• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 220
  • 70
  • 20
  • 13
  • 12
  • 12
  • 8
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 417
  • 417
  • 417
  • 266
  • 142
  • 90
  • 78
  • 68
  • 67
  • 64
  • 54
  • 51
  • 48
  • 48
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Reconfigurable Analog to Digital Converters for Low Power Wireless Applications

Gustafsson, E. Martin I. January 2008 (has links)
The commercialization of Marconi’s radio transmission and reception, along with the development of integrated circuits in the 1960’s have facilitated many new consumer products for wireless communication, where the mobile phones or handsets are one. These handsets started out as a portable phone, mounted in cars, and have with time added additional services as Short Message Service, and have today become a media center with global positioning, and high-speed internet connection. This has been possible with the use of multistandard radios, that can receive and transmit information using many different wireless communication standards. Many of these handsets have one dedicated integrated radio chain for each communication standard used, which results in a large and expensive integrated circuit for these modern handsets. The challenge of today is to make modern handsets cheaper, smaller, and lower in power consumption. The power consumption is an issue of particular importance since the capacity of the available power sources do not increase with the demands of the handsets. One proposed method to do this is to move towards Software Defined Radio, where software of the handset control a single reconfigurable radio, and set which communication standard that the handset is to use. In this way, the handset can be reconfigured to communicate in the most power or data efficient way, depending on the choice of the user. The area of the Software Defined Radio receiver is also smaller than the parallel chains that are implemented today, which reduces the cost of production. The Software Defined Radio receiver is very challenging to design, since there is a large number of wireless communication standards, sometimes even within the same frequency bands. This make the reception of a weak desired signal difficult, when there may be a strong interferer in the same frequency band. A key component in the Software Defined Radio receiver is the Analog to Digital Converter. The development of new wireless communication standards requires higher performance of the Analog to Digital Converter in the receiver. This performance is hard to achieve, when the power consumption should be low, and the area should be small, especially in the modern integrated circuit technologies. This thesis put the development of the communication industry into a historical perspective, and gives a review of the fundamental development of wireless communication applications. The fundamental concepts and implementations of Analog to Digital Converters for multistandard wireless receiver chains are also covered. Finally two case studies on the design of multistandard Analog to Digital Converters for Software Defined Radio applications are presented. These Analog to Digital Converters implement different methods of reconfiguration in order to comply with the requirements of the standards. The first case study is to the knowledge of the author the first reported reconfigurable Analog to Digital Converter for Wireless Personal Area Networks, that can be reconfigured from Bluetooth to the UWB communication standard. This is done by changing the architecture of the Analog to Digital Converter from Sigma Delta type to flash type. This reconfigurable Analog to Digital Converter is implemented at transistor level. The second case study investigates the limits of circuit level reconfigurability in an algorithmic Analog to Digital Converter. It is found that the requirements of two wireless communication standards can be covered with the use of smart circuit design techniques. The performance of this Analog to Digital Converter has been validated with experimental measurements. / QC 20100729
212

