21 |
Modèles de flammelette en combustion turbulente avec extinction et réallumage : étude asymptotique et numérique, estimation d’erreur a posteriori et modélisation adaptativeTurbis, Pascal 01 1900 (has links)
On s’intéresse ici aux erreurs de modélisation liées à l’usage de modèles de
flammelette sous-maille en combustion turbulente non prémélangée. Le but de
cette thèse est de développer une stratégie d’estimation d’erreur a posteriori pour
déterminer le meilleur modèle parmi une hiérarchie, à un coût numérique similaire
à l’utilisation de ces mêmes modèles. Dans un premier temps, une stratégie faisant
appel à un estimateur basé sur les résidus pondérés est développée et testée sur un
système d’équations d’advection-diffusion-réaction. Dans un deuxième temps, on
teste la méthodologie d’estimation d’erreur sur un autre système d’équations, où
des effets d’extinction et de réallumage sont ajoutés. Lorsqu’il n’y a pas d’advection,
une analyse asymptotique rigoureuse montre l’existence de plusieurs régimes
de combustion déjà observés dans les simulations numériques. Nous obtenons une
approximation des paramètres de réallumage et d’extinction avec la courbe en
«S», un graphe de la température maximale de la flamme en fonction du nombre
de Damköhler, composée de trois branches et d’une double courbure. En ajoutant
des effets advectifs, on obtient également une courbe en «S» correspondant
aux régimes de combustion déjà identifiés. Nous comparons les erreurs de modélisation
liées aux approximations asymptotiques dans les deux régimes stables et
établissons une nouvelle hiérarchie des modèles en fonction du régime de combustion.
Ces erreurs sont comparées aux estimations données par la stratégie
d’estimation d’erreur. Si un seul régime stable de combustion existe, l’estimateur
d’erreur l’identifie correctement ; si plus d’un régime est possible, on obtient une
fac˛on systématique de choisir un régime. Pour les régimes où plus d’un modèle
est approprié, la hiérarchie prédite par l’estimateur est correcte. / We are interested here in the modeling errors of subgrid flamelet models in
nonpremixed turbulent combustion. The goal of this thesis is to develop an a posteriori
error estimation strategy to determine the best model within a hierarchy,
with a numerical cost at most that of using the models in the first place. Firstly,
we develop and test a dual-weighted residual estimator strategy on a system of
advection-diffusion-reaction equations. Secondly, we test that methodology on
another system of equations, where quenching and ignition effects are added. In
the absence of advection, a rigorous asymptotic analysis shows the existence of
many combustion regimes already observed in numerical simulations. We obtain
approximations of the quenching and ignition parameters, alongside the S-shaped
curve, a plot of the maximal flame temperature as a function of the Damköhler
number, consisting of three branches and two bends. When advection effects are
added, we still obtain a S-shaped curve corresponding to the known combustion
regimes. We compare the modeling errors of the asymptotic approximations in
the two stable regimes and establish new model hierarchies for each combustion
regime. These errors are compared with the estimations obtained by using the error
estimation strategy. When only one stable combustion regime exists, the error
estimator correctly identifies that regime; when two or more regimes are possible,
it gives a systematic way of choosing one regime. For regimes where more than
one model is appropriate, the error estimator’s predicted hierarchy is correct.
|
22 |
Méthode des éléments finis augmentés pour la rupture quasi-fragile : application aux composites tissés à matrice céramique / Augmented finite element method for quasi-brittle fracture : application to woven ceramic matrix compositesEssongue-Boussougou, Simon 08 March 2017 (has links)
Le calcul de la durée de vie des Composites tissés à Matrice Céramique (CMC) nécessite de déterminer l’évolution de la densité de fissures dans le matériau(pouvant atteindre 10 mm-1). Afin de les représenter finement on se propose de travailler à l’échelle mésoscopique. Les méthodes de type Embedded Finite Element (EFEM) nous ont paru être les plus adaptées au problème. Elles permettent une représentation discrète des fissures sans introduire de degrés de liberté additionnels.Notre choix s’est porté sur une EFEM s’affranchissant d’itérations élémentaires et appelée Augmented Finite Element Method (AFEM). Une variante d’AFEM, palliant des lacunes de la méthode originale, a été développée. Nous avons démontré que,sous certaines conditions, AFEM et la méthode des éléments finis classique (FEM) étaient équivalentes. Nous avons ensuite comparé la précision d’AFEM et de FEM pour représenter des discontinuités fortes et faibles. Les travaux de thèse se concluent par des exemples d’application de la méthode aux CMC. / Computing the lifetime of woven Ceramic Matrix Composites (CMC) requires evaluating the crack density in the material (which can reach 10 mm-1). Numerical simulations at the mesoscopic scale are needed to precisely estimate it. Embedded Finite Element Methods (EFEM) seem to be the most appropriate to do so. They allow for a discrete representation of cracks with no additional degrees of freedom.We chose to work with an EFEM free from local iterations named the Augmented Finite Element Method (AFEM). Improvements over the original AFEM have been proposed. We also demonstrated that, under one hypothesis, the AFEM and the classical Finite Element Method (FEM) are fully equivalent. We then compare the accuracy of the AFEM and the classical FEM to represent weak and strong discontinuities. Finally, some examples of application of AFEM to CMC are given.
