Spelling suggestions: "subject:"detrain"" "subject:"1strain""
431 |
Safe software development for a video-based train detection system in accordance with EN 50128Dorka, Moritz 04 September 2013 (has links)
Diese Studienarbeit gibt einen Überblick über ausgewählte Teile des Softwareentwicklungsprozesses für sicherheitsrelevante Applikationen am Beispiel eines videobasierten Zugerkennungssystems. Eine IP-Kamera und ein externer Bildverarbeitungscomputer wurden dazu mit einer speziell entworfenen, verteilten Software ausgestattet. Die in Ada und C geschriebenen Teile kommunizieren dabei über ein dediziertes, UDP-basiertes Netzwerkprotokoll. Beide Programme wurden intensiv anhand verschiedener Techniken analysiert, die in der Norm EN 50128 festgelegt sind, welche sich speziell an Software für Eisenbahnsteuerungs- und überwachungssysteme richtet.
Eine an der Norm orientierte Struktur mit Verweisen auf die diskutierten Techniken zu Beginn eines jeden Abschnitts erlaubt einen schnellen Vergleich mit den originalen Anforderungen des Normtexts.
Zusammenfassend haben sich die Techniken bis auf wenige Ausnahmen als sehr geeignet für die praktische Entwicklung von sicherer Software erwiesen. Allerdings entbindet die Norm durch ihre teils sehr abstrakten Anforderungen das am Projekt beteiligte Personal in keinster Weise von seiner individuellen Verantwortung. Entsprechend sind die hier vorgestellten Techniken für andere Projekte nicht ohne Anpassungen zu übernehmen.:1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Description of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Real-time constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Safety requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Camera type and output format . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Transfer Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Real-world constrains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Train Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 EN 50128 requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1 Software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.1 Defensive Programming . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Fully Defined Interface . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.3 Structured Methodology . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.4 Error Detecting and Correcting Codes . . . . . . . . . . . . . . . . 29
3.1.5 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.6 Alternative optionally required measures . . . . . . . . . . . . . . 34
3.2 Software Design and Implementation . . . . . . . . . . . . . . . . . . . . . 35
3.2.1 Structured Methodology . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Modular Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.4 Design and Coding Standards . . . . . . . . . . . . . . . . . . . . 39
3.2.5 Strongly Typed Programming Languages . . . . . . . . . . . . . . 41
3.2.6 Alternative optionally required measures . . . . . . . . . . . . . . 44
3.3 Unit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 / This paper intends to give an overview of selected parts of the software development process for safety-relevant applications using the example of a video-based train detection. An IP-camera and an external image processing computer were equipped with a custom-built, distributed software system. Written in Ada and C, the system parts communicate via a dedicated UDP-based protocol. Both programs were subject to intense analysis according to measures laid down in the EN 50128 standard specifically targeted at software for railway control and protection systems.
Preceding each section, a structure resembling the standard document with references to the discussed measures allows for easy comparison with the original requirements of EN 50128.