Characterization and Correction of Analog-to-Digital Converters

Lundin, Henrik January 2005 (has links)
Denna avhandling behandlar analog-digitalomvandling. I synnerhet behandlas postkorrektion av analog-digitalomvandlare (A/D-omvandlare). A/D-omvandlare är i praktiken behäftade med vissa fel som i sin tur ger upphov till distorsion i omvandlarens utsignal. Om felen har ett systematiskt samband med utsignalen kan de avhjälpas genom att korrigera utsignalen i efterhand. Detta verk behandlar den form av postkorrektion som implementeras med hjälp av en tabell ur vilken korrektionsvärden hämtas. Innan en A/D-omvandlare kan korrigeras måste felen i den mätas upp. Detta görs genom att estimera omvandlarens överföringsfunktion. I detta arbete behandlas speciellt problemet att skatta kvantiseringsintervallens mittpunkter. Det antas härvid att en referenssignal finns tillgänglig som grund för skattningen. En skattare som baseras på sorterade data visas vara bättre än den vanligtvis använda skattaren baserad på sampelmedelvärde. Nästa huvudbidrag visar hur resultatet efter korrigering av en A/D-omvandlare kan predikteras. Omvandlaren antas här ha en viss differentiell olinjäritet och insignalen antas påverkad av ett slumpmässigt brus. Ett postkorrektionssystem, implementerat med begränsad precision, korrigerar utsignalen från A/D-omvandlaren. Ett utryck härleds som beskriver signal-brusförhållandet efter postkorrektion. Förhållandet visar sig bero på den differentiella olinjäritetens varians, det slumpmässiga brusets varians, omvandlarens upplösning samt precisionen med vilken korrektionstermerna beskrivs. Till sist behandlas indexering av korrektionstabeller. Valet av metod för att indexera en korrektionstabell påverkar såväl tabellens storlek som förmågan att beskriva och korrigera dynamiska fel. I avhandlingen behandlas i synnerhet tillståndsmodellbaserade metoder, det vill säga metoder där tabellindex bildas som en funktion utav flera på varandra följande sampel. Allmänt gäller att ju fler sampel som används för att bilda ett tabellindex, desto större blir tabellen, samtidigt som förmågan att beskriva dynamiska fel ökar. En indexeringsmetod som endast använder en delmängd av bitarna i varje sampel föreslås här. Vidare så påvisas hur valet av indexeringsbitar kan göras optimalt, och experimentella utvärderingar åskådliggör att tabellstorleken kan reduceras avsevärt utan att fördenskull minska prestanda mer än marginellt. De teorier och resultat som framförs här har utvärderats med experimentella A/D-omvandlardata eller genom datorsimuleringar. / Analog-to-digital conversion and quantization constitute the topic of this thesis. Post-correction of analog-to-digital converters (ADCs) is considered in particular. ADCs usually exhibit non-ideal behavior in practice. These non-idealities spawn distortions in the converters output. Whenever the errors are systematic, it is possible to mitigate them by mapping the output into a corrected value. The work herein is focused on problems associated with post-correction using look-up tables. All results presented are supported by experiments or simulations. The first problem considered is characterization of the ADC. This is in fact an estimation problem, where the transfer function of the converter should be determined. This thesis deals with estimation of quantization region midpoints, aided by a reference signal. A novel estimator based on order statistics is proposed, and is shown to have superior performance compared with the sample mean traditionally used. The second major area deals with predicting the performance of an ADC after post-correction. A converter with static differential nonlinearities and random input noise is considered. A post-correction is applied, but with limited (fixed-point) resolution in the corrected values. An expression for the signal-to-noise and distortion ratio after post-correction is provided. It is shown that the performance is dependent on the variance of the differential nonlinearity, the variance of the random noise, the resolution of the converter and the precision of the correction values. Finally, the problem of addressing, or indexing, the correction look-up table is dealt with. The indexing method determines both the memory requirements of the table and the ability to describe and correct dynamically dependent error effects. The work here is devoted to state-space--type indexing schemes, which determine the index from a number of consecutive samples. There is a tradeoff between table size and dynamics: more samples used for indexing gives a higher dependence on dynamic, but also a larger table. An indexing scheme that uses only a subset of the bits in each sample is proposed. It is shown how the selection of bits can be optimized, and the exemplary results show that a substantial reduction in memory size is possible with only marginal reduction of performance. / QC 20101019
213

Architecture Alternatives for Time-interleaved and Input-feedforward Delta-Sigma Modulators

