• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 20
  • 19
  • 15
  • 9
  • 6
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 143
  • 59
  • 51
  • 35
  • 18
  • 18
  • 17
  • 15
  • 15
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Mitteilungen des URZ 2/2003

Dippmann,, Junghänel,, Müller,, Richter,, Riedel,, Schier,, Strobel,, Trapp,, Wegener,, Ziegler, 08 March 2004 (has links)
Informationen des Universitätsrechenzentrums
132

Les évolutions contemporaines du régionalisme africain : essai sur la rationalisation de l'intégration africaine au regard du ddroit international public / Contemporary developments of African regionalism : an attempt at rationalizing African integration from a international public law perspective

Tchameni, Augustin 20 September 2011 (has links)
A rebours du schéma élaboré dans le cadre du Traité d’Abuja signé le 3 juin 1991 par les Etats membres de L’Organisation de l’unité Africaine (OUA), la divergence actuelle des systèmes régionaux africains constitue une dénaturation de l’approche convenue. Ce texte prévoit en effet dans son article 6, la création des Communautés économiques régionales (CER) comme une modalité de l’intégration continentale. A ce titre, huit CER sont aujourd’hui reconnues par l’Union Africaine : la Communauté Economique des Etats de l’Afrique de l’Ouest (CEDEAO) ; la Communauté Economique des Etats de l’Afrique Centrale (CEEAC) ; la Communauté de l’Afrique de l’Est (CAE) ; la Southern Africa Development Community (SADC); l’Autorité Intergouvernementale pour le Développement (IGAD); le Marché Commun de l’Afrique Australe et Orientale (COMESA); l’Union du Maghreb Arabe (UMA); et la Communauté des Etats Sahélo-Sahariens (CEN-SAD). L’établissement de la Communauté économique africaine instituée par le Traité, reste subordonné à la réussite de ces systèmes communautaires régionaux. Toutefois, la multiplication d’autres organisations communautaires sous-régionales - en plus de celles reconnues - d’une part, et la mise en œuvre de programmes et activités similaires dans le domaine économique d’autre part, tendent à compromettre la réalisation du projet africain. Cette situation fait échec au concept de départ qui établit le principe d’une exclusivité régionale à la faveur de la CER reconnue. A cause de chevauchements des objectifs poursuivis, il s’ensuit entre les organisations régionales, des rapports de rivalité plutôt que de complémentarité, aboutissant à la coexistence des systèmes d’intégration concurrents. Les rapports entre les CER et l’Organisation continentale rendent également visibles les insuffisances liées à la coordination du processus projeté. L’Union Africaine ne disposant pas du tout ou pas suffisamment des moyens juridiques lui permettant une intrusion dans la mise en œuvre des programmes communautaires régionaux, l’application des dispositions du Traité d’Abuja par les CER, ne semble pas homogène. La matérialisation des ambitions affichées par les Etats signataires demeure à ce jour conditionnée par la rationalisation de l’intégration envisagée. Cette étude vise à proposer quelques pistes de solutions en ce sens. / In stark contrast to the vision which emerged from the Treaty of Abuja, ratified by the member states of the Organisation of African Unity on the 3rd of June 1991, the present divergence of regional systems in Africa constitutes a serious distortion of the approach that was agreed upon. Indeed, in Article 6, the treaty sets forth the “strengthening of existing regional economic communities” (RECs) as a means of achieving integration on a continental scale. Along these lines, the African Union now recognizes eight RECs: the Economic Community of West African States (ECOWAS), the Economic Community of Central African States (ECCAS), the East African Community (EAC), the Southern African Development Community (SADC), the Intergovernmental Authority on Development (IGAD), the Common Market for Eastern and Southern Africa (COMESA), the Arab Maghreb Union (AMU), and the Community of Sahel-Saharan States (CEN-SAD). As laid out in the treaty, the establishment of the African Economic Community is entirely dependent upon the success of these regional community systems. At the same time, the increase of other community organisations at the sub-regional level, beyond those officially recognized, on the one hand, and the implementation of similar programmes and activities, on the other hand, tend to endanger the realisation of the African project. This situation flies in the face of the original idea, which was based on the principle of the regional exclusivity of the recognized RECs. As a result of the various overlapping goals that are being pursued by difference organisations, competitive rather than complimentary relations have led to a coexistence of rival systems of integration. The relations between the RECs and the continental organization (the AU) have also made apparent the inadequacy of the coordination procedure that had been envisaged. As the African Union does not have sufficient legal means at its disposal to intervene in the implementation of regional community programmes, the execution of the Treaty of Abuja by the RECs lacks homogeneity. In order to achieve the ambitions declared by those member states who signed the treaty, a rationalisation of the proposed integration is necessary. The present study puts forward several proposals as to how such a rationalisation may be accomplished.
133

