• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 263
  • 67
  • 1
  • Tagged with
  • 331
  • 331
  • 238
  • 167
  • 162
  • 96
  • 93
  • 86
  • 63
  • 47
  • 45
  • 44
  • 37
  • 36
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Iterative matrix-free computation of Hopf bifurcations as Neimark-Sacker points of fixed point iterations

Garcia, Ignacio de Mateo 12 March 2012 (has links)
Klassische Methoden für die direkte Berechnung von Hopf Punkten und andere Singularitaten basieren auf der Auswertung und Faktorisierung der Jakobimatrix. Dieses stellt ein Hindernis dar, wenn die Dimensionen des zugrundeliegenden Problems gross genug ist, was oft bei Partiellen Diferentialgleichungen der Fall ist. Die betrachteten Systeme haben die allgemeine Darstellung f ( x(t), α) für t grösser als 0, wobei x die Zustandsvariable, α ein beliebiger Parameter ist und f glatt in Bezug auf x und α ist. In der vorliegenden Arbeit wird ein Matrixfreies Schema entwicklet und untersucht, dass ausschliesslich aus Produkten aus Jakobimatrizen und Vektoren besteht, zusammen mit der Auswertung anderer Ableitungsvektoren erster und zweiter Ordnung. Hiermit wird der Grenzwert des Parameters α, der zuständig ist für das Verlieren der Stabilität des Systems, am Hopfpunkt bestimmt. In dieser Arbeit wird ein Gleichungssystem zur iterativen Berechnung des Hopfpunktes aufgestellt. Das System wird mit einer skalaren Testfunktion φ, die aus einer Projektion des kritischen Eigenraums bestimmt ist, ergänzt. Da das System f aus einer räumlichen Diskretisierung eines Systems Partieller Differentialgleichungen entstanden ist, wird auch in dieser Arbeit die Berechung des Fehlers, der bei der Diskretisierung unvermeidbar ist, dargestellt und untersucht. Zur Bestimmung der Hopf-Bedingungen wird ein einzelner Parameter gesteuert. Dieser Parameter wird unabhängig oder zusammen mit dem Zustandsvektor in einem gedämpften Iterationsschritt neu berechnet. Der entworfene Algorithmus wird für das FitzHugh-Nagumo Model erprobt. In der vorliegenden Arbeit wird gezeigt, wie für einen kritischen Strom, das Membranpotential eine fortschreitende Welle darstellt. / Classical methods for the direct computation of Hopf bifurcation points and other singularities rely on the evaluation and factorization of Jacobian matrices. In view of large scale problems arising from PDE discretization systems of the form f( x (t), α ), for t bigger than 0, where x are the state variables, α are certain parameters and f is smooth with respect to x and α, a matrix-free scheme is developed based exclusively on Jacobian-vector products and other first and second derivative vectors to obtain the critical parameter α causing the loss of stability at the Hopf point. In the present work, a system of equations is defined to locate Hopf points, iteratively, extending the system equations with a scalar test function φ, based on a projection of the eigenspaces. Since the system f arises from a spatial discretization of an original set of PDEs, an error correction considering the different discretization procedures is presented. To satisfy the Hopf conditions a single parameter is adjusted independently or simultaneously with the state vector in a deflated iteration step, reaching herewith both: locating the critical parameter and accelerating the convergence rate of the system. As a practical experiment, the algorithm is presented for the Hopf point of a brain cell represented by the FitzHugh-Nagumo model. It will be shown how for a critical current, the membrane potential will present a travelling wave typical of an oscillatory behaviour.
122

