that all Hodge classes are absolute Hodge predicts that every special subvariety is absolutely special. We prove this prediction for subvarieties satisfying a certain monodromy condition.
The second part introduces an l-adic analog of special subvarieties that we call l-Galois special subvarieties.
We study the properties of these subvarieties and discuss how known and unknown properties of l-Galois special subvarieties are related to the structure of the l-Galois exceptional locus and to the Mumford-Tate conjecture.
In the third chapter, we prove a Rapoport-Zink type uniformization result for the moduli space of polarized K3 surfaces and cubic fourfolds. We show that in both cases, the tube over the supersingular locus of the moduli space is uniformized by an explicitly described rigid analytic open subvariety of a local Shimura variety of orthogonal type.
|
89 |
The twistor equation in Lorentzian spin geometryLeitner, Felipe 30 November 2001 (has links)
Es wird die Twistorgleichung auf Lorentz-Spin-Mannigfaltigkeiten untersucht. Bekanntermaßen existieren Lösungen der Twistorgleichung auf den pp-Mannigfaltigkeiten, den Lorentz-Einstein-Sasaki Mannigfaltigkeiten und den Fefferman-Räumen. Es wird gezeigt, dass in den kleinen Dimensionen 3,4 und 5 Twistor-Spinoren ohne 'Singularitäten' nur für diese genannten Lorentz-Geometrien vorkommen. Von besonderem Interesse sind Lösungen der Twistorgleichung mit Nullstellen. Es wird die Gestalt der Nullstellenmenge von konformen Vektorfeldern und Twistor-Spinoren beschrieben. Weiterhin wird die Twistorgleichung im Kontext der konformen Cartan-Geometrie formuliert. Als Anwendung werden konform-flache semi-Riemannsche Spin-Mannigfaltigkeiten mit Twistor-Spinoren unter Zuhilfenahme der Holonomiedarstellung der ersten Fundamentalgruppe charakterisiert. Abschließend wird eine Anwendung des Twistorraumes einer Lorentz-4-Mannigfaltigkeit in der Flächentheorie diskutiert. Dabei zeigen wir eine Korrespondenz zwischen holomorphen Kurven im Twistorraum und raumartig immergierten Flächen mit lichtartigem mittlerem Krümmungsvektor. Beispielhaft werden solche Flächen in den Lorentzschen Raumformen der Dimension 4 konstruiert. / The twistor equation on Lorentzian spin manifolds is investigated. Known solutions of the twistor equation exist on the pp-manifolds, the Lorentz-Einstein-Sasaki manifolds and the Fefferman spaces. It is shown that in the low dimensions 3,4 and 5 twistor spinors without 'singularities' appear only for these mentioned Lorentzian spin geometries. Solutions of the twistor equation with zeros are of particular interest. The shape of the zero set of conformal vector fields and twistor spinors is described. Moreover, the twistor equation is formulated in the context of conformal Cartan geometry. As an application the conformally flat semi-Riemannian spin spaces with twistor spinors are characterized by the holonomy representation of the first fundamental group. Finally, we discuss an application of the twistor space of a Lorentzian 4-manifold in surface theory. Thereby, we prove a correspondence between holomorphic curves in the twistor space and spacelike immersed surfaces with lightlike mean curvature vector. Exemplary, such surfaces are constructed in the Lorentzian space forms of dimension 4.
|
90 |
Topics in Least-Squares and Discontinuous Petrov-Galerkin Finite Element AnalysisStorn, Johannes 01 August 2019 (has links)
Aufgrund der fundamentalen Bedeutung partieller Differentialgleichungen zur Beschreibung von Phänomenen in angewandten Wissenschaften ist deren Analyse ein Kerngebiet der Mathematik. Durch Computer lassen sich die Lösungen für eine Vielzahl dieser Gleichungen näherungsweise bestimmen. Die dabei verwendeten numerischen Verfahren sollen auf möglichst exakte Approximationen führen und deren Genauigkeit verifizieren. Die Least-Squares Finite-Elemente-Methode (LSFEM) und die unstetige Petrov-Galerkin (DPG) Methode sind solche Verfahren. Sie werden in dieser Dissertation untersucht.
Der erste Teil der Arbeit untersucht die Genauigkeit der mittels LSFEM berechneten Näherungen. Dazu werden Eigenschaften der zugrundeliegenden Differentialgleichungen mit den Eigenschaften der LSFEM kombiniert. Dies zeigt, dass die Abweichung der berechneten Näherung von der exakten Lösung einem berechenbaren Residuum asymptotisch entspricht. Ferner wird ein Verfahren zu Berechnung einer garantierten oberen Fehlerschranke eingeführt. Während etablierte Fehlerschätzer den Fehler signifikant überschätzt, zeigen numerische Experimente eine äußerst geringe Überschätzung des Fehlers mittels der neuen Fehlerschranke.
Die Analyse der Fehlerschranken für das Stokes-Problem offenbart ein Beziehung der LSFEM und der LBB Konstanten. Diese Konstante ist entscheidend für die Existenz und Stabilität von Lösungen in der Strömungslehre. Der zweite Teil der Arbeit nutzt diese Beziehung und entwickelt ein auf der LSFEM basierendes Verfahren zur numerischen Berechnung der LBB Konstanten.
Der dritte Teil der Arbeit untersucht die DPG Methode. Dabei werden existierende Anwendungen der DPG Methode zusammengefasst und analysiert. Diese Analyse zeigt, dass sich die DPG Methode als eine leicht gestörte LSFEM interpretieren lässt. Diese Interpretation erlaubt die Anwendung der Resultate aus dem ersten Teil der Arbeit und ermöglicht dadurch eine genauere Untersuchung existierender und die Entwicklung neuer DPG Methoden. / The analysis of partial differential equations is a core area in mathematics due to the fundamental role of partial differential equations in the description of phenomena in applied sciences. Computers can approximate the solutions to these equations for many problems. They use numerical schemes which should provide good approximations and verify the accuracy. The least-squares finite element method (LSFEM) and the discontinuous Petrov-Galerkin (DPG) method satisfy these requirements. This thesis investigates these two schemes.
The first part of this thesis explores the accuracy of solutions to the LSFEM. It combines properties of the underlying partial differential equation with properties of the LSFEM and so proves the asymptotic equality of the error and a computable residual. Moreover, this thesis introduces an novel scheme for the computation of guaranteed upper error bounds. While the established error estimator leads to a significant overestimation of the error, numerical experiments indicate a tiny overestimation with the novel bound.
The investigation of error bounds for the Stokes problem visualizes a relation of the LSFEM and the Ladyzhenskaya-Babuška-Brezzi (LBB) constant. This constant is a key in the existence and stability of solution to problems in fluid dynamics. The second part of this thesis utilizes this relation to design a competitive numerical scheme for the computation of the LBB constant.
The third part of this thesis investigates the DPG method. It analyses an abstract framework which compiles existing applications of the DPG method. The analysis relates the DPG method with a slightly perturbed LSFEM. Hence, the results from the first part of this thesis extend to the DPG method. This enables a precise investigation of existing and the design of novel DPG schemes.
|
Page generated in 0.0566 seconds