• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 12
  • 7
  • Tagged with
  • 47
  • 32
  • 20
  • 18
  • 12
  • 12
  • 12
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Magnetic Excitations in Single and Coupled Atoms on Surfaces: From the Kondo Effect to Yu-Shiba-Rusinov States / Magnetische Anregungen in einzelnen und gekoppelten Atomen auf Oberflächen: Vom Kondo-Effekt zu Yu-Shiba-Rusinov-Zuständen

Friedrich, Felix January 2023 (has links) (PDF)
Magnetic systems underlie the physics of quantum mechanics when reaching the limit of few or even single atoms. This behavior limits the minimum size of magnetic bits in data storage devices as spontaneous switching of the magnetization leads to the loss of information. On the other hand, exactly these quantum mechanic properties allow to use such systems in quantum computers. Proposals to realize qubits involve the spin states of single atoms as well as topologically protected Majorana zero modes, that emerge in coupled systems of magnetic atoms in proximity to a superconductor. In order to implement and control the proposed applications, a detailed understanding of atomic spins and their interaction with the environment is required. In this thesis, two different systems of magnetic adatoms coupled to metallic and superconducting surfaces are studied by means of scanning tunneling microscopy (STM) and spectroscopy: Co atoms on the clean Cu(111) were among the first systems exhibiting signatures of the Kondo effect in an individual atom. Yet, a recent theoretical work proposed an alternative interpretation of these early experimental results, involving a newly described many-body state. Spin-averaged and -polarized experiments in high magnetic fields presented in this thesis confirm effects beyond the Kondo effect that determine the physics in these Co atoms and suggest a potentially even richer phenomenology than proposed by theory. The second studied system are single and coupled Fe atoms on the superconducting Nb(110) surface. Magnetic impurities on superconducting surfaces locally induce Yu-Shiba-Rusinov (YSR) states inside the superconducting gap due to their pair breaking potential. Coupled systems of such impurities exhibit YSR bands and, if the bands cross the Fermi level such that the band structure is inverted, host Majorana zero modes. Using the example of Fe atoms on Nb(110), the YSR states’ dependence on the adatom–substrate interaction as well as the interatomic YSR state coupling is investigated. In the presence of oxygen on the Nb surface, the adatom–substrate interaction is shown to be heavily modified and the YSR states are found to undergo a quantum phase transition, which can be directly linked to a modified Kondo screening. STM tips functionalized with CO molecules allow to resolve self-assembled one-dimensional chains of Fe atoms on the clean Nb(110) surface to study the YSR states’ coupling. Mapping out the states’ wave functions reveals their symmetry, which is shown to alter as a function of the states’ energy and number of atoms in the chain. These experimental results are reproduced in a simple tight-binding model, demonstrating a straightforward possibility to describe also more complex YSR systems toward engineered, potentially topologically non-trivial states. / Magnetische Systeme unterliegen im Limit von wenigen Atomen den Gesetzen der Quantenmechanik. Diese Tatsache beschränkt die minimale Größe magnetischer Bits in der Datenspeicherung, da spontane Änderungen der Magnetisierung zu Datenverlust führen. Gleichzeitig ist es genau jenes quantenmechanische Verhalten, welches es erlaubt, diese Systeme in Quantencomputern zu verwenden. Vorschläge, die dafür notwendigen Qubits zu realisieren, umfassen die Spinzustände einzelner Atome sowie topologisch geschützte Majorana-Nullmoden, welche in Systemen gekoppelter magnetischer Atome in Supraleitern auftreten. Für die Umsetzung dieser Anwendungen sind detaillierte Kenntnisse über die Wechselwirkung atomarer Spins mit ihrer Umgebung nötig. In dieser Arbeit werden zwei verschiedene solcher Systeme aus magnetischen Adatomen auf Oberflächen mit der Methode der Rastertunnelmikroskopie (RTM) und -spektroskopie untersucht: Lange galten einzelne Co-Atome auf der Cu(111)-Oberfläche als prototypisches Modell für den Kondo-Effekt in Einzelatomen. Dies wurde jedoch vor Kurzem durch eine Theoriearbeit infrage gestellt, welche die bisherigen experimentellen Daten durch das Auftreten eines neu beschriebenen Vielteilchen-Zustands erklärt. In dieser Arbeit werden neue, spingemittelte und -aufgelöste Messungen in hohen Magnetfeldern präsentiert, welche das Auftreten von Effekten jenseits des Kondo-Effekts in diesem System bestätigen. Im zweiten Teil der Arbeit werden einzelne und gekoppelte Fe-Atome auf der supraleitenden Nb(110)-Oberfläche untersucht. Magnetische Defekte erzeugen in Supraleitern aufgrund ihres Paarbrechungspotentials Yu-Shiba-Rusinov(YSR)-Zustände innerhalb der supraleitenden Bandlücke. Die Kopplung dieser Zustände resultiert in YSR-Bändern, und kann durch Inversion der Bandlücke zum Auftreten von Majorana-Nullmoden führen. Am Beispiel von Fe-Atomen auf Nb(110) wird hier der Einfluss der Adatom–Oberflächen-Wechselwirkung auf die YSR-Zustände sowie deren interatomare Kopplung untersucht. Es wird gezeigt, dass Sauerstoff die Wechselwirkung stark beeinflusst und die atomaren YSR-Zustände infolge dessen einen Quantenphasenübergang durchlaufen. Dieser kann direkt auf eine veränderte Kondo-Abschirmung zurückgeführt werden. Weiter werden mittels mit CO-Molekülen funktionalisierter RTM-Spitzen eindimensionale Ketten aus Fe-Atomen auf der sauberen Nb(110)-Oberfläche identifiziert, anhand derer die Kopplung der YSR-Zustände untersucht wird. Ortsaufgelöste Messungen der zugehörigen Wellenfunktionen decken die Symmetrie dieser Zustände auf, welche ein alternierendes Verhalten zwischen Ketten mit gerader und ungerader Atomzahl aufweist. Diese experimentellen Ergebnisse werden anschließend in einem tight-binding-Modell, welches auch auf komplexere Systeme angewandt werden kann, beschrieben.
12