Optimal liquidation in dark pools in discrete and continuous time

Kratz, Peter 30 August 2011 (has links)
Wir studieren optimale Handelsstrategien für einen risikoaversen Investor, der bis zu einem Zeitpunkt T ein Portfolio aufzulösen hat. Dieser kann auf einem traditionellen Markt (dem "Primärmarkt") handeln, wodurch er den Preis beeinflusst, und gleichzeitig Aufträge in einem Dark Pool erteilen. Dort ist die Liquidität nicht öffentlich bekannt, und es findet keine Preisfindung statt: Aufträge werden zum Preis des Primärmarkts abgewickelt. Deshalb haben sie keinen Preiseinfluss, die Ausführung ist aber unsicher; es muss zwischen den Preiseinflusskosten am Primärmarkt und den indirekten Kosten durch die Ausübungsunsicherheit im Dark Pool abgewogen werden. In einem zeitdiskreten Handelsmodell betrachten wir ein Kostenfunktional aus erwarteten Preiseinfluss- und Marktrisikokosten. Für linearen Preiseinfluss ist dieses linear-quadratisch und wir erhalten eine Rekursion für die optimale Handelsstrategie. Eine Position in einem einzelnen Wertpapier wird langsam am Primärmarkt abgebaut während der Rest im Dark Pool angeboten wird. Für eine Position in mehreren Wertpapieren ist dies wegen der Korrelation der Wertpapiere nicht optimal. Tritt im eindimensionalen Fall adverse Selektion auf, so wird die Attraktivität des Dark Pools verringert. In stetiger Zeit impliziert die Liquidationsbedingung eine Singularität der Wertfunktion am Endzeitpunkt T. Diese wird im linear-quadratischen Fall ohne adverse Selektion durch den Grenzwert einer Folge von Lösungen einer Matrix Differentialgleichung beschrieben. Mit Hilfe einer Matrixungleichung erhalten wir Schranken für diese Lösungen, die Existenz des Grenzwertes sowie ein Verifikationsargument mittels HJB Gleichung. Tritt adverse Selektion auf, ergeben umfangreiche heuristische Betrachtungen eine ungewöhnliche Struktur der Wertfunktion: Sie ist ein quadratisches "Quasi-Polynom", dessen Koeffizienten in nicht-trivialer Weise von der Position abhängen. Wir bestimmen dieses semi-explizit und führen ein Verifikationsargument durch. / We study optimal trading strategies of a risk-averse investor who has to liquidate a portfolio within a finite time horizon [0,T]. The investor has the option to trade at a traditional exchange (the "primary venue") which yields price impact and to place orders in a dark pool. The liquidity in dark pools is not openly displayed and dark pools do not contribute to the price formation process: orders are executed at the price of the primary venue. Hence, they have no price impact, but their execution is uncertain. The investor thus faces the trade-off between the price impact costs at the primary venue and the indirect costs resulting from the execution uncertainty in the dark pool. In a discrete-time market model we consider a cost functional which incorporates the expected price impact costs and market risk costs. For linear price impact, it is linear-quadratic and we obtain a recursion for the optimal trading strategy. For single asset liquidation, the investor trades out of her position at the primary venue, with the remainder being placed in the dark pool. For multi asset liquidation this is not optimal because of the correlation of the assets. In the presence of adverse selection in the one dimensional setting the dark pool is less attractive. In continuous time the liquidation constraint implies a singularity of the value function at the terminal time T. In the linear-quadratic case without adverse selection it is described by the limit of a sequence of solutions of a matrix differential equation. By means of a matrix inequality we obtain bounds of these solutions, the existence of the limit and a verification argument via HJB equation. In the presence of adverse selection the value function has an unusual structure, which we obtain via extensive heuristic considerations: it is a "quasi-polynomial" whose coefficients depend on the asset position in a non-trivial way. We characterize the value function semi-explicitly and carry out a verification argument.
123