In summary, the techniques have proven to be very suitable for practical safe software development in all but very few edge-cases. However, the highly abstract descriptive level of the standard requires the staff involved to accept an enormous personal responsibility throughout the entire development process. The specific measures carried out for this project may therefore not be equally applicable elsewhere.:1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Description of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Real-time constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Safety requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Camera type and output format . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Transfer Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Real-world constrains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Train Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 EN 50128 requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1 Software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.1 Defensive Programming . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Fully Defined Interface . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.3 Structured Methodology . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.4 Error Detecting and Correcting Codes . . . . . . . . . . . . . . . . 29
3.1.5 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.6 Alternative optionally required measures . . . . . . . . . . . . . . 34
3.2 Software Design and Implementation . . . . . . . . . . . . . . . . . . . . . 35
3.2.1 Structured Methodology . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Modular Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.4 Design and Coding Standards . . . . . . . . . . . . . . . . . . . . 39
3.2.5 Strongly Typed Programming Languages . . . . . . . . . . . . . . 41
3.2.6 Alternative optionally required measures . . . . . . . . . . . . . . 44
3.3 Unit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
|
432 |
Erarbeitung eines ETCS-Ausrüstungskonzepts für Nichtbundeseigene EisenbahnenSiebert, Hendrik 05 January 2023 (has links)
Mit dem Ziel einer flächendeckenden technischen Interoperabilität schreitet die Entwicklung und Verbreitung des European Train Control System (ETCS) sowohl fahrzeug- als auch infrastrukturseitig voran. Zukünftig werden vermehrt ETCS-only Fahrzeuge, d. h. Fahrzeuge mit allein ETCS und ohne weiterem Zugbeeinflussungssystem, unterwegs sein. Die Deutsche Bahn rüstet dementsprechend ihre Strecken nach und nach mit ETCS aus, wobei zwei Varianten - ETCS Level 2 und ETCS signalgeführt - umgesetzt werden. Die Regelwerke bezüglich der zwei Varianten werden von der Deutschen Bahn stets weiter entwickelt. Für Nichtbundeseigene Eisenbahnen (NE), deren Charakteristiken häufig einfache gehaltene Nebenbahnen und zur Deutschen Bahn abweichende Randbedingungen sind, ist noch kein Konzept einer ETCS-Ausrüstung erstellt worden. Um sicherzustellen, dass auch zukünftig die Infrastruktur von NE durch ETCS-only Fahrzeuge befahren werden kann, ist eine ETCS-Ausrüstung erforderlich. Im Rahmen dieser Arbeit wird nun aufbauend von den Anforderungen der NE ein allgemeines Ausrüstungskonzept erstellt, dass weitgehend die unterschiedlichen Gegebenheiten beinhaltet.
|
433 |
Predictions of train delays using machine learning / Förutsägelser av tågförseningar med hjälp av maskininlärningNilsson, Robert, Henning, Kim January 2018 (has links)
Train delays occur on a daily basis in the commuter rail of Stockholm. This means that the travellers might become delayed themselves for their particular destination. To find the most accurate method for predicting train delays, the machine learning methods decision tree with and without AdaBoost and neural network were compared with different settings. Neural network achieved the best result when used with 3 layers and 22 neurons in each layer. Its delay predictions had an average error of 122 seconds, compared to the actual delay. It might therefore be the best method for predicting train delays. However the study was very limited in time and more train departure data would need to be collected. / Tågförseningar inträffar dagligen i Stockholms pendeltågstrafik. Det orsakar att resenärerna själva kan bli försenade till deras destinationer. För att hitta den mest träffsäkra metoden för att förutspå tågförseningar jämfördes maskininlärningsmetoderna beslutsträd, med och utan AdaBoost, och artificiella neuronnät med olika inställningar. Det artificiella neuronnätet gav det bästa resultatet när det användes med 3 lager och 22 neuroner i varje lager. Dess förseningsförutsägelse hade ett genomsnittligt fel på 122 sekunder jämfört med den verkliga förseningen. Det kan därför vara den bästa metoden för att förutspå tågförseningar. Den här studien hade dock väldigt begränsat med tid och mer information om tågavgångar hade behövts samlas in.