|
23 |
Estimation d'erreur de discrétisation dans les calculs par décomposition de domaine / Estimation of discretization error in domain decomposition computationsParret-Fréaud, Augustin 28 June 2011 (has links)
Le contrôle de la qualité des calculs de structure suscite un intérêt croissant dans les processus de conception et de certification. Il repose sur l'utilisation d'estimateurs d'erreur, dont la mise en pratique entraîne un sur-coût numérique souvent prohibitif sur des calculs de grande taille. Le présent travail propose une nouvelle procédure permettant l'obtention d'une estimation garantie de l'erreur de discrétisation dans le cadre de problèmes linéaires élastiques résolus au moyen d'approches par décomposition de domaine. La méthode repose sur l'extension du concept d'erreur en relation de comportement au cadre des décompositions de domaine sans recouvrement, en s'appuyant sur la construction de champs admissibles aux interfaces. Son développement dans le cadre des approches FETI et BDD permet d'accéder à une mesure pertinente de l'erreur de discrétisation bien avant convergence du solveur lié à la décomposition de domaine. Une extension de la procédure d'estimation aux problèmes hétérogènes est également proposée. Le comportement de la méthode est illustré et discuté sur plusieurs exemples numériques en dimension 2. / The control of the quality of mechanical computations arouses a growing interest in both design and certification processes. It relies on error estimators the use of which leads to often prohibitive additional numerical costs on large computations. The present work puts forward a new procedure enabling to obtain a guaranteed estimation of discretization error in the setting of linear elastic problems solved by domain decomposition approaches. The method relies on the extension of the constitutive relation error concept to the framework of non-overlapping domain decomposition through the recovery of admissible interface fields. Its development within the framework of the FETI and BDD approaches allows to obtain a relevant estimation of discretization error well before the convergence of the solver linked to the domain decomposition. An extension of the estimation procedure to heterogeneous problems is also proposed. The behaviour of the method is illustrated and assessed on several numerical examples in 2 dimension.
|
24 |
Řešení parciálních diferenciálních rovnic s využitím aposteriorního odhadu chyby / A posteriori error estimation method for partial differential equations solutionValenta, Václav Unknown Date (has links)
This thesis deals with gradient calculation in triangulation nodes using weighted average of gradients of neighboring elements. This gradient is then used for a posteriori error estimation which produce better solution of partial differential equations. This work presents two common methods - Finite elements method and Finite difference method.
|
25 |
Modèles de flammelette en combustion turbulente avec extinction et réallumage : étude asymptotique et numérique, estimation d’erreur a posteriori et modélisation adaptativeTurbis, Pascal 01 1900 (has links)
No description available.
|
26 |
A posteriori error estimation for non-linear eigenvalue problems for differential operators of second order with focus on 3D vertex singularitiesPester, Cornelia 21 April 2006 (has links)
This thesis is concerned with the finite element
analysis and the a posteriori error estimation for
eigenvalue problems for general operator pencils on
two-dimensional manifolds.
A specific application of the presented theory is the
computation of corner singularities.
Engineers use the knowledge of the so-called singularity
exponents to predict the onset and the propagation of
cracks.