Mathematical Analysis of Charge and Heat Flow in Organic Semiconductor Devices

Liero, Matthias 05 January 2023 (has links)
Organische Halbleiterbauelemente sind eine vielversprechende Technologie, die das Spektrum der optoelektronischen Halbleiterbauelemente erweitert und etablierte Technologien basierend auf anorganischen Halbleitermaterialien ersetzen kann. Für Display- und Beleuchtungsanwendungen werden sie z. B. als organische Leuchtdioden oder Transistoren verwendet. Eine entscheidende Eigenschaft organischer Halbleitermaterialien ist, dass die Ladungstransporteigenschaften stark von der Temperatur im Bauelement beeinflusst werden. Insbesondere nimmt die elektrische Leitfähigkeit mit der Temperatur zu, so dass Selbsterhitzungseffekte, einen großen Einfluss auf die Leistung der Bauelemente haben. Mit steigender Temperatur nimmt die elektrische Leitfähigkeit zu, was wiederum zu größeren Strömen führt. Dies führt jedoch zu noch höheren Temperaturen aufgrund von Joulescher Wärme oder Rekombinationswärme. Eine positive Rückkopplung liegt vor. Im schlimmsten Fall führt dieses Verhalten zum thermischen Durchgehen und zur Zerstörung des Bauteils. Aber auch ohne thermisches Durchgehen führen Selbsterhitzungseffekte zu interessanten nichtlinearen Phänomenen in organischen Bauelementen, wie z. B. die S-förmige Beziehung zwischen Strom und Spannung. In Regionen mit negativem differentiellen Widerstand führt eine Verringerung der Spannung über dem Bauelement zu einem Anstieg des Stroms durch das Bauelement. Diese Arbeit soll einen Beitrag zur mathematischen Modellierung, Analysis und numerischen Simulation von organischen Bauteilen leisten. Insbesondere wird das komplizierte Zusammenspiel zwischen dem Fluss von Ladungsträgern (Elektronen und Löchern) und Wärme diskutiert. Die zugrundeliegenden Modellgleichungen sind Thermistor- und Energie-Drift-Diffusion-Systeme. Die numerische Diskretisierung mit robusten hybriden Finite-Elemente-/Finite-Volumen-Methoden und Pfadverfolgungstechniken zur Erfassung der in Experimenten beobachteten S-förmigen Strom-Spannungs-Charakteristiken wird vorgestellt. / Organic semiconductor devices are a promising technology to extend the range of optoelectronic semiconductor devices and to some extent replace established technologies based on inorganic semiconductor materials. For display and lighting applications, they are used as organic light-emitting diodes (OLEDs) or transistors. One crucial property of organic semiconductor materials is that charge-transport properties are heavily influenced by the temperature in the device. In particular, the electrical conductivity increases with temperature, such that self-heating effects caused by the high electric fields and strong recombination have a potent impact on the performance of devices. With increasing temperature, the electrical conductivity rises, which in turn leads to larger currents. This, however, results in even higher temperatures due to Joule or recombination heat, leading to a feedback loop. In the worst case, this loop leads to thermal runaway and the complete destruction of the device. However, even without thermal runaway, self-heating effects give rise to interesting nonlinear phenomena in organic devices, like the S-shaped relation between current and voltage resulting in regions where a decrease in voltage across the device results in an increase in current through it, commonly denoted as regions of negative differential resistance. This thesis aims to contribute to the mathematical modeling, analysis, and numerical simulation of organic semiconductor devices. In particular, the complicated interplay between the flow of charge carriers (electrons and holes) and heat is discussed. The underlying model equations are of thermistor and energy-drift-diffusion type. Moreover, the numerical approximation using robust hybrid finite-element/finite-volume methods and path-following techniques for capturing the S-shaped current-voltage characteristics observed in experiments are discussed.
124

Adaptive Weights Clustering and Community Detection

