• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 220
  • 70
  • 20
  • 13
  • 12
  • 12
  • 8
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 417
  • 417
  • 417
  • 266
  • 142
  • 90
  • 78
  • 68
  • 67
  • 64
  • 54
  • 51
  • 48
  • 48
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

A High Speed Sigma Delta A/D-Converter for a General Purpose RF Front End in 90nm-Technology

Öresjö, Per January 2007 (has links)
In this report a transistor-level design of a GHz Sigma-Delta analog-to-digital converter for an RF front end is proposed. The design is current driven, where the integration is done directly over two capacitances and it contains no operational amplifiers. The clock frequency used for verification was 2.5 GHz and the output band-width was 10 MHz. The system is flexible in that the number of internal bits can be scaled easily and in this report a three-bit system yielding an SNR of 76.5 dB as well as a four-bit system yielding an SNR of 82.5 dB are analyzed.
222

Clock Edge Timing Adjustment Techniques for Correction of Timing Mismatches in Interleaved Analog-to-Digital Converters

Shirtliff, Jason Neil January 2010 (has links)
Time-interleaved analog-to-digital converters make use of parallelization to increase the rate at which an analog signal can be digitized. Using M channels at their maximum sampling frequency allows for an overall sampling frequency of M times the individual converters' sampling rate. However, the performance of interleaved systems suffers from mismatches between the sub-converters. Offset mismatches, gain mismatches, and timing mismatches all contribute to the degradation of the resolution of the ADC system. Offset and gain mismatches can be corrected for in the digital domain with minimal extra processing. However, the effects of timing mismatches (specifically, the magnitude of the spurious tones that are introduced) are dependent on the frequency of the input, so digital correction is not a trivial task. This makes a circuit-based correction mechanism a much more desirable solution to the problem. This work explores the effect of timing mismatches on interleaved analog-to-digital converter performance. A set of requirements is derived to specify the performance of a variable-delay circuit for the tuning of sample clocks. Since the mismatches can be composed of both fixed and random components, several candidate architectures are modeled for their delay and jitter performance. One candidate is selected for design, based on its jitter performance and on practical considerations. A practical implementation of the clock-adjustment circuit is designed, featuring low-noise differential clock paths with high precision delay adjustment. A means of testing the circuit and verifying the precision of adjustment is presented. The design is implemented for fabrication, and post-layout simulations are shown to demonstrate the feasibility and functionality of the design.
223

Design of Robust and Flexible On-chip Analog-to-Digital Conversion Architecture

Kim, Daeik D. 17 August 2004 (has links)
This dissertation presents a comprehensive design and analysis framework for system-on-a-chip analog-to-digital conversion design. The design encompasses a broad class of systems, which take advantage of system-on-a-chip complexity. This class is exemplified by an interferometric photodetector array based bio-optoelectronic sensor that is built and tested as part of the reported work. While there have been many discussions of the technical details of individual analog-to-digital converter (ADC) schemes in the literature, the importance of the analog front-end as a pre-processor for a data converter and the generalized analysis including converter encoding and decoding functions have not previously been investigated thoroughly, and these are key elements in the choice of converter designs for low-noise systems such as bio-optoelectronic sensors. Frequency domain analog front-end models of ADCs are developed to enable the architectural modeling of ADCs. The proposed models can be used for ADC statistically worst-case performance estimation, with stationary random process assumptions on input signals. These models prove able to reveal the architectural advantages of a specific analog-to-digital converter schemes quantitatively, allowing meaningful comparisons between converter designs. The modeling of analog-to-digital converters as communication channels and the ADC functional analysis as encoders and decoders are developed. This work shows that analog-to-digital converters can be categorized as either a decoder-centered design or an encoder-centered design. This perspective helps to show the advantages of nonlinear decoding schemes for oversampling noise-shaping data converters, and a new nonlinear decoding algorithm is suggested to explore the optimum solution of the decoding problem. A case study of decoder-centered and encoder-centered data converter designs is presented by applying the proposed theoretical framework. The robustness and flexibility of the resulting analog-to-digital converters are demonstrated and compared. The electrical and optical sensitivity measurements of a fabricated oversampling noise shaping analog-to-digital converter circuit are provided, and a sensor system-on-a-chip using these ADCs with integrated interferometric waveguides for bio-optoelectronic sensing is demonstrated.
224