Coherent Multiple-Quantum Multidimensional Fluorescence Spectroscopy / Kohärente multidimensionale Multiquanten-Fluoreszenzspektroskopie

Müller, Stefan January 2022 (has links) (PDF)
This thesis describes novel concepts for the measurement of the static and dynamic properties of the electronic structure of molecules and nanocrystals in the liquid phase by means of coherent fluorescence-detected spectroscopy in two and three frequency dimensions. These concepts are based on the systematic variation ("phase cycling") of a sequence of multiple time-delayed femtosecond excitation pulses in order to decode a multitude of novel nonlinear signals from the resulting phase-dependent fluorescence signal. These signals represent any permutation of correlations between zero-, one-, two-, and three-quantum coherences. To this end, two new phase-cycling schemes have been developed which can simultaneously resolve and discriminate several nonlinear signals of sixth order, including those of the fourth order of nonlinearity. By means of the sixth-order signals recorded in this work, static properties of highly excited electronic states in molecules such as their energies, transition dipole moments, and relative displacement of electronic potential surfaces, as well as dynamic properties in terms of their relaxation kinetics, can be ascertained. Furthermore, it was shown that these signals are suitable for the characterization of exciton-exciton correlations in colloidal quantum dots and for the measurement of ultrafast exciton-exciton annihilation in molecular aggregates. The experiments performed in this thesis mark an important step towards the complete characterization of the nonlinear response of quantum systems. In view of this, the concept of fluorescence-detected multiple-quantum coherence multidimensional spectroscopy introduced here offers a unified, systematic approach. In virtue of the technical advantages such as the use of a single excitation beam and the absence of nonresonant contributions, the measurement protocols developed here can be directly transferred to other incoherent observables and to sample systems in other states of matter. Furthermore, the approaches presented here can be systematically extended to higher frequency dimensions and higher orders of nonlinearity. / Diese Arbeit beschreibt neuartige Konzepte zur Messung der statischen und dynamischen Eigenschaften der elektronischen Stuktur von Molekülen und Nanokristallen in der flüssigen Phase mittels kohärenter Fluoreszenz-detektierter Spektroskopie in zwei und drei Frequenzdimensionen. Diese Konzepte beruhen auf der systematischen Phasenvariation ("Phase Cycling") einer Sequenz mehrerer zeitverzögerter Femtosekunden-Anregepulse, um aus dem resultierenden phasenabhängigen Fluoreszenzsignal eine Vielzahl von neuartigen nichtlinearen Signalen zu dekodieren. Diese Signale stellen jegliche Permutationen von Korrelationen zwischen Null-, Ein-, Zwei- und Drei-Quantenkohärenzen dar. Hierzu wurden zwei neue Phase-Cycling Schemata entwickelt, welche gleichzeitig mehrere nichtlineare Signale der sechsten Ordnung auflösen und voneinander unterscheiden können, inklusive der Signale der vierten nichtlinearen Ordnung. Mit den in dieser Arbeit aufgenommenen Signalen der sechsten Ordnung können statische Eigenschaften hoch-angeregter elektronischer Zustände in Molekülen wie deren Energien, Übergangsdipolmomente, relative Verschiebung elektronischer Potentialflächen zueinander, sowie dynamische Eigenschaften in Bezug auf deren Relaxationskinetik ermittelt werden. Ferner wurde gezeigt, dass diese Signale zur Charakterisierung von Exziton-Exziton-Korrelationen in kolloidalen Quantenpunkten sowie zur Messung ultraschneller Exziton-Exziton-Annihilierung in molekularen Aggregaten geeignet sind. Die Experimente dieser Arbeit markieren einen wichtigen Schritt in Richtung der vollständigen Charakterisierung der nichtlinearen Antwort von Quantensystemen. Das hier eingeführte Konzept der Fluoreszenz-detektierten multidimensionalen Multiquantenkohärenz-Spektroskopie bietet hierfür einen vereinheitlichten, systematischen Ansatz. In Hinblick auf technische Vorteile wie der Verwendung eines einzigen Anregestrahls und der Abwesenheit von nichtresonanten Beiträgen lassen sich die hier entwickelten Messprotokolle direkt auf andere inkohärente Observablen und auf Probesysteme in anderen Aggregatszuständen übertragen. Ferner lassen sich die vorgestellten Ansätze systematisch auf höhere Frequenzdimensionen und nichtlineare Ordnungen erweitern.
13