Besold, Franz Jürgen 19 April 2023 (has links)
Die vorliegende Dissertation widmet sich der theoretischen Untersuchung zweier neuer Algorithmen für Clustering und Community Detection: AWC (Adaptive Weights Clustering) und AWCD (Adaptive Weights Community Detection). Ein zentraler Aspekt sind dabei die Raten der Konsistenz. Bei der Betrachtung von AWC steht die Tiefe Lücke zwischen den Clustern, also die relative Differenz der jeweiligen Dichten, im Vordergrund. Bis auf logarithmische Faktoren ist die erreichte Konsistenzrate optimal. Dies erweitert die niedrigdimensionalen Ergebnisse von Efimov, Adamyan and Spokoiny (2019) auf das Mannigfaltigkeitenmodell und berücksichtigt darüber hinaus viel allgemeinere Bedingungen an die zugrunde liegende Dichte und die Form der Cluster. Insbesondere wird der Fall betrachtet, bei dem zwei Punkte des gleichen Clusters nahe an dessen Rand liegen. Zudem werden Ergebnisse für endliche Stichproben und die optimale Wahl des zentralen Parameters λ diskutiert. Bei der Untersuchung von AWCD steht die Asymptotik der Differenz θ − ρ zwischen den beiden Bernoulli Parametern eines symmetrischen stochastischen Blockmodells im Mittelpunkt. Es stellt sich heraus, dass das Gebiet der starken Konsistenz bei weitem nicht optimal ist. Es werden jedoch zwei Modifikationen des Algorithmus vorgeschlagen: Zum einen kann der Bias der beteiligten Schätzer minimiert werden. Zum anderen schlagen wir vor, die Größe der initialen Schätzung der Struktur der Gruppen zu erhöhen, indem auch längere Pfade mit berücksichtigt werden. Mithilfe dieser Modifikationen erreicht der Algorithmus eine nahezu optimale Konsistenzrate. Teilweise können diese Ergebnisse auch auf allgemeinere stochastische Blockmodelle erweitert werden. Für beide Probleme illustrieren und validieren wir außerdem die theoretischen Resultate durch umfangreiche Experimente. Abschließend lässt sich sagen, dass die vorliegende Arbeit die Lücke zwischen theoretischen und praktischen Ergebnissen für die Algorithmen AWC und AWCD schließt. Insbesondere sind beide Algorithmen nach einigen Modifikationen auf relevanten Modellen konsistent mit einer nahezu optimalen Rate. / This thesis presents a theoretical study of two novel algorithms for clustering and community detection: AWC (Adaptive Weights Clustering) and AWCD (Adaptive Weights Community Detection). Most importantly, we discuss rates of consistency. For AWC, we focus on the asymptotics of the depth ε of the gap between clusters, i.e. the relative difference between the density level of the clusters and the density level of the area between them. We show that AWC is consistent with a nearly optimal rate. This extends the low-dimensional results of Efimov, Adamyan and Spokoiny (2019) to the manifold model while also considering much more general assumptions on the underlying density and the shape of clusters. In particular, we also consider the case of two points in the same cluster that are relatively close to the boundary. Moreover, we provide finite sample guarantees as well as the optimal tuning parameter λ. For AWCD, we consider the asymptotics of the difference θ − ρ between the two Bernoulli parameters of a symmetric stochastic block model. As it turns out, the resulting regime of strong consistency is far from optimal. However, we propose two major modifications to the algorithm: Firstly, we discuss an approach to minimize the bias of the involved estimates. Secondly, we suggest increasing the starting neighborhood guess of the algorithm by taking into account paths of minimal path length k. Using these modifications, we are able to show that AWCD achieves a nearly optimal rate of strong consistency. We partially extend these results to more general stochastic block models. For both problems, we illustrate and validate the theoretical study through a wide range of numerical experiments. To summarize, this thesis closes the gap between the practical and theoretical studies for AWC and AWCD. In particular, after some modifications, both algorithms exhibit a nearly optimal performance on relevant models.
125