|
434 |
Train Induced Vibration Analysis of an End-frame Bridge : Numerical Analysis on SidensjövägenWiberg, Niklas, Halilovic, Jasmin January 2018 (has links)
Higher speeds and higher capacity will cause the Swedish rail network to be exposed to disturbing dynamic effects. Higher speeds cause higher vertical acceleration levels of the bridge deck. In this thesis, a numerical analysis of a three span end-frame bridge subjected to train induced vibrations is performed. The aim is to identify which structural components and boundary conditions that affect the dynamic behavior of the bridge. Furthermore, the influence of soil structure interaction (SSI) will be investigated as it may have contribution to the stiffness and damping of the structural system. In order to capture the dynamic response of the bridge, an analysis in the frequency domain was preformed where frequency response functions (FRF) and acceleration envelopes were obtained. For this purpose, a detailed FE-model in 3D was created. Three different cases were studied, model subjected to ballast, model subjected to soil and model subjected to both ballast and soil in coherence. A high speed load model (HSLM) was used to create simulation of train passages at different speeds and applied to all cases so that the bridge deck accelerations could be studied. A simplified 2D-model with impedance functions representing the soil-structure interaction was created to validate the results from the detailed 3D-model and for practical design purposes. The result of this numerical analysis showed that the vertical accelerations were within acceptable levels of the maximum allowed limits given in governing publications. Considering the surrounding soil, the results revealed an increase of the dynamic response in the midspan at resonant frequency. However, it was identified that this behavior is not explained by the influence of soil structure interaction but rather the change in boundary conditions of the end-shields. The same dynamic behavior was identified for the simplified 2D-model, with a slight underestimation of the vertical accelerations at resonance.
|
435 |
FEASIBILITY ANALYSIS OF THE DRIVE TRAIN ELECTRIFICATION FOR A RESCUE BOATAndruetto, Claudia January 2019 (has links)
Progressing constraints on green house gas emissions lead to a sustainability trend,which greatly a↵ects the transport sector. Nowadays, companies show increasing interest indeveloping sustainable solutions.This thesis has been started thanks to a project given by Sj¨or¨addningss¨allskapet, themost relevant association that performs sea rescue operations in Swedish waters.Sj¨or¨addningss¨allskapet would like to explore the possibility of making their rescue boat fleetentirely carbon-free, hence more sustainable.What may provide a suitable solution is an electric drive train with hybrid energy storage,composed by a battery pack and a fuel cell stack. The research question is whether it wouldbe feasible to combine fuel cell stacks and battery packs to provide power to a fast smallboat.From a sketch of a rescue boat, the drive train design for such boat is studied in itsintegrity, from the water jet pump to the battery and fuel cell systems.The required power has been calculated empirically, using data from online tests on waterjet boats. Di↵erent tests have been considered, resulting in a mean power curve and a meanconsumption curve and allowing comparison between the hybrid electric drive train withan internal combustion engine drive train.Three profiles of speed, power and consumption have been assumed for the calculation ofthe required energy and hence rate the energy storage system. A design has been proposedin terms of fuel cell capacity and battery capacity.The propulsion unit, composed by the electric machine and water jet, has been studied,focusing on di↵erent electric drive technologies. Few conclusions on both the weight andsustainability requirements are discussed.A sustainability analysis is carried out in terms of CO2 emissions, through a life cycleassessment accounting for the environmental impact of the system during the whole lifecycle, from cradle to grave. / Ökande begränsningar för utsläpp av växthusgaser leder till en hållbarhetsutveckling, vilket påverkar transportsektorn kraftigt. Nuförtiden visar företag ett ökande intresse för att utveckla hållbara lösningar.Denna avhandling har startats tack vare ett projekt som ges av Sjöräddningssällskapet, den viktigaste föreningen som utför havsräddningsinsatser i svenska vatten.Sjöräddningssällskapet vill undersöka möjligheten att göra deras räddningsbåtflotta helt emissionfri, och därmed mer hållbar.Det som kan ge en lämplig lösning är ett elektriskt drivsystem med hybrid energilagring, sammansatt av ett batteripaket och en bränslecell-stapel. Forskningsfrågan är om det skulle vara möjligt att kombinera bränslecellstaplar och batteripaket för att driva en snabb liten båt.Från en skiss av en räddningsbåt studeras designen för en sådan båt i dess integritet, från vattenstrålpumpen till batteri och bränslecellsystem.Den erforderliga kraften har beräknats empiriskt med hjälp av data från onlinetest av vattenstrålbåtar. Olika tester har beaktats, vilket resulterar i en genomsnittlig e↵ektkurva och en genomsnittlig förbrukningskurva och möjliggör en jämförelse mellan det hybridelektriska drivsystemet med ett förbränningsmotordrivsystem.Tre profiler av hastighet, e↵ekt och förbrukning har antagits för beräkning av den erforderliga energin och därmed för energilagringssystemet. En design har föreslagits vad gäller bränslecellkapacitet och batterikapacitet.Framdrivningsenheten, sammansatt av den elektriska maskinen och vattenstrålen, har studerats med fokus på olika elektriska drivtekniker. Några slutsatser om både vikten och hållbarhetskraven diskuteras.En hållbarhetsanalys utförs med avseende på koldioxidutsläpp genom en livscykelbedömningsom redovisar systemets miljöpåverkan under hela livscykeln, från vagga till grav.