All results of this thesis are explained for two model
problems, the Laplace and the linear elasticity problem,
and verified by numerous numerical results.
|
27 |
Adaptivity in anisotropic finite element calculationsGrosman, Sergey 21 April 2006 (has links)
When the finite element method is used to solve boundary value problems, the
corresponding finite element mesh is appropriate if it is reflects the behavior of the true solution. A posteriori error estimators are suited to construct adequate meshes. They are useful to measure the quality of an approximate solution and to design adaptive solution algorithms. Singularly perturbed problems yield in general solutions with anisotropic features, e.g. strong boundary or interior layers. For such problems it is useful to use anisotropic meshes in order to reach maximal order of convergence. Moreover, the quality of the numerical solution rests on the robustness of the a posteriori error estimation with respect to both the anisotropy of the mesh and the perturbation parameters.
There exist different possibilities to measure the a posteriori error in the energy norm for the singularly perturbed reaction-diffusion equation. One of them is the equilibrated residual method which is known to be robust as long as one solves auxiliary local Neumann problems exactly on each element. We provide a basis for an approximate solution of the aforementioned auxiliary problem and show that this approximation does not affect the quality of the error estimation.
Another approach that we develope for the a posteriori error estimation is the hierarchical error estimator. The robustness proof for this estimator involves some stages including the strengthened Cauchy-Schwarz inequality and the error reduction property for the chosen space enrichment.
In the rest of the work we deal with adaptive algorithms. We provide an overview of the existing methods for the isotropic meshes and then generalize the ideas for the anisotropic case. For the resulting algorithm the error reduction estimates are proven for the Poisson equation and for the singularly perturbed reaction-difussion equation. The convergence for the Poisson equation is also shown.
Numerical experiments for the equilibrated residual method, for the hierarchical
error estimator and for the adaptive algorithm confirm the theory. The adaptive
algorithm shows its potential by creating the anisotropic mesh for the problem
with the boundary layer starting with a very coarse isotropic mesh.
|
28 |
Sur l'utilisation de l'analyse isogéométrique en mécanique linéaire ou non-linéaire des structures : certification des calculs et couplage avec la réduction de modèle PGD / On the use of isogeometric analysis in linear or nonlinear structural mechanics : certification of the simulations and coupling with PGD model reductionThai, Hoang phuong 17 June 2019 (has links)
Le sujet de la thèse porte sur la mise en place d’approches numériques avancées pour la simulation et l’optimisation de structures mécaniques présentant une géométrie complexe. Il se focalise sur l’analyse isogéométrique (IGA) qui a reçu beaucoup d’intérêt cette dernière décennie dû à sa grande flexibilité, précision, et robustesse dans de nombreux contextes industriels comparé à la méthode des éléments finis (FEA) classique. En particulier, la technologie IGA fournit un lien direct avec les logiciels de CAO (les mêmes fonctions sont utilisées pour la représentation de la géométrie et l’analyse numérique) et facilite les procédures de maillage.Dans ce contexte, et comme première partie du travail, une méthode de vérification basée sur la dualité et le concept d’erreur en relation de comportement (ERC) est proposé. Il permet d’obtenir des estimateurs d’erreur a posteriori à la fois garantis et entièrement calculables pour les solutions numériques issues de simulation par IGA. Ces estimateurs, valables pour une large gamme de modèles linéaires ou non-linéaires en mécanique des structures, constituent donc des outils performants et utiles pour le contrôle quantitatif de la qualité numérique et pour la conduite de procédures adaptatives. Un intérêt particulier est porté sur la construction de champs équilibrés, qui est un point clé du concept ERC, et qui jusqu’à présent était essentiellement développée dans le cadre de la méthode des éléments finis. L’extension au contexte IGA nécessite d’aborder plusieurs problèmes techniques, liés à l’utilisation de fonctions de base B-Spline/NURBS. Le concept ERC est aussi mis en oeuvre avec les techniques d’adjoint pour faire de l’estimation d’erreur sur des quantités d’intérêt.Dans une seconde partie du travail, la technologie IGA est couplée avec une procédure de réduction de modèle pour obtenir des solutions certifiées, et en temps réel, de problèmes avec une géométrie paramétrée. Après avoir défini le paramétrage sur la transformation permettant de passer de l’espace paramétrique IGA à l’espace physique, un modèle réduit basé sur la technique PGD (Proper Generalized Decomposition) est introduit pour résoudre le problème multi-dimensionnel. Avec une stratégie hors-ligne/en-ligne, la procédure permet alors de décrire l’ensemble des solutions paramétrées avec un coût de calcul réduit, et de faire de l’optimisation de forme en temps réel. Ici encore, l’estimation a