Asymptotische Stabilität von Index-2-Algebro-Differentialgleichungen und ihren Diskretisierungen

Santiesteban, Antonio Ramon Rodriguez 02 February 2001 (has links)
Ziel dieser Dissertation ist die Untersuchung der asymptotischen Stabilität numerischer Verfahren für Index-2-Algebro-Differentialgleichungen. Es werden Anfangswertaufgaben für quasilineare Algebro-Differentialgleichungen (ADGln). Die meisten anwendungsrelevanten Aufgaben können damit behandelt werden. Zuerst werden einige Stabilitätsbegrife und Aussagen vorgestellt, die das Fundament für den Rest der Arbeit darstellen. Dies erstreckt sich sowohl auf den kontinuierlichen als auch auf den diskreten Fall. Insbesondere werden Kontraktivitätskonzepte eingeführt und Beziehungen zwischen der Kontraktivität der ADGl und derer der Anwendung eines numerischen Verfahrens. Die eingeführte Kontraktivitätsbegriffe erweitern oder verallgemeinern die bereits bekannten Konzepte. Als wichtigste Aussage in dem Kontraktivitätskontext geht ein Theorem hervor, das allgemeine Bedingungen aufstellt, damit die Anwendung eines IRK(DAE)-Verfahrens auf eine ADGl stabil ist. Bekannte Aussagen für gewöhnliche und Algebro-Differntialgleichungen können als Sonderfälle dieses Ergebnisses gesehen werden. Im weiteren Verlauf der Arbeit wird anhand von neuartigen Index-2-Entkopplungs- und Indexreduktionstechniken die Stabilität von Diskretisierungsverfahren untersucht. Die durchgeführte Analyse erbringt neue Ergebnisse, die eine Verbesserung des Kenntnissstandes in diesem Gebiet darstellen. Die erzielte Aussagen stellen hinreichende Bedingungen, damit ein BDF- oder IRK-Verfahren für eine ADGl das gleiche Stabilitätsverhalten wie für eine gewöhnliche Differentialgleichung besitzt. Diese Ergebnisse werden durch numerishce Beispiele veranschaulicht. Weiterhin stellt man fest, dass eine der gefundenen Voraussetzungen für die Kontraktivität der Anwendung eines algebraisch stabilen IRK(DAE)-Verfahrens, auf eine ebenfalls kontraktive ADGl, genügt. Dieses Ergebnis wurde durch die Anwendung der im ersten Teil dieser Arbeit erzielten Kontraktivitätsaussagen ermöglicht. Die Konsequenzen der soeben genannten Aussage für bestimmte Modelle der Schaltkreissimulation werden ebenfalls erläutert. Aus der oben genannten Analyse, ebenso wie aus der Fachliteratur, geht hervor, dass bei manchen ADGl-Aufgaben die Diskretisierungsverfahren Stabilitätsprobleme aufweisen. Um solche Probleme zu behandeln sind bereits einige Ansätze bekannt. Im letzten Teil der Arbeit werden zwei repräsentativen Ansätze betrachtet und ihre Aussichtschancen für Index-2-Aufgaben anhand eines kritischen Beispieles evaluiert. Des Weiteren wird eine Verallgemeinerung für vollimplizite lineare ADGln des Gear-Gupta-Leimkuhler-Ansatzes (GGL) vorgeschlagen. Der Rest der Arbeit beschäftigt sich mit der Stabilitätsuntersuchung der GGL-Formulierung und der auf sie angewandten numerischen Verfahren. Dafür werden Aussagen dieser Arbeit eingesetzt und man kommt zu der Schlussfolgerung, dass sowohl für die IRK(DAE)- als auch für die BDF-Verfahren die Integration der GGL-Formulierung, natürlich unter bestimmten Voraussetzungen, stabil ist. Dieses Ergebniss wird durch ein numerisches Beispiel belegt. Dabei handelt es um eine Gleichung, die mit einer direkten Anwendung eines Verfahrens Instabilitäten aufweist. Jedoch ist die Integration der entsprechenden GGL stabil. / The purpose of the present PhD work is the asymptotic stability investigation of numerical methods for index 2 differential algebraic equations. Initial value problems are considered for quasi linear differential algebraic equations (DAEs) that cover the most important applications. First some stability concepts and related results are presented, which represent the basis for further investigations. This background concerns both, the continuous and the discreet case. Especially contractivity concepts are introduced and the relationship between the asymptotic stability of the DAE and the numerical method applied to it is established. The new contractivity concepts extend or generalize the already known concepts. The most important result in this context is a theorem that establishes general conditions under which the application of an algebraic stable IRK(DAE) method to a DAE is contractive. Well-known assertions for ordinary and differential algebraic equations can be considered as special cases of this general result. Later on the stability of numerical discretizations applied to index-2 DAEs is investigated. This is made possible by the introduction of new decopling and index reduction techniques. The analysis makes new insights in the asymptotic of numerical methods for DAEs possible. The obtained results state sufficient conditions in order that a BDF or an IRK(DAE) method applying to DAEs shows the same asymptotic stability properties as for ODEs. These results are illustrated by some numerical examples. Moreover, it can be realized that one of the found conditions is sufficient in order to show contractivity of the application of an algebraic stable IRK(DAE) method, supposed the DAE is contractive. This assertion is possible based on the general theorem mentioned in the paragraph above. Further some consequences of the mentioned results for electric network models are shown. According to both, the above mentioned analysis and the specialized literature of this field, the application of numerical methods to some special DAEs shows asymptotic stability problems. A few approaches are known to manage such difficult equations. Two exponents of these techniques are considered and their chances of success for index-2 DAEs are evaluated with the application to a critical example. A generalization of the Gear-Gupta-Leimkuhler (GGL) approach is proposed for full implicit linear DAEs. This generalization is investigated in detail in the rest of the paper, concerning both the analytical and the numerical asymptotic stability of the GGL equation and the numerical methods applied to it correspondingly. The result is, that, if some conditions are fulfilled, IRK(DAE) and BDF methods for the GGL equation will produce stable solutions. This result is illustrated by a numerical example. The application of the methods directly to the considered DAE produces unstable solutions. However, the integration of the corresponding GGL formulation is stable. The obtained result opens new possibility for the numerical treatment of instabilities by differential algebraic equations.
126

Semiclassical methods for the two-dimensional Schrödiger operator with a strong magnetic field

Pankrachkine, Konstantin 09 December 2002 (has links)
Es werden spektrale Eigenschaften des zweidimensionalen Schrödinger-Operators mit einem zweifach periodischen Potential und starkem magnetischem Feld untersucht mit Hilfe semiklassischer Methoden. Man beschreibt die spektrale Asymptotik durch Benutzung der Reeb-Graph-Technik. Im Falle des rationalen Flusses konstruiert man semiklassische Magneto-Bloch-Funktionen und beschreibt die Asymptotik des Spektrums auf dem physikalischen Beweisniveau. / Spectral properties of the two-dimensional Schroedinger operator with a two-periodic potential and a strong uniform magnetic field is studied with the help of semiclassical methods. The spectral asymptotics is described using the Reeb graph technique. In the case of the rational flux one constructs semiclassical magneto-Bloch functions and describes the asymptotics of the band spectrum on the physical level of proof.
127