|
436 |
Kunimodellen : En utbildningsmodell för signaltekniker på Roslagsbanan / The Kuni model : An education model for signal maintenance technicians at RoslagsbananKuniholm, Johanna January 2019 (has links)
För att kunna hitta och åtgärda signalfel på Roslagsbanan i Stockholm är det viktigt att de tekniker som arbetar med signalsystemet har rätt kunskaper och känner sig trygga i hur systemet fungerar. En del av säkerhetssystemet på Roslagsbanan kallas ATC (automatic train control) och ger tågföraren information om var tåget framför befinner sig, vilket besked nästa signal ger och hur växlar och vägbommar står. ATC ingriper även genom att bromsa tåget automatiskt om föraren inte stannar vid en stoppsignal. För att effektivisera felsökning i ATCsystemet vill företaget som sköter drift och underhåll av signalsystemet, banan och elförsörjningen på Roslagsbanan, Strukton Rail AB, genomföra utbildningar för sina signaltekniker. De vill ha en mall för hur utbildningar i felsökning kan se ut som kan användas med övningsutrustning, och som kan appliceras på andra tekniska system. För att skapa den här mallen var mina frågeställningar ”Hur kan en pedagogisk modell för utbildning inom felsökning i säkerhetssystemet ATC på Roslagsbanan se ut? Hur påverkar modellen deltagarnas aktivitet jämfört med andra utbildningar inom järnvägsbranschen?”. Det var viktigt från Struktons sida att deltagarna skulle vara aktiva och samarbeta med varandra under utbildningen. Efter att ha läst om det sociokulturella perspektivet på lärande, accelererat lärande och lärande på arbetsplatsen och även hållit intervjuer med två tekniker på Strukton och två utbildare i andra sammanhang i järnvägsbranschen för att höra vad de tycker är bra utbildning har jag skapat en utbildningsmodell för internutbildning i signalsystemet ATC, döpt till Kunimodellen. Modellen baseras på att deltagarna tillsammans löser olika felsökningsfall. Utbildningen börjar med en genomgång av systemet som kan vara olika djupgående beroende på deltagarnas förkunskaper. Sedan löser deltagarna fall genom att sitta i grupper och diskutera fram en plan för hur de ska felsöka och sedan testa sin plan praktiskt i testutrustningen där felet är planterat. Beroende på utbildningsbehov och tillgänglig tid kan de få lösa olika många och olika svåra fall, men fallen bör täcka in så många komponenter i systemet som möjligt. I slutet av utbildningen finns ett reflektionsmoment där deltagarna får berätta för varandra vad de har lärt sig under dagen. För att få en mätbar indikation på om deltagarna har lärt sig något under utbildningen får de fylla i en enkät precis innan och precis efter utbildningen med frågor om hur trygga de känner sig på en femgradig skala att felsöka i de olika komponenterna. Det genomfördes två utbildningar med Kunimodellen, där vardera innehöll två fall att lösa, för sammanlagt sju deltagare. För att mäta deltagaraktiviteten under utbildningarna fyllde jag i ett observationsschema under 20 minuter per timme där jag registrerade om varje deltagare hade talat eller inte under 40 intervall om 30 sekunder var, vilket jag även gjorde på två andra utbildningar som signaltekniker går för att få en kontrollgrupp. Dessutom hölls gruppintervjuer med deltagarna efter utbildningarna för att få höra vad de tyckte om modellen och vad som kan förbättras. Resultaten visar att deltagarna har varit nöjda i intervjuerna och tyckt att det varit en bra modell att arbeta efter, men att det saknades viss teknisk information kring testutrustningen som finns i verkligheten. De ville även ha mer djupgående information i genomgången i början av utbildningen med fokus på bland annat varför ATC-systemet finns. Deltagarnas upplevda trygghet i felsökning ökade i enkäten efter utbildningen, men de var inte entydigt mer aktiva i utbildningar med Kunimodellen än i de utbildningar som jämförts med. Kunimodellen förändrades inte särskilt mycket mellan utbildningarna. Resultaten ska dock bara ses som indikationer på grund av det lilla antalet deltagare, att deltagarna inte nödvändigtvis var representativa för hela gruppen och att alla