posteriori des diverses sources d’erreur venant de la discrétisation et de la réduction de modèle PGD est menée à partir du concept ERC. Cela permet de contrôler la qualité de la solution PGD approchée (globalement ou sur des quantités d’intérêt), pour toute configuration géométrique, et de nourrir un algorithme adaptatif qui optimise l’effort de calcul pour une tolérance d’erreur donnée.Le travail de recherche dans son ensemble fournit donc des outils pertinents et pratiques pour les activités de simulation en ingénierie mécanique. Le potentiel et les performances de ces outils sont montrés à travers plusieurs exemples numériques impliquant des problèmes académiques et industriels, et des modèles linéaires et non-linéaires (endommagement). / The topic of the PhD thesis deals with the construction of advanced numerical approaches for the simulation and optimization of mechanical structures with complex geometry. It focuses on the Isogeometric Analysis (IGA) technology which has received much attention of the last decade due to its increased flexibility, accuracy, and robustness in many engineering simulations compared to classical Finite Element Analysis (FEA). In particular, IGA enables a direct link with CAD software (the same functions are used for both analysis and geometry) and facilitates meshing procedures.In this framework, and as a first part of the work, a verification method based on duality and the concept of Constitutive Relation Error (CRE) is proposed. It enables to derive guaranteed and fully computable a posteriori error estimates on the numerical solution provided by IGA. Such estimates, which are valid for a wide class of linear or nonlinear structural mechanics models, thus constitute performing and useful tools to quantitatively control the numerical accuracy and drive adaptive procedures. The focus here is on the construction of equilibrated flux fields, which is key ingredient of the CRE concept, and which was until now almost exclusively developed in the FEA framework alone. The extension to IGA requires to address some technical issues, due to the use of B-Spline/NURBS basis functions. The CRE concept is also implemented together with adjoint techniques in order to perform goal-oriented error estimation.In a second part, IGA is coupled with model reduction in order to get certified real-time solutions to problems with parameterized geometry. After defining the parametrization on the mapping from the IGA parametric space to the physical space, a reduced model based on the Proper Generalized Decomposition (PGD) is introduced to solve the multi-dimensional problem. From an offline/online strategy, the procedure then enables to describe the manifold of parametric solutions with reduced CPU cost, and to further perform shape optimization in real-time. Here again, a posteriori estimation of the various error sources inheriting from discretization and PGD model reduction is performed from the CRE concept. It enables to control the quality of the approximate PGD solution (globally or on outputs of interest), for any geometry configuration, and to feed a robust greedy algorithm that optimizes the computational effort for a prescribed error tolerance.The overall research work thus provides for reliable and practical tools in mechanical engineering simulation activities. Capabilities and performance of these tools are shown on several numerical experiments with academic and engineering problems, and with linear and nonlinear (damage) models.
|
29 |
Vers une stratégie robuste et efficace pour le contrôle des calculs par éléments finis en ingénierie mécanique / Towards a robust and effective strategy for the control of finite element computations in mechanical engineeringPled, Florent 13 December 2012 (has links)
Ce travail de recherche vise à contribuer au développement de nouveaux outils d'estimation d'erreur globale et locale en ingénierie mécanique. Les estimateurs d'erreur globale étudiés reposent sur le concept d'erreur en relation de comportement à travers des techniques spécifiques de construction de champs admissibles, assurant l'aspect conservatif ou garanti de l'estimation. Une nouvelle méthode de construction de champs admissibles est mise en place et comparée à deux autres méthodes concurrentes, en matière de précision, coût de calcul et facilité d'implémentation dans les codes éléments finis. Une amélioration de cette nouvelle méthode hybride fondée sur une minimisation locale de l'énergie complémentaire est également proposée. Celle-ci conduit à l'introduction et à l'élaboration de critères géométriques et énergétiques judicieux, permettant un choix approprié des régions à sélectionner pour améliorer localement la qualité des champs admissibles. Dans le cadre des estimateurs d'erreur locale basés sur l'utilisation conjointe des outils d'extraction et des estimateurs d'erreur globale, deux nouvelles techniques d'encadrement de l'erreur en quantité d'intérêt sont proposées. Celles-ci sont basées sur le principe de Saint-Venant à travers l'emploi de propriétés spécifiques d'homothétie, afin d'améliorer la précision des bornes d'erreur locale obtenues à partir de la technique d'encadrement classique fondée sur l'inégalité de Cauchy-Schwarz. Les diverses études comparatives sont menées dans le cadre des problèmes