Magnetische Anregungen und Achsenkonversion in NdCu 2

Kramp, Sirko. January 2001 (has links)
Dresden, Techn. Univ., Diss., 2000.
14

Wärmeleitfähigkeit amorpher Cu x Sn 100-x -Schichten

Schmidt, Ralf. January 1998 (has links)
Chemnitz, Techn. Univ., Diss., 1998.
15

Erhöhte Laserabsorption in ausgedehnten Clustermedien

Kanapathipillai, Murukesapillai. Unknown Date (has links)
Techn. Universiẗat, Diss., 2003--Darmstadt.
16

Spectroscopy of Discrete Breathers

Miroshnichenko, Andrey 02 November 2003 (has links) (PDF)
In this work the interaction between a spatial localized and time periodic state (discrete breather) and small amplitude plane waves is studied.
17

Zerfall eines Flüssigkeitsstrahles bei periodischer Anregung

Geschner, Frank 08 December 2009 (has links) (PDF)
Im Rahmen der verfassten Dissertation wurde der Zerfall eines Flüssigkeitsstrahles untersucht, dessen Austrittsgeschwindigkeit durch periodische Geschwindigkeitsschwankungen moduliert wurde. Dabei konnten Phänomene beobachtet werden, die sich in neun Kategorien klassifizieren lassen. In dem relevanten fünfparametrigen dimensionslosen Raum konnten alle beobachteten Phänomene gegeneinander abgegrenzt werden. Soweit dies möglich war, wurden die Lage bzw. der Verlauf der Grenzen quantitativ bestimmt. Anhand dieser Grenzen konnten die relevanten Einflussgrößen auf die entstehenden Strahlstrukturen beschrieben werden. Es konnten Aussagen bezüglich der Entstehungsmechanismen gemacht werden. Die Untersuchungen wurden durch Auswertung der experimentell ermittelten Daten sowie durch numerische Berechnungen vorgenommen.
18

Ultrafast lattice dynamics in photoexcited nanostructures : femtosecond X-ray diffraction with optimized evaluation schemes