A 1.2V 10bits 100-MS/s Pipelined Analog-to-Digital Converter in 90 nm CMOS Technology

Wu, Chun-Tung 07 September 2010 (has links)
The trend toward higher-level circuit integration is the result of demand for lower cost and smaller feature size. The goal of this trend is to have a single-chip solution, in which analog and digital circuits are placed on the same die with advanced CMOS technology. The complete integration of a system may include a digital processor, memory, ADC, DAC, signal conditioning amplifiers, frequency translation, filtering, reference voltage/current generator, etc. Although advanced fabrication technology benefits digital circuits, it poses great challenges for analog circuits. For instance, the scaling of CMOS devices degrades important analog performance such as output resistance, lowering amplifier gain. Simply lowering the power supply voltage in analog circuits does not necessarily result in lower power dissipation. The many design constraints common to the design of analog circuits makes it difficult to curb their power consumption. This is especially true for already complicated analog systems like ADCs; reducing their appetite for power requires careful analysis of system requirements and special strategies. This thesis describes a 10bits 100-MS/s low-voltage pipelined analog-to-digital converter (ADC), which consists of 8-stage-pipelined low resolution ADCs and a 2-bit flash ADC. Several critical technologies are adopted to guarantee the resolution and high sampling and converting rate such as 1.5bits per stage conversion, digital correction logic, folded-cascode gain-boosted amplifiers and so on. The ADC is designed in a 90nm CMOS technology with a 1.2V supply voltage.
225

System Design of a Wide Bandwidth Continuous-Time Sigma-Delta Modulator

Periasamy, Vijayaramalingam 2010 May 1900 (has links)
Sigma-delta analog-to-digital converters are gaining in popularity in recent times because of their ability to trade-off resolutions in the time and voltage domains. In particular, continuous-time modulators are finding more acceptance at higher bandwidths due to the additional advantages they provide, such as better power efficiency and inherent anti-aliasing filtering, compared to their discrete-time counterparts. This thesis work presents the system level design of a continuous-time low-pass sigma-delta modulator targeting 11 bits of resolution over 100MHz signal bandwidth. The design considerations and tradeoffs involved at the system level are presented. The individual building blocks in the modulators are modeled with non-idealities and specifications for the various blocks are obtained in detail. Simulation results obtained from behavioral models of the system in MATLAB and Cadence environment show that a signal-to-noise-and-distortion-ratio (SNDR) of 69.6dB is achieved. A loop filter composed of passive LC sections is utilized in place of integrators or resonators used in traditional modulator implementations. Gain in the forward signal path is realized using active circuits based on simple transconductance stages. A novel method to compensate for excess delay in the loop without using an extra summing amplifier is proposed.
226

A 3-Bit Current Mode Quantizer for Continuous Time Delta Sigma Analog-to-Digital Converters

Sundar, Arun 2011 December 1900 (has links)
The summing amplifier and the quantizer form two of the most critical blocks in a continuous time delta sigma (CT ΔΣ) analog-to-digital converter (ADC). Most of the conventional CT ΔΣ ADC designs incorporate a voltage summing amplifier and a voltage-mode quantizer. The high gain-bandwidth (GBW) requirement of the voltage summing amplifier increases the overall power consumption of the CT ΔΣ ADC. In this work, a novel method of performing the operations of summing and quantization is proposed. A current-mode summing stage is proposed in the place of a voltage summing amplifier. The summed signal, which is available in current domain, is then quantized with a 3-bit current mode flash ADC. This current mode summing approach offers considerable power reduction of about 80% compared to conventional solutions [2]. The total static power consumption of the summing stage and the quantizer is 5.3mW. The circuits were designed in IBM 90nm process. The static and dynamic characteristics of the quantizer are analyzed. The impact of process and temperature variation and mismatch tolerance as well as the impact of jitter, in the presence of an out-of-band blocker signal, on the performance of the quantizer is also studied.
227