personer som blev intervjuade kände mig som intervjuade. / To be able to find and solve signal failures in Roslagsbanan in Stockholm, it is important that the maintenance technicians working with the signalling system has the right knowledge and feel confident with how the system works. One part of the safety system at Roslagsbanan is called ATC (automatic train control) which sends information to the train driver about where adjacent trains are located and how upcoming signals, switches and road crossing barriers are set. The ATC also interferes by applying brakes if the driver does not stop at a stop signal. To make troubleshooting of the ATC system more efficient, the company maintaining the signalling system, tracks and power supply at Roslagsbanan, Strukton Rail AB, would like to further educate their maintenance technicians. They want a model for training sessions in troubleshooting that can be used with training equipment and can be applied to other technical systems. To create this model my research questions were ”What could a pedagogical model for troubleshooting education on the safety system ATC at Roslagsbanan look like? How does the model affect the participants’ activity compared to other education sessions in the railway business?”. It was important to Strukton that participants should be active and cooperate with each other during the session. After reading about the sociocultural perspective on learning, accelerated learning and workplace learning and also conducting interviews with two technicians at Strukton and two teachers in other parts of the railway business to hear what they value as good education, I created an educational model for inservice training of the signalling system ATC, named the Kuni model. The model is based on participants solving troubleshooting cases together. An education session starts with an overview of the system that can vary in detail depending on the participants’ previous knowledge. Then the participants solve cases by discussing in groups and agreeing on a plan on how they should troubleshoot, and then try their plan on the test equipment where the error is planted. Depending on their need for education and the available time, they can get a different number of cases on different levels, but the cases should try to cover as many of the system’s components as possible. At the end of the session there is time for reflection where the participants tell each other what they have learnt. To get a measurable indication of if the participants have learned anything, they fill out a questionnaire just before and just after the education with questions on how confident they feel troubleshooting the different components. Two such sessions were held with the Kuni model, each with two cases to solve, for a total of seven participants. To measure participant activity, I filled out an observation form for 20 minutes per hour where I registered whether each participant had spoken or not for 40 intervals of 30 seconds each, which I also did at two other training sessions that signalling technicians attend to get a control group. Additionally, I conducted group interviews with the participants after the sessions to see what they thought of the model and what could be improved. The results from the interviews show that the participants were content and thought it was a good model to work with, but that some technical information about the test equipment that exists in the real world was missing. They also wanted more detailed information in the initial overview with focus on, among other things, why the ATC system exists. The participants’ selfestimated confidence in troubleshooting increased after the session, but they were not significantly more active during training with the Kuni model than the control groups. The Kuni model itself did not change very much between sessions. The results should however only be seen as indications due to the small number of participants, the participants not necessarily being representative for the whole group and since all people interviewed knew me when I interviewed them.