Schick, Daniel January 2013 (has links)
Within the course of this thesis, I have investigated the complex interplay between electron and lattice dynamics in nanostructures of perovskite oxides. Femtosecond hard X-ray pulses were utilized to probe the evolution of atomic rearrangement directly, which is driven by ultrafast optical excitation of electrons. The physics of complex materials with a large number of degrees of freedom can be interpreted once the exact fingerprint of ultrafast lattice dynamics in time-resolved X-ray diffraction experiments for a simple model system is well known. The motion of atoms in a crystal can be probed directly and in real-time by femtosecond pulses of hard X-ray radiation in a pump-probe scheme. In order to provide such ultrashort X-ray pulses, I have built up a laser-driven plasma X-ray source. The setup was extended by a stable goniometer, a two-dimensional X-ray detector and a cryogen-free cryostat. The data acquisition routines of the diffractometer for these ultrafast X-ray diffraction experiments were further improved in terms of signal-to-noise ratio and angular resolution. The implementation of a high-speed reciprocal-space mapping technique allowed for a two-dimensional structural analysis with femtosecond temporal resolution. I have studied the ultrafast lattice dynamics, namely the excitation and propagation of coherent phonons, in photoexcited thin films and superlattice structures of the metallic perovskite SrRuO3. Due to the quasi-instantaneous coupling of the lattice to the optically excited electrons in this material a spatially and temporally well-defined thermal stress profile is generated in SrRuO3. This enables understanding the effect of the resulting coherent lattice dynamics in time-resolved X-ray diffraction data in great detail, e.g. the appearance of a transient Bragg peak splitting in both thin films and superlattice structures of SrRuO3. In addition, a comprehensive simulation toolbox to calculate the ultrafast lattice dynamics and the resulting X-ray diffraction response in photoexcited one-dimensional crystalline structures was developed in this thesis work. With the powerful experimental and theoretical framework at hand, I have studied the excitation and propagation of coherent phonons in more complex material systems. In particular, I have revealed strongly localized charge carriers after above-bandgap femtosecond photoexcitation of the prototypical multiferroic BiFeO3, which are the origin of a quasi-instantaneous and spatially inhomogeneous stress that drives coherent phonons in a thin film of the multiferroic. In a structurally imperfect thin film of the ferroelectric Pb(Zr0.2Ti0.8)O3, the ultrafast reciprocal-space mapping technique was applied to follow a purely strain-induced change of mosaicity on a picosecond time scale. These results point to a strong coupling of in- and out-of-plane atomic motion exclusively mediated by structural defects. / Im Rahmen dieser Arbeit habe ich mich mit den komplexen Wechselwirkungen zwischen Elektronen- und Gitterdynamik in oxidischen Perowskit-Nanostrukturen beschäftigt. Dazu wurden verschiedene Proben mit intensiven, ultrakurzen Laserpulsen angeregt. Um die zeitliche Entwicklung der induzierten atomaren Umordnung zu untersuchen, wurden Femtosekunden-Pulse harter Röntgenstrahlung genutzt. Zunächst wurde die ultraschnelle Gitterdynamik in einfachen Modellsystemen mit zeitaufgelösten Röntgendiffraktionsexperimenten untersucht, um im Anschluss ähnliche Experimente an komplexeren Materialien mit mehreren Freiheitsgraden interpretieren zu können. Die Bewegung der Atome in einem Kristall kann über Anrege-Abtast-Verfahren direkt mit gepulster, harter Röntgenstrahlung gemessen werden. Die Dauer der Röntgenpulse muss dafür einige hundert Femtosekunden kurz sein. Um diese ultrakurzen Röntgenpulse zu erzeugen, habe ich eine lasergetriebene Plasma-Röntgenquelle aufgebaut. Der Aufbau wurde um ein stabiles Goniometer, einen zweidimensionalen Röntgendetektor und einen kryogenfreien Kryostat erweitert und in Bezug auf das Signal-zu-Rausch-Verhältnis und die Winkelauflösung optimiert. Durch die Entwicklung einer schnellen Methode zur Vermessung des reziproken Raums konnte erstmals an solch einer Quelle eine zweidimensionale Strukturanalyse mit Femtosekunden-Zeitauflösung realisiert werden. Die Anregung und Ausbreitung von kohärenten Phononen habe ich in optisch angeregten Dünnfilm- und Übergitterstrukturen untersucht. Eine entscheidende Rolle spielen dabei metallische SrRuO3 Schichten. Durch die quasi-instantane Kopplung des Gitters an die optisch angeregten Elektronen in SrRuO3 wird ein räumlich und zeitlich wohldefiniertes Druckprofil erzeugt. Dadurch kann der Einfluss der resultierenden kohärenten Gitterdynamik auf die zeitaufgelösten Röntgendiffraktionsdaten im Detail verstanden werden. Beobachtet wurde z.B. das Auftreten einer transienten Aufspaltung eines Bragg-Reflexes bei Dünnfilm- und Übergitterstrukturen aus SrRuO3. Außerdem wurde eine umfangreiche Simulationsumgebung entwickelt, mit deren Hilfe die ultraschnelle Dynamik und die dazugehörigen Röntgendiffraktionssignale in optisch angeregten eindimensionalen Kristallstrukturen berechnet werden können. Der von mir entwickelte experimentelle Aufbau sowie das Simulationspaket zur Datenanalyse und -interpretation wurden anschließend für die Untersuchung kohärenter Phononen in komplexeren Materialsystemen eingesetzt. Im Speziellen konnte ich in multiferroischem BiFeO3 eine stark lokalisierte Ladungsträgerverteilung nach einer optischen Femtosekunden-Anregung nachweisen. Sie ist die Ursache für einen quasi-instantanen und räumlich inhomogenen Druck, der die kohärenten Phononen in einem dünnen Film dieses Multiferroikums erzeugt. Außerdem habe ich die ultraschnelle Vermessung des reziproken Raums angewendet, um eine verzerrungsinduzierte Veränderung der Mosaizität in einem strukturell unvollkommenen Film aus ferroelektrischem Pb(Zr0.2Ti0.8)O3 zu verfolgen. Die Ergebnisse deuten auf eine ausschließlich durch strukturelle Defekte vermittelte Kopplung der atomaren Bewegungen parallel und senkrecht zur Flächennormalen des Filmes hin.
19