IC Design and Implementation of Fast Bipolar Inner Product Processor and Analog to Digital Converter

Hsueh, Ya-Hsin 20 June 2000 (has links)
This thesis is composed of three independent parts, which are respectively focused on three different applications. 1. A Circuit Design of Fast Bipolar Inner Product Processor for Neural Associative Memory Networks¡G A novel and high-speed realization of the bipolar-valued inner product processor for associative memory networks is presented. The proposed design is verified to speed up the inner product computation compared with prior works. 2. An Area-Saving 8-bit A/D Converter Using A Binary Search Scheme¡G A fast and area-saving analog-to-digital converter using DFFs and a digital-to-analog converter is proposed. This design provides a reasonably fast solution for the embedded ADC with the area penalty growing linearly with the data length. 3. A Smart Battery Monitor Emulator System¡G An efficient smart battery monitor emulator system is designed by using the bq2018 IC of Benchmarq company. This system is aimed to improve the battery monitoring efficiency such that the exact remaining power and time of the battery can be estimated.
228

A 1Gsample/s 6-bit flash A/D converter with a combined chopping and averaging technique for reduced distortion in 0.18(mu)m CMOS

Stefanou, Nikolaos 29 August 2005 (has links)
Hard disk drive applications require a high Spurious Free Dynamic Range (SFDR), 6-bit Analog-to-Digital Converter (ADC) at conversion rates of 1GHz and beyond. This work proposes a robust, fault-tolerant scheme to achieve high SFDR in an av- eraging flash A/D converter using comparator chopping. Chopping of comparators in a flash A/D converter was never previously implemented due to lack of feasibility in implementing multiple, uncorrelated, high speed random number generators. This work proposes a novel array of uncorrelated truly binary random number generators working at 1GHz to chop all comparators. Chopping randomizes the residual offset left after averaging, further pushing the dynamic range of the converter. This enables higher accuracy and lower bit-error rate for high speed disk-drive read channels. Power consumption and area are reduced because of the relaxed design requirements for the same linearity. The technique has been verified in Matlab simulations for a 6-bit 1Gsamples/s flash ADC under case of process gradients with non-zero mean offsets as high as 60mV and potentially serious spot offset errors as high as 1V for a 2V peak to peak input signal. The proposed technique exhibits an improvement of over 15dB compared to pure averaging flash converters for all cases. The circuit-level simulation results, for a 1V peak to peak input signal, demon- strate superior performance. The reported ADC was fabricated in TSMC 0.18 ??mCMOS process. It occupies 8.79mm2 and consumes about 400mW from 1.8V power supply at 1GHz. The targeted SFDR performance for the fabricated chip is at least 45dB for a 256MHz input sine wave, sampled at 1GHz, about 10dB improvement on the 6-bit flash ADCs in the literature.
229

Analysis and design of a sigma-delta modulator using slidingmode control theory for A/D signal converter applications.

Hsu, Deng-Hau 11 August 2008 (has links)
The main goal of this thesis is to study the saturation problem arisen from the integrator in a sigma- delta analog- to- digital modulator , especially when the order of the circuit is higher than two .Signal passes through each stage of integrators yield saturation problem. This situation will miss some part of messages .Unable to deliver datas accurately to next stage of the integrator , the output digital signals will be incorrect and can't be recovered to original analog signals . Hence, this thesis proposes an anti-wind-up method by taking sliding mode control theory to avoid integrator saturation. After that, we are going to design and implement two third order sigma-delta modulators based on this method. Simulation and experiment results show the validity of the method and the significant improvement of avoiding saturation problem, and guarantee the designed circuits can translate signals to terminal accurately .
230