Gharbiya, Ahmed 31 July 2008 (has links)
This thesis strives to enhance the performance of delta-sigma modulators in two areas: increasing their speed and enabling their operation in a low voltage environment. Parallelism based on time-interleaving can be used to increase the speed of delta-sigma modulators. A novel single-path time-interleaved architecture is derived and analyzed. Finite opamp gain and bandwidth result in a mismatch between the noise transfer functions of the internal quantizers which degrades the performance of the new modulator. Two techniques are presented to mitigate the mismatch problem: a hybrid topology where the first stage uses multiple integrators while the rest of the modulator uses a single path of integrators and a digital calibration method. The input-feedforward technique removes the input-signal component from the internal nodes of delta-sigma modulators. The removal of the signal component reduces the signal swing and distortion requirements for the opamps. These characteristics enable the reliable implementation of delta-sigma modulators in modern CMOS technology. Two implementation issues for modulators with input-feedforward are considered. First, the drawback of the analog adder at the quantizer input is identified and the capacitive input feedforward technique is introduced to eliminate the adder. Second, the double sampled input technique is proposed to remove the critical path generate by the input feedforward path. Novel input-feedforward delta-sigma architecture is proposed. The new digital input feedforward (DIFF) modulator maintains the low swing and low distortion requirements of the input feedforward technique, it eliminates the analog adder at the quantizer input, and it improves the achievable resolution. To demonstrate these advantages, a configurable delta-sigma modulator which can operate as a feedback topology or in DIFF mode is implemented in 0.18μm CMOS technology. Both modulators operate at 20MHz clock with an oversampling ratio of 8. The power consumption in the DIFF mode is 22mW and in feedback mode is 19mW. However, the DIFF mode achieves a peak SNDR of 73.7dB (77.1dB peak SNR) while the feedback mode achieves a peak SNDR of 64.3dB (65.9dB peak SNR). Therefore, the energy required per conversion step for the DIFF architecture (2.2 pJ/step) is less than half of that required by the feedback architecture (5.7 pJ/step).
214

Luminescence Contact Imaging Microsystems

Singh, Ritu 14 July 2009 (has links)
This thesis presents two hybrid luminescence-based biochemical photosensory microsystems: a CMOS/microfluidic chemiluminescence contact imager, and a CMOS/thin-film fluorescence contact imager. A compact, low-power analog-to-digital converter (ADC) architecture for use in such sensory microsystems is also proposed. Both microsystems are prototyped in a standard 0.35um CMOS technology. The CMOS/microfluidic microsystem integrates a 64x128-pixel CMOS imager and a soft polymer microfluidic network. Circuit techniques are employed to reduce the dark current and circuit noise for low-level light sensitivity. Experimental validation is performed by detecting luminol chemiluminescence and electrochemiluminescence. The CMOS/thin-film microsystem integrates an existing 128x128-pixel CMOS imager and a prefabricated, high-performance optical filter. Experimental validation is performed by detecting human DNA labeled with Cyanine-3 fluorescent dye. The proposed ADC architecture employs a novel digital-to-analog converter with a flexible trade-off between the integration area and the conversion speed. The area savings and good linearity of the DAC are verified by simulations.
215

Nyquist-Rate Switched-Capacitor Analog-to-Digital Converters

Larsson, Andreas 1978- 14 March 2013 (has links)
The miniaturization and digitization of modern microelectronic systems have made Analog-to-Digital converters (ADC) key building components in many applications. Internet and entertainment technologies demand higher and higher performance from the hardware components in many communication and multimedia systems, but at the same time increased mobility demands less and less power consumption. Many applications, such as instrumentation, video, radar and communications, require very high accuracy and speed and with resolutions up to 16 bits and sampling rates in the 100s of MHz, pipelined ADCs are very suitable for such purposes. Resolutions above 10 bits often require very high power consumption and silicon area if no error correction technique is employed. Calibration relaxes the accuracy requirement of the individual building blocks of the ADC and enables power and area savings. Digital calibration is preferred over analog calibration due to higher robustness and accuracy. Furthermore, the microprocessors that process the digital information from the ADCs have constantly reduced cost and power consumption and improved performance due to technology scaling and innovative microprocessor architectures. The work in this dissertation presents a novel digital background calibration technique for high-speed, high-resolution pipelined ADCs. The technique is implemented in a 14 bit, 100 MS/s pipelined ADC fabricated in Taiwan Semiconductor Manufacturing Company (TSMC) 0.13µm Complementary Metal Oxide Semiconductor (CMOS) digital technology. The prototype ADC achieves better than 11.5 bits linearity at 100 MS/s and achieves a best-in-class figure of merit of 360 fJ/conversion-step. The core ADC has a power consumption of 105 mW and occupies an active area of 1.25 mm^2. The work in this dissertation also presents a low-power, 8-bit algorithmic ADC. This ADC reduces power consumption at system level by minimizing voltage reference generation and ADC input capacitance. This ADC is implemented in International Business Machines Corporation (IBM) 90nm digital CMOS technology and achieves around 7.5 bits linearity at 0.25 MS/s with a power consumption of 300 µW and an active area of 0.27 mm^2.
216