|
437 |
Är pendeltågens stopp för långa : - En studie av Stockholms pendeltågs uppehållstider . / Are the Stops in Stockholm’s Commuter Train System too Long : – A Survey of the Dwell Times of the Commuter Trains in StockholmKENNERÖ, JONAS January 2023 (has links)
An important aspect during the planning of commuter trains is how long they will be waiting at the platform. All travelers must be able to board and get off the train in time while the process cannot take too long. The train’s waiting time is called its dwell time, and this is a study of how the dwell time of the commuter trains in Stockholm behaves with a focus on the larger station Stockholm Odenplan and the smaller station Årstaberg. The duration of the dwell time compared to the stations planned dwell time was analyzed with manual measurements on the stations. The dwell time was analyzed both during and after rush hours. Possible reasons for the dwell time’s length were also analyzed and a potential factor that was in focus was the impact of the removal of train conductors. Train conductors in Stockholm’s rail system are responsible for monitoring the boarding and closing the train’s doors after it is finished. They began to dismantle from the trains Mars 2023 due to efficiency reasons. Half of the trains will run with a train conductor until autumn 2023, where they will disappear entirely. The train drivers will afterwards monitor the travelers with cameras instead. The commuter trains in Stockholm have three routes between Bålsta and Nynäshamn, Uppsala/Märsta and Södertälje and Södertälje and Gnesta. Factors considered when planning their timetables are the system’s capacity, how long the train should wait at a station and how long it takes to drive between stations. 94 % of the trains run on time in the system according to the operator MTR. The analyzed stations Stockholm Odenplan and Årstaberg are in Stockholm and have their separate conditions. Stockholm Odenplan is the second to largest station in the system and is in a central part of the city. The station is underground, and the rails are separated from the platform with platform doors. The doors are shown to cause delays for the dwell time as they are slow. Årstaberg has considerably fewer travelers than Stockholm Odenplan and is in the south parts of the city. The station is over the ground and has no platform doors. There are many theories about the causes behind a train’s dwell time based on the behavior of the passengers. They vary from where they are waiting on the platform, how they are queueing during boarding and the behavior during the boarding. The study shows that the dwell time in Årstaberg stays under its planned 42 seconds, but it is six seconds too long from its planned 60 seconds in Stockholm Odenplan. The dwell time increases during rush hour in Årstaberg and decreases outside of it, while Stockholm Odenplan seems to be largely unaffected by rush hours. Trains with train conductors seem to have a lower dwell time than those without them. The boarding has a shorter duration with train conductors, which shows that they are more efficient than the train drivers using cameras to monitor the boarding. However, it does take a little longer for the train to depart after the boarding is finished when they have a train conductor. Factors causing the dwell time are believed to be related to the flow of passengers and the design of the stations. The platform doors are believed to increase the dwell time in Stockholm Odenplan. Meanwhile, the protection from the weather and the location of the entrance in Årstaberg might impact its dwell time. When the number of passengers increases will the boarding take longer. The boarding will also be concentrated on a few doors in Årstaberg depending on the weather or if the trains are short. The dwell time should be analyzed further for a longer period and during more hours of the day. More stations in Stockholm’s rail system should be analyzed too.