Characterization and Correction of Analog-to-Digital Converters

Lundin, Henrik January 2005 (has links)
<p>Denna avhandling behandlar analog-digitalomvandling. I synnerhet behandlas postkorrektion av analog-digitalomvandlare (A/D-omvandlare). A/D-omvandlare är i praktiken behäftade med vissa fel som i sin tur ger upphov till distorsion i omvandlarens utsignal. Om felen har ett systematiskt samband med utsignalen kan de avhjälpas genom att korrigera utsignalen i efterhand. Detta verk behandlar den form av postkorrektion som implementeras med hjälp av en tabell ur vilken korrektionsvärden hämtas.</p><p>Innan en A/D-omvandlare kan korrigeras måste felen i den mätas upp. Detta görs genom att estimera omvandlarens överföringsfunktion. I detta arbete behandlas speciellt problemet att skatta kvantiseringsintervallens mittpunkter. Det antas härvid att en referenssignal finns tillgänglig som grund för skattningen. En skattare som baseras på sorterade data visas vara bättre än den vanligtvis använda skattaren baserad på sampelmedelvärde.</p><p>Nästa huvudbidrag visar hur resultatet efter korrigering av en A/D-omvandlare kan predikteras. Omvandlaren antas här ha en viss differentiell olinjäritet och insignalen antas påverkad av ett slumpmässigt brus. Ett postkorrektionssystem, implementerat med begränsad precision, korrigerar utsignalen från A/D-omvandlaren. Ett utryck härleds som beskriver signal-brusförhållandet efter postkorrektion. Förhållandet visar sig bero på den differentiella olinjäritetens varians, det slumpmässiga brusets varians, omvandlarens upplösning samt precisionen med vilken korrektionstermerna beskrivs.</p><p>Till sist behandlas indexering av korrektionstabeller. Valet av metod för att indexera en korrektionstabell påverkar såväl tabellens storlek som förmågan att beskriva och korrigera dynamiska fel. I avhandlingen behandlas i synnerhet tillståndsmodellbaserade metoder, det vill säga metoder där tabellindex bildas som en funktion utav flera på varandra följande sampel. Allmänt gäller att ju fler sampel som används för att bilda ett tabellindex, desto större blir tabellen, samtidigt som förmågan att beskriva dynamiska fel ökar. En indexeringsmetod som endast använder en delmängd av bitarna i varje sampel föreslås här. Vidare så påvisas hur valet av indexeringsbitar kan göras optimalt, och experimentella utvärderingar åskådliggör att tabellstorleken kan reduceras avsevärt utan att fördenskull minska prestanda mer än marginellt.</p><p>De teorier och resultat som framförs här har utvärderats med experimentella A/D-omvandlardata eller genom datorsimuleringar.</p> / <p>Analog-to-digital conversion and quantization constitute the topic of this thesis. Post-correction of analog-to-digital converters (ADCs) is considered in particular. ADCs usually exhibit non-ideal behavior in practice. These non-idealities spawn distortions in the converters output. Whenever the errors are systematic, it is possible to mitigate them by mapping the output into a corrected value. The work herein is focused on problems associated with post-correction using look-up tables. All results presented are supported by experiments or simulations.</p><p>The first problem considered is characterization of the ADC. This is in fact an estimation problem, where the transfer function of the converter should be determined. This thesis deals with estimation of quantization region midpoints, aided by a reference signal. A novel estimator based on order statistics is proposed, and is shown to have superior performance compared with the sample mean traditionally used.</p><p>The second major area deals with predicting the performance of an ADC after post-correction. A converter with static differential nonlinearities and random input noise is considered. A post-correction is applied, but with limited (fixed-point) resolution in the corrected values. An expression for the signal-to-noise and distortion ratio after post-correction is provided. It is shown that the performance is dependent on the variance of the differential nonlinearity, the variance of the random noise, the resolution of the converter and the precision of the correction values.</p><p>Finally, the problem of addressing, or indexing, the correction look-up table is dealt with. The indexing method determines both the memory requirements of the table and the ability to describe and correct dynamically dependent error effects. The work here is devoted to state-space--type indexing schemes, which determine the index from a number of consecutive samples. There is a tradeoff between table size and dynamics: more samples used for indexing gives a higher dependence on dynamic, but also a larger table. An indexing scheme that uses only a subset of the bits in each sample is proposed. It is shown how the selection of bits can be optimized, and the exemplary results show that a substantial reduction in memory size is possible with only marginal reduction of performance.</p>

Page generated in 0.0451 seconds