Molecules in strong laser fields

Awasthi, Manohar 21 January 2010 (has links)
Eine Methode zur Lösung der zeitabhängigen Schrödingergleichung (engl. time-dependent Schrödinger equation, TDSE) wurde entwickelt, welche das Verhalten der Elektronenbewegung in Molekülen beschreibt, die ultrakurzen, intensiven Laserpulsen ausgesetzt werden. Die zeitabhängigen elektronischen Wellenfunktionen werden durch eine Superposition von feldfreien Eigenzuständen beschrieben, welche auf zwei Weisen berechnet werden. Im ersten Ansatz , welcher auf Zweielektronen-Systeme wie H$_2$ anwendbar ist, werden die voll korrelierten feldfreien Eigenzustände in voller Dimensionalität in einem Konfigurations-Wechselwirkungs Verfahren (engl. configuration interaction, CI) bestimmt, wobei die Einelektron-Basisfunktionen mit B-Splines beschrieben werden. Im zweiten Verfahren, welches sogar auf größere Moleküle anwendbar ist, werden die feldfreien Eigenzustände in der Näherung eines aktiven Elektrons (engl. single active electron, SAE) mit Verwendung der Dichtefunktionaltheorie (DFT) bestimmt. Im Allgemeinen kann die Methode zum Auffinden der zeitabhängigen Lösung in zwei Schritte, dem Auffinden der feldfreien Eigenzustände und einer Zeitpropagation in Abhängigkeit der Laserpuls-Parameter, unterteilt werden. Die Gültigkeit der SAE Näherung ist überprüft und die Ergebnisse für grund und erste angeregte zustand der Wasserstoff-Molekül werden vorgestellt. Die Ergebnisse für einige größere Moleküle innerhalb der SAE Angleichung werden ebenfalls gezeigt. / A method for solving the time-dependent Schrödinger equation (TDSE) describing the electronic motion of the molecules exposed to very short intense laser pulses has been developed. The time-dependent electronic wavefunction is expanded in terms of a superposition of field-free eigenstates. The field-free eigenstates are calculated in two ways. In the first approach, which is applicable to two electron systems like hydrogen molecule, fully correlated field-free eigenstates are obtained in complete dimensionality using configuration-interaction calculation where the one-electron basis functions are built from B-splines. In the second approach, which is even applicable to larger molecules, the field-free eigenstates are calculated within the single-active-electron (SAE) approximation using density functional theory. In general, the method can be divided into two parts, in the first part the field-free eigenstates are calculated and then in the second part a time propagation for the laser pulse parameters is performed. Using these methods the validity of SAE approximation is tested and the results for the ground and first excited state of hydrogen molecule are presented. The results for some larger molecules within the SAE approximation are also shown.
20