|
438 |
Повышение эксплуатационных показателей и безопасности движения автотракторных поездов путем совершенствования тягово-сцепных устройств : магистерская диссертация / Improving performance and traffic safety of automotive-agrimotor trains by improving traction coupling devicesПопова, А. И., Popova. A. I. January 2019 (has links)
Применение тракторных поездов – важнейшее средство повышения производительности труда при выполнении перевозок для нужд промышленности, строительства, сельского хозяйства. Автотракторный поезд, в то же время, является сложной машиной, как правило, менее маневренной, чем одиночное транспортное средство. Превышение скоростного режима движения, особенно автотранспортных поездов, приводит к нарушению их устойчивого движения, особенно как на прямолинейных так и на криволинейных участках траектории, или в условиях повышенной сложности движения. Автором выдвинуто научное предположение о возможности повышения безопасности движения автотранспортных поездов за счет повышения устойчивости траектории их перемещения на дорожной трассе посредством воздействия на конструктивные характеристики тягово-сцепных устройств автотракторных поездов, повышающих стабильность курсового движения автотранспортного поезда посредством повышения коэффициента затухания боковых колебаний прицепа после воздействия на него боковых возмущающих сил. / The use of agrimotor trains is the most important means of increasing labor productivity in transport operations for the needs of industry, construction and agriculture. The agrimotor train, at the same time, is a complex machine, as a rule, less maneuverable than a single vehicle. Exceeding the speed of movement, especially motor-car trains, leads to disruption of their steady movement, especially on straight and curvilinear sections of the path, or in conditions of increased complexity of movement. The author made a scientific assumption about the possibility of improving the safety of movement of motor trains by increasing the stability of their movement on the road route by influencing the design characteristics of traction hitch of automotive-agrimotor trains, increasing the stability of the course of a motor train by increasing the attenuation coefficient of lateral oscillations of the trailer after exposure to it lateral disturbing forces.
|
439 |
Обоснование параметров стабилизирующего тягово-сцепного устройства автомобильного одноосного прицепа : магистерская диссертация / Substantiation of the parameters of the stabilizing traction device of an automobile single-axle trailerСозинов, П. М., Sozinov, P. M. January 2022 (has links)
Целью магистерской диссертации является создание и обоснование конструкции стабилизирующего тягово-сцепного устройства для легкового автомобиля для повышения безопасности движения автопоезда. Практическое значение работы заключается в том, что была предложена новая принципиальная схема стабилизирующего тягово-сцепного устройства с наклонным шкворнем (крестовиной), создана и рассчитана реальная конструкция устройства. В магистерской диссертации изучены теоретические основы движения автопоезда, проведен обзор конструкций и разработок в области увеличения устойчивости движения принципиальные схемы и конструкция стабилизирующего тягово-сцепного устройства, созданы реальная и математическая модели сцепки с применением устройства, проведены расчёты, а также дано технико-экономическое обоснование проекта. / The aim of the master's thesis is to create and substantiate the design of a stabilizing traction device for a car to improve the safety of the road train. The practical significance of the work lies in the fact that a new schematic diagram of a stabilizing traction coupling device with an inclined pivot (crosspiece) was proposed, the real design of the device was created and calculated. In the master's thesis, the theoretical foundations of the movement of a road train were studied, a review of designs and developments in the field of increasing the stability of movement was conducted, schematic diagrams and the design of a stabilizing traction coupling device were created, real and mathematical models of coupling using the device were created, calculations were carried out, and a feasibility study of the project was given.
|
440 |
Kartläggning & optimering av externa flöden ur ett hållbarhetsperspektiv : En fallstudie på Gestamp HardTechNorgren, Malin, Lindberg, Elin January 2023 (has links)
In the pursuit of sustainable development, the transportation sector plays a crucial role by significantly contributing to greenhouse gas emissions. The purpose of this study is to examine how companies utilizing third-party logistics can compile and reduce transport-related emissions, more specifically investigating short- and long-term opportunities for the external flow of Gestamp HardTech in Luleå. Through a comprehensive analysis of available data, utilization of calculation models, and examination of short- and long-term opportunities, this research provides valuable insights and recommendations for companies seeking to promote sustainable transport solutions. The findings underscore the importance of transparency, consistency, and leveraging available data as a reliable foundation for informed decision-making. Additionally, the study highlights the significance of selecting transportation companies that prioritize data utilization and offer green transportation alternatives. Additionally, staying updated on innovations within the field is vital, considering the dynamic nature of the transport industry and the potential for emerging technologies to reshape emission reduction strategies. It is important to note that while short- and long-term recommendations are provided, the ever-evolving landscape necessitates flexibility and continuous adaptation.
|
Page generated in 0.051 seconds