Finite sample analysis of profile M-estimators

Andresen, Andreas 02 September 2015 (has links)
In dieser Arbeit wird ein neuer Ansatz für die Analyse von Profile Maximierungsschätzern präsentiert. Es werden die Ergebnisse von Spokoiny (2011) verfeinert und angepasst für die Schätzung von Komponenten von endlich dimensionalen Parametern mittels der Maximierung eines Kriteriumfunktionals. Dabei werden Versionen des Wilks Phänomens und der Fisher-Erweiterung für endliche Stichproben hergeleitet und die dafür kritische Relation der Parameterdimension zum Stichprobenumfang gekennzeichnet für den Fall von identisch unabhängig verteilten Beobachtungen und eines hinreichend glatten Funktionals. Die Ergebnisse werden ausgeweitet für die Behandlung von Parametern in unendlich dimensionalen Hilberträumen. Dabei wir die Sieve-Methode von Grenander (1981) verwendet. Der Sieve-Bias wird durch übliche Regularitätsannahmen an den Parameter und das Funktional kontrolliert. Es wird jedoch keine Basis benötigt, die orthogonal in dem vom Model induzierten Skalarprodukt ist. Weitere Hauptresultate sind zwei Konvergenzaussagen für die alternierende Maximisierungsprozedur zur approximation des Profile-Schätzers. Alle Resultate werden anhand der Analyse der Projection Pursuit Prozedur von Friendman (1981) veranschaulicht. Die Verwendung von Daubechies-Wavelets erlaubt es unter natürlichen und üblichen Annahmen alle theoretischen Resultate der Arbeit anzuwenden. / This thesis presents a new approach to analyze profile M-Estimators for finite samples. The results of Spokoiny (2011) are refined and adapted to the estimation of components of a finite dimensional parameter using the maximization of a criterion functional. A finite sample versions of the Wilks phenomenon and Fisher expansion are obtained and the critical ratio of parameter dimension to sample size is derived in the setting of i.i.d. samples and a smooth criterion functional. The results are extended to parameters in infinite dimensional Hilbert spaces using the sieve approach of Grenander (1981). The sieve bias is controlled via common regularity assumptions on the parameter and functional. But our results do not rely on an orthogonal basis in the inner product induced by the model. Furthermore the thesis presents two convergence results for the alternating maximization procedure. All results are exemplified in an application to the Projection Pursuit Procedure of Friendman (1981). Under a set of natural and common assumptions all theoretical results can be applied using Daubechies wavelets.
128

American options in incomplete markets / upper and lower snell envelopes and robust partial hedging

Aguilar, Erick Trevino 25 July 2008 (has links)
In dieser Dissertation werden Amerikanischen Optionen in einem unvollst¨andigen Markt und in stetiger Zeit untersucht. Die Dissertation besteht aus zwei Teilen. Im ersten Teil untersuchen wir ein stochastisches Optimierungsproblem, in dem ein konvexes robustes Verlustfunktional ueber einer Menge von stochastichen Integralen minimiert wird. Dies Problem tritt auf, wenn der Verkaeufer einer Amerikanischen Option sein Ausfallsrisiko kontrollieren will, indem er eine Strategie der partiellen Absicherung benutzt. Hier quantifizieren wir das Ausfallsrisiko durch ein robustes Verlustfunktional, welches durch die Erweiterung der klassischen Theorie des erwarteten Nutzens durch Gilboa und Schmeidler motiviert ist. In einem allgemeinen Semimartingal-Modell beweisen wir die Existenz einer optimalen Strategie. Unter zusaetzlichen Kompaktheitsannahmen zeigen wir, wie das robuste Problem auf ein nicht-robustes Optimierungsproblem bezueglich einer unguenstigsten Wahrscheinlichkeitsverteilung reduziert werden kann. Im zweiten Teil untersuchen wir die obere und die untere Snellsche Einhuellende zu einer Amerikanischen Option. Wir konstruieren diese Einhuellenden fuer eine stabile Familie von aequivalenten Wahrscheinlichkeitsmassen; die Familie der aequivalentenMartingalmassen ist dabei der zentrale Spezialfall. Wir formulieren dann zwei Probleme des robusten optimalen Stoppens. Das Stopp-Problem fuer die obere Snellsche Einhuellende ist durch die Kontrolle des Risikos motiviert, welches sich aus der Wahl einer Ausuebungszeit durch den Kaeufer bezieht, wobei das Risiko durch ein kohaerentes Risikomass bemessen wird. Das Stopp-Problem fuer die untere Snellsche Einhuellende wird durch eine auf Gilboa und Schmeidler zurueckgehende robuste Erweiterung der klassischen Nutzentheorie motiviert. Mithilfe von Martingalmethoden zeigen wir, wie sich optimale Loesungen in stetiger Zeit und fuer einen endlichen Horizont konstruieren lassen. / This thesis studies American options in an incomplete financial market and in continuous time. It is composed of two parts. In the first part we study a stochastic optimization problem in which a robust convex loss functional is minimized in a space of stochastic integrals. This problem arises when the seller of an American option aims to control the shortfall risk by using a partial hedge. We quantify the shortfall risk through a robust loss functional motivated by an extension of classical expected utility theory due to Gilboa and Schmeidler. In a general semimartingale model we prove the existence of an optimal strategy. Under additional compactness assumptions we show how the robust problem can be reduced to a non-robust optimization problem with respect to a worst-case probability measure. In the second part, we study the notions of the upper and the lower Snell envelope associated to an American option. We construct the envelopes for stable families of equivalent probability measures, the family of local martingale measures being an important special case. We then formulate two robust optimal stopping problems. The stopping problem related to the upper Snell envelope is motivated by the problem of monitoring the risk associated to the buyer’s choice of an exercise time, where the risk is specified by a coherent risk measure. The stopping problem related to the lower Snell envelope is motivated by a robust extension of classical expected utility theory due to Gilboa and Schmeidler. Using martingale methods we show how to construct optimal solutions in continuous time and for a finite horizon.
129