Ionization of molecular hydrogen in ultrashort intense laser pulses

Vanne, Yulian V. 30 March 2010 (has links)
Ein neuer numerischer ab initio Ansatz wurde entwickelt und zur Lösung der zeitabhängigen Schrödingergleichung für zweiatomig Moleküle mit zwei Elektronen (z.B. molekularer Wasserstoff), welche einem intensiven kurzen Laserpuls ausgesetzt sind, angewandt. Die Methode basiert auf der Näherung fester Kernabstände und der nicht-relativistischen Dipolnäherung und beabsichtigt die genaue Beschreibung der beiden korrelierten Elektronen in voller Dimensionalität. Die Methode ist anwendbar für eine große Bandbreite von Laserpulsparamtern und ist in der Lage, Einfachionisationsprozesse sowohl mit wenigen als auch mit vielen Photonen zu beschreiben, sogar im nicht-störungstheoretischen Bereich. Ein entscheidender Vorteil der Methode ist ihre Fähigkeit, die Reaktion von Molekülen mit beliebiger Orientierung der molekularen Achse im Bezug auf das linear polarisierte Laserfeld in starken Feldern zu beschreiben. Dementsprechend berichtet diese Arbeit von der ersten erfolgreichen orientierungsabhängigen Analyse der Multiphotonenionisation von H2, welche mit Hilfe einer numerischen Behandlung in voller Dimensionalität durchgeführt wurde. Neben der Erforschung des Bereichs weniger Photonen wurde eine ausführliche numerische Untersuchung der Ionisation durch ultrakurze frequenzverdoppelte Titan:Saphir-Laserpulse (400 nm) präsentiert. Mit Hilfe einer Serie von Rechnungen für verschiedene Kernabstände wurden die totalen Ionisationsausbeuten für H2 und D2 in ihren Vibrationsgrundzuständen sowohl für parallele als auch für senkrechte Ausrichtung erhalten. Eine weitere Serie von Rechnungen für 800nm Laserpulse wurde benutzt, um ein weitverbreitetes einfaches Interferenzmodel zu falsifizieren. Neben der Diskussion der numerischen ab initio Methode werden in dieser Arbeit verschiedene Aspekte im Bezug auf die Anwendung der Starkfeldnäherung für die Erforschung der Reaktion eines atomaren oder molekularen Systems auf ein intensives Laserfeld betrachtet. / A novel ab initio numerical approach is developed and applied that solves the time-dependent Schrödinger equation describing two-electron diatomic molecules (e.g. molecular hydrogen) exposed to an intense ultrashort laser pulse. The method is based on the fixed-nuclei and the non-relativistic dipole approximations and aims to accurately describe both correlated electrons in full dimensionality. The method is applicable for a wide range of the laser pulse parameters and is able to describe both few-photon and many-photon single ionization processes, also in a non-perturbative regime. A key advantage of the method is its ability to treat the strong-field response of the molecules with arbitrary orientation of the molecular axis with respect to the linear-polarized laser field. Thus, this work reports on the first successful orientation-dependent analysis of the multiphoton ionization of H2 performed by means of a full-dimensional numerical treatment. Besides the investigation of few-photon regime, an extensive numerical study of the ionization by ultrashort frequency-doubled Ti:sapphire laser pulses (400 nm) is presented. Performing a series of calculations for different internuclear separations, the total ionization yields of H2 and D2 in their ground vibrational states are obtained for both parallel and perpendicular orientations. A series of calculations for 800nm laser pulses are used to test a popular simple interference model. Besides the discussion of the ab initio numerical method, this work considers different aspects related to the application of the strong-field approximation (SFA) for investigation of a strong-field response of an atomic and molecular system. Thus, a deep analysis of the gauge problem of SFA is performed and the quasistatic limit of the velocity-gauge SFA ionization rates is derived. The applications of the length gauge SFA are examined and a recently proposed generalized Keldysh theory is criticized.

Page generated in 0.1551 seconds