Luminescence Contact Imaging Microsystems

Singh, Ritu 14 July 2009 (has links)
This thesis presents two hybrid luminescence-based biochemical photosensory microsystems: a CMOS/microfluidic chemiluminescence contact imager, and a CMOS/thin-film fluorescence contact imager. A compact, low-power analog-to-digital converter (ADC) architecture for use in such sensory microsystems is also proposed. Both microsystems are prototyped in a standard 0.35um CMOS technology. The CMOS/microfluidic microsystem integrates a 64x128-pixel CMOS imager and a soft polymer microfluidic network. Circuit techniques are employed to reduce the dark current and circuit noise for low-level light sensitivity. Experimental validation is performed by detecting luminol chemiluminescence and electrochemiluminescence. The CMOS/thin-film microsystem integrates an existing 128x128-pixel CMOS imager and a prefabricated, high-performance optical filter. Experimental validation is performed by detecting human DNA labeled with Cyanine-3 fluorescent dye. The proposed ADC architecture employs a novel digital-to-analog converter with a flexible trade-off between the integration area and the conversion speed. The area savings and good linearity of the DAC are verified by simulations.
217

Architecture Alternatives for Time-interleaved and Input-feedforward Delta-Sigma Modulators

Gharbiya, Ahmed 31 July 2008 (has links)
This thesis strives to enhance the performance of delta-sigma modulators in two areas: increasing their speed and enabling their operation in a low voltage environment. Parallelism based on time-interleaving can be used to increase the speed of delta-sigma modulators. A novel single-path time-interleaved architecture is derived and analyzed. Finite opamp gain and bandwidth result in a mismatch between the noise transfer functions of the internal quantizers which degrades the performance of the new modulator. Two techniques are presented to mitigate the mismatch problem: a hybrid topology where the first stage uses multiple integrators while the rest of the modulator uses a single path of integrators and a digital calibration method. The input-feedforward technique removes the input-signal component from the internal nodes of delta-sigma modulators. The removal of the signal component reduces the signal swing and distortion requirements for the opamps. These characteristics enable the reliable implementation of delta-sigma modulators in modern CMOS technology. Two implementation issues for modulators with input-feedforward are considered. First, the drawback of the analog adder at the quantizer input is identified and the capacitive input feedforward technique is introduced to eliminate the adder. Second, the double sampled input technique is proposed to remove the critical path generate by the input feedforward path. Novel input-feedforward delta-sigma architecture is proposed. The new digital input feedforward (DIFF) modulator maintains the low swing and low distortion requirements of the input feedforward technique, it eliminates the analog adder at the quantizer input, and it improves the achievable resolution. To demonstrate these advantages, a configurable delta-sigma modulator which can operate as a feedback topology or in DIFF mode is implemented in 0.18μm CMOS technology. Both modulators operate at 20MHz clock with an oversampling ratio of 8. The power consumption in the DIFF mode is 22mW and in feedback mode is 19mW. However, the DIFF mode achieves a peak SNDR of 73.7dB (77.1dB peak SNR) while the feedback mode achieves a peak SNDR of 64.3dB (65.9dB peak SNR). Therefore, the energy required per conversion step for the DIFF architecture (2.2 pJ/step) is less than half of that required by the feedback architecture (5.7 pJ/step).
218

Time and statistical information utilization in high efficiency sub-micron CMOS successive approximation analog to digital converters