d'élasticité linéaire en quasi-statique. Le comportement des différents estimateurs d'erreur est illustré et discuté sur des exemples numériques tirés d'applications industrielles. Les travaux réalisés constituent des éléments de réponse à la problématique de la vérification dans un contexte industriel. / This research work aims at contributing to the development of innovative global and goal-oriented error estimation tools applied to Computational Mechanics. The global error estimators considered rely on the concept of constitutive relation error through specific techniques for constructing admissible fields ensuring the recovery of strict and high-quality error estimates. A new hybrid method for constructing admissible stress fields is set up and compared to two other techniques with respect to three different criteria, namely the quality of associated error estimators, the computational cost and the simplicity of practical implementation into finite element codes. An enhanced version of this new technique based on local minimization of the complementary energy is also proposed. Judicious geometric and energetic criteria are introduced to select the relevant zones for optimizing the quality of the admissible fields locally. In the context of goal-oriented error estimation based on the use of both extraction techniques and global error estimators, two new improved bounding techniques are proposed. They lean on Saint-Venant's principle through specific homotheticity properties in order to obtain guaranteed and relevant bounds of better quality than with the classical bounding technique based on the Cauchy-Schwarz inequality. The various comparative studies are conducted on linear elasticity problems under quasi-static loading conditions. The behaviour of the different error estimators is illustrated and discussed through several numerical experiments carried out on industrial cases. The associated results may open up opportunities and help broaden the field of model verification for both academic research and industrial applications.
|
30 |
Adaptive algorithms for poromechanics and poroplasticity / Algorithmes adaptatifs pour la poro-mécanique et la poro-plasticitéRiedlbeck, Rita 27 November 2017 (has links)
Dans cette thèse nous développons des estimations d'erreur a posteriori par équilibrage de flux pour la poro-mécanique et la poro-plasticité.En se basant sur ces estimations, nous proposons des algorithmes adaptatifs pour la résolution numérique de problèmes en mécanique des sols.Le premier chapitre traite des problèmes en poro-élasticité linéaire.Nous obtenons une borne garantie sur l'erreur en utilisant des reconstructions équilibrées et $H({rm div})$-conformes de la vitesse de Darcy et du tenseur de contraintes mécaniques.Nous appliquons cette estimation dans un algorithme adaptif pour équilibrer les composantes de l'erreur provenant de la discrétisation en espace et en temps pour des simulations en deux dimensions.La contribution principale du chapitre porte sur la reconstruction symétrique du tenseur de contraintes.Dans le deuxième chapitre nous proposons une deuxième technique de reconstruction du tenseur de contraintes dans le cadre de l'élasticité nonlinéaire.En imposant la symétrie faiblement, cette technique améliore les temps de calcul et facilite l'implémentation.Nous démontrons l'éfficacité locale et globale des estimateurs obtenus avec cette reconstruction pour une grande classe de lois en hyperélasticité.En ajoutant un estimateur de l'erreur de linéarisation, nous introduisons des critères d'arrêt adaptatifs pour le solveur de linéarisation.Le troisième chapitre est consacré à l'application industrielle des résultats obtenus. Nous appliquons un algorithme adaptatif à des problèmes poro-mécaniques en trois dimensions avec des lois de comportement mécanique élasto-plastiques. / In this Ph.D. thesis we develop equilibrated flux a posteriori error estimates for poro-mechanical and poro-plasticity problems.Based on these estimations we propose adaptive algorithms for the numerical solution of problems in soil mechanics.The first chapter deals with linear poro-elasticity problems.Using equilibrated $H({rm div})$-conforming flux reconstructions of the Darcy velocity and the mechanical stress tensor, we obtain a guaranteed upper bound on the error.We apply this estimate in an adaptive algorithm balancing the space and time discretisation error components in simulations in two space dimensions.The main contribution of this chapter is the symmetric reconstruction of the stress tensor.In the second chapter we propose another reconstruction technique for the stress tensor, while considering nonlinear elasticity problems.By imposing the symmetry of the tensor only weakly, we reduce computation time and simplify the implementation.We prove that the estimate obtained using this stress reconstuction is locally and globally efficient for a wide range of hyperelasticity problems.We add a linearization error estimator, enabling us to introduce adaptive stopping criteria for the linearization solver.The third chapter adresses the industrial application of the obtained results.We apply an adaptive algorithm to three-dimensional poro-mechanical problems involving elasto-plastic mechanical behavior laws.
|
Page generated in 0.1635 seconds