K3 surfaces and moduli of holomorphic differentials

Barros, Ignacio 10 July 2018 (has links)
In dieser Arbeit behandeln wir die birationale Geometrie verschiedener Modulräume; die Modulräume von Kurven mit einem k-Differential mit vorgeschierbenen Nullen, besser bekannt als Strata von Differenzialen, Moduln von K3 Flächen mit markierten Punkten und Moduln von Kurven. Für bestimmte Geschlechter nennen wir Abschätzungen der Kodaira-Dimension, konstruieren unirationale Parametrisierungen, rationale deckende Kurven und unterschiedliche birationale Modelle. In Kapitel 1 führen wir die zu untersuchenden Objekte ein und geben einen kurzen Überblick ihrer wichtigsten Eigenschaften und offenen Problemen. In Kapitel 2 konstruieren wir einen Hilfsmodulraum, der als Brücke zwischen bestimmten finiten Quotienten von Mgn für kleines g und den Moduln der polarisierten K3 Flächen vom Geschlecht 11 dient. Wir entwickeln die Deformationstheorie, die nötig ist, um die Eigenschaften und die oben genannten Modulräume zu erforschen. In Kapitel 3 bedienen wir uns dieser Werkzeuge, um birationale Modelle für Moduln polarisierter K3 Flächen vom Geschlecht 11 mit markierten Punkten zu konstruieren. Diese nutzen wir, um Resultate über die Kodaira-Dimension herzuleiten. Wir beweisen, dass der Modulraum von polarisierten K3 Flächen vom Geschlecht 11 mit n markierten Punkten unirational ist, falls n<=6, und uniruled, falls n<=7. Wir beweisen auch, dass die Kodaira-Dimension von Modulraum von polarisierten K3 Flächen vom Geschlecht 11 mit n markierten Punkten nicht-negativ ist für n>= 9. Im letzten Kapitel gehen wir noch auf die fehlenden Fälle der Kodaira-Klassifizierung von Mgnbar ein. Schliesslich behandeln wir in Kapitel 4 die birationale Geometrie mit Blick auf die Strata von holomorphen und quadratischen Differentialen. Wir zeigen, dass die Strata holomorpher und quadratischer Differentiale von niedrigem Geschlecht uniruled sind, indem wir rationale Kurven mit pencils auf K3 und del Pezzo Flächen konstruieren. Durch das Beschränken des Geschlechts 3<= g<=6 bilden wir projektive Bündel über rationale Varietäten, die die holomorphe Strata mit maximaler Länge g-1 dominieren. Also zeigen wir auch, dass diese Strata unirational sind. / In this thesis we investigate the birational geometry of various moduli spaces; moduli spaces of curves together with a k-differential of prescribed vanishing, best known as strata of differentials, moduli spaces of K3 surfaces with marked points, and moduli spaces of curves. For particular genera, we give estimates for the Kodaira dimension, construct unirational parameterizations, rational covering curves, and different birational models. In Chapter 1 we introduce the objects of study and give a broad brush stroke about their most important known features and open problems. In Chapter 2 we construct an auxiliary moduli space that serves as a bridge between certain finite quotients of Mgn for small g and the moduli space of polarized K3 surfaces of genus eleven. We develop the deformation theory necessary to study properties of the mentioned moduli space. In Chapter 3 we use this machinery to construct birational models for the moduli spaces of polarized K3 surfaces of genus eleven with marked points and we use this to conclude results about the Kodaira dimension. We prove that the moduli space of polarized K3 surfaces of genus eleven with n marked points is unirational when n<= 6 and uniruled when n<=7. We also prove that the moduli space of polarized K3 surfaces of genus eleven with n marked points has non-negative Kodaira dimension for n>= 9. In the final section, we make a connection with some of the missing cases in the Kodaira classification of Mgnbar. Finally, in Chapter 4 we address the question concerning the birational geometry of strata of holomorphic and quadratic differentials. We show strata of holomorphic and quadratic differentials to be uniruled in small genus by constructing rational curves via pencils on K3 and del Pezzo surfaces respectively. Restricting to genus 3<= g<=6 we construct projective bundles over rational varieties that dominate the holomorphic strata with length at most g-1, hence showing in addition, these strata are unirational.
130