Guerber, Jon 07 January 2014 (has links)
In an industrial and consumer electronic marketplace that is increasingly demanding greater real-world interactivity in portable and distributed devices, analog to digital converter efficiency and performance is being carefully examined. The successive approximation (SAR) analog to digital converter (ADC) architecture has become popular for its high efficiency at mid-speed and resolution requirements. This is due to the one core single bit quantizer, lack of residue amplification, and large digital domain processing allowing for easy process scaling. This work examines the traditional binary capacitive SAR ADC time and statistical information and proposes new structures that optimize ADC performance. The Ternary SAR (TSAR) uses the quantizer delay information to enhance accuracy, speed and power consumption of the overall SAR while providing multi-level redundancy. The early reset merged capacitor switching SAR (EMCS) identifies lost information in the SAR subtraction and optimizes a full binary quanitzer structure for a Ternary MCS DAC. Residue Shaping is demonstrated in SAR and pipeline configurations to allow for an extra bit of signal to noise quantization ratio (SQNR) due to multi-level redundancy. The feedback initialized ternary SAR (FITSAR) is proposed which splits a TSAR into separate binary and ternary sub-ADC structures for speed and power benefits with an inter-stage encoding that not only maintains residue shaping across the binary SAR, but allows for nearly optimally minimal energy consumption for capacitive ternary DACs. Finally, the ternary SAR ideas are applied to R2R DACs to reduce power consumption. These ideas are tested both in simulation and with prototype results. / Graduation date: 2013 / Access restricted to the OSU Community at author's request from Jan. 7, 2013 - Jan. 7, 2014
219

Design and Implementation of a high-efficiency low-power analog-to-digital converter for high-speed transceivers

Younis, Choudhry Jabbar January 2012 (has links)
Modern communication systems require higher data rates which have increased thedemand for high speed transceivers. For a system to work efficiently, all blocks ofthat system should be fast. It can be seen that analog interfaces are the main bottleneckin whole system in terms of speed and power. This fact has led researchersto develop high speed analog to digital converters (ADCs) with low power consumption.Among all the ADCs, flash ADC is the best choice for faster data conversion becauseof its parallel structure. This thesis work describes the design of such a highspeed and low power flash ADC for analog front end (AFE) of a transceiver. Ahigh speed highly linear track and hold (TnH) circuit is needed in front of ADCwhich gives a stable signal at the input of ADC for accurate conversion. Twodifferent track and hold architectures are implemented, one is bootstrap TnH andother is switched source follower TnH. Simulations show that high speed with highlinearity can be achieved from bootstrap TnH circuit which is selected for the ADCdesign.Averaging technique is employed in the preamplifier array of ADC to reduce thestatic offsets of preamplifiers. The averaging technique can be made more efficientby using the smaller number of amplifiers. This can be done by using the interpolationtechnique which reduces the number of amplifiers at the input of ADC. Thereduced number of amplifiers is also advantageous for getting higher bandwidthsince the input capacitance at the first stage of preamplifier array is reduced.The flash ADC is designed and implemented in 150 nm CMOS technology for thesampling rate of 1.6 GSamples/sec. The bootstrap TnH consumes power of 27.95mW from a 1.8 V supply and achieves the signal to noise and distortion ratio(SNDR) of 37.38 dB for an input signal frequency of 195.3 MHz. The ADC withideal TnH and comparator consumes power of 78.2 mW and achieves 4.8 effectivenumber of bits (ENOB).
220

Live Demonstration of Mismatch Compensation for Time-Interleaved ADCs

Nilsson, Johan, Rothin, Mikael January 2012 (has links)
The purpose of this thesis is to demonstrate the effects of mismatch errors that occur in time-interleaved analog-to-digital converters (TI-ADC) and how these are compensated for by proprietary methods from Signal Processing Devices Sweden AB. This will be demonstrated by two different implementations, both based on the combined digitizer/generator SDR14. These demonstrations shall be done in a way that is easy to grasp for people with limited knowledge in signal processing. The first implementation is an analog video demo where an analog video signal is sampled by such an TI-ADC in the SDR14, and then converted back to analog and displayed with the help of a TV tuner. The mismatch compensation can be turned on and off and the difference on the resulting video image is clearly visible. The second implementation is a digital communication demo based on W-CDMA, implemented on the FPGA of the SDR14. Four parallel W-CDMA signals of 5 MHz are sent and received by the SDR14. QPSK, 16-QAM, and 64-QAM modulated signals were successfully sent and the mismatch effects were clearly visible in the constellation diagrams. Techniques used are, for example: root-raised cosine pulse shaping, RF modulation, carrier recovery, and timing recovery.

Page generated in 0.0469 seconds