Relevante mathematische Kompetenzen von Ingenieurstudierenden im ersten Studienjahr - Ergebnisse einer empirischen Untersuchung

Lehmann, Malte 31 July 2018 (has links)
Fehlende Kompetenzen in Mathematik und Naturwissenschaften werden von Studierenden als ein Grund für den Studienabbruch in Ingenieurwissenschaften angegeben (Heublein et al., 2017). Welche Kompetenzen für Studierende zu Beginn des Ingenieurstudiums relevant sind, ist jedoch bisher wenig empirisch untersucht. Das Ziel der vorliegenden Studie ist, relevante mathematische Kompetenzen von Ingenieurstudierenden zu analysieren und dabei sowohl Wissensbestände als auch die Anwendung von Wissen und die Zusammenhänge zwischen beiden Bereichen zu berücksichtigen. Dazu wurde eine Studie im Mixed-Methods Design entwickelt. In dieser werden die Studierenden hinsichtlich ihrer Dispositionen in Mathematik und Physik zu Beginn des Studiums und am Ende des ersten Studienjahres mit quantitativen Methoden getestet. Zu diesen beiden und einem weiteren Zeitpunkt am Ende des ersten Semesters wurden zudem die situationsspezifischen Fähigkeiten bei der Bearbeitung von Mathematik- und Physikaufgaben mit Hilfe eines theoretischen Rahmens zum mathematischen Problemlösen mit qualitativen Methoden untersucht. Dieser Theorierahmen umfasste für die Mathematikaufgaben die Aspekte Heurismen (Bruder & Collet, 2011; Schoenfeld, 1980) und Problemlösephasen (Polya, 1957) sowie das Modell der Epistemic Games (Tuminaro, 2004) zur Analyse der Bearbeitung von Physikaufgaben. Die Ergebnisse zeigen Zusammenhänge zwischen mathematischen und physikali-schen Dispositionen. Zusätzlich wird die Bedeutung von Aspekten des Problemlösens deutlich, um die Prozesse bei den Bearbeitungen von Mathematik und Physikaufgaben im ersten Studienjahr zu analysieren. Auf Grundlage der qualitativen Beschreibungen konnten Cluster von Fällen von Studierenden gebildet werden. Mit Hilfe dieser Cluster zeigen sich Zusammenhänge zwischen den Dispositionen und situationsspezifischen Fähigkeiten bei den besonders leistungsstarken und leistungsschwachen Studierenden. / Missing competences in mathematics and sciences are cited by students as a reason for the drop-out in engineering sciences (Heublein et al., 2017). However, the competences that are relevant for students at the beginning of their engineering studies have so far not been investigated in an empirical way. The aim of this study is to analyse relevant mathematical competences of engineering students, taking into account both knowledge and the application of knowledge and the interrelationships between the two. A study in mixed method design was developed for this purpose. In this study, students are tested with regard to their dispositions in mathematics and physics at the beginning of their studies and at the end of the first year of their studies using quantitative methods. At these two points in time and a further time at the end of the first semester, the situation-specific skills in processing math and physics tasks were examined with the help of a theoretical framework for solving mathematical problems, using qualitative methods. This theoretical framework included for the mathematical tasks the aspects heuristics (Bruder & Collet, 2011; Schoenfeld, 1980) and problem solving phases (Polya, 1957) as well as the model of Epistemic Games (Tuminaro, 2004) for the analysis of the processing of physical tasks. The results show interrelationships between mathematical and physical dispositions. In addition, it became clear that there is a need of problem solving aspects in order to analyse the processes involved in the working on maths and physics tasks in the first year of studies. Based on the qualitative descriptions, clusters of student cases could be formed. These clusters show the interrelationships between dispositions and situation-specific skills of particularly high-performing and underperforming students.

Page generated in 0.0662 seconds