Development Of An Advanced Methodology For Automotive IC Engine Design Optimization Using A Multi-Physics CAE Approach

Sehemby, Amardeep A Singh 09 1900 (has links) (PDF)
The internal combustion engine is synonyms with the automobile since its invention in late 19th century. The internal combustion engine today is far more advanced and efficient compared to its early predecessors. An intense competition exists today amongst the automotive OEMs in various countries and regions for stepping up sales and increasing market share. The pressure on automotive OEMs to reduce fuel consumption and emission is enormous which has lead to innovations of many variations in engine and engine-related technologies. However, IC engines are in existence for well more than a century and hence have already evolved to a highly refined state. Changes in IC engine are therefore largely incremental in nature. A deterrent towards development of an engine configuration that is significantly different from its predecessor is the phenomenal cost involved in prototyping. Thus, the only viable alternative in exploring new engine concepts and even optimizing designs currently in operation is through extensive use of CAE. In light of published work in the field of analysis of IC engines, current research effort is directed towards development of a rational methodology for arriving at a weight-optimized engine design, which simultaneously meets performance of various attributes such as thermal, durability, vehicle dynamics and NVH. This is in contrast to the current methodology adopted in industry, according to which separate teams work on aspects of engine design such as combustion, NVH (Noise, Vibration and Harshness), acoustics, dynamics, heat transfer and durability. Because of the involvement of heterogeneous product development groups, optimization of an engine for weight, which can have a significant impact on its power-to-weight ratio, becomes a slow process beset with manual interventions and compromise solutions. Thus, following the traditional approach, it is quite difficult to claim that an unambiguous weight-optimized design has been achieved. As a departure from the practiced approach, the present research effort is directed at the deployment of a single multi-physics explicit analysis solver, viz. LS-DYNA - generally known for its contact-impact analysis capabilities, for simultaneously evaluating a given engine design for heat transfer, mechanical and thermal loading, and vibration. It may be mentioned that only combustion analysis is carried out in an uncoupled manner, using proven phenomenological thermodynamic relations, to initially arrive at mechanical and thermal loading/boundary conditions for the coupled thermo-mechanical analysis. The proposed methodology can thus be termed as a semi-integrated technique and its efficacy is established with the case study of designing a single cylinder air-cooled diesel engine from scratch and its optimization.
134

Enriched Isogeometric Analysis for Parametric Domain Decomposition and Fracture Analysis

Chun-Pei Chen (9739652) 15 December 2020 (has links)
<div>As physical testing does not always yield insight into the mechanistic cause of failures, computational modeling is often used to develop an understanding of the goodness of a design and to shorten the product development time. One common, and widely used analysis technique is the Finite Element Method. A significant difficulty with the finite element method is the effort required to generate an analysis-suitable mesh due to the difference in the mathematical representation of geometry CAD and CAE systems. CAD systems commonly use Non-Uniform Rational B-Splines (NURBS) while the CAE tools rely on the finite element mesh. Efforts to unify CAD and CAE by carrying out analysis directly using NURBS models termed Isogeometric Analysis reduces the gap between CAD and CAE phases of product development. However, several challenges still remain in the field of isogeometric analysis. A critical challenge relates to the output of commercial CAD systems. B-rep CAD models generated by commercial CAD systems contain uncoupled NURBS patches and are therefore not suitable for analysis directly. Existing literature is largely missing methods to smoothly couple NURBS patches. This is the first topic of research in this thesis. Fracture-caused failures are a critical concern for the reliability of engineered structures in general and semiconductor chips in particular. The back-end of the line structures in modern semiconductor chips contain multi-material junctions that are sites of singular stress, and locations where cracks originate during fabrication or testing. Techniques to accurately model the singular stress fields at interfacial corners are relatively limited. This is the second topic addressed in this thesis. Thus, the overall objective of this dissertation is to develop an isogeometric framework for parametric domain decomposition and analysis of singular stresses using enriched isogeometric analysis.</div><div><br></div><div>Geometrically speaking, multi-material junctions, sub-domain interfaces and crack surfaces are lower-dimensional features relative to the two- or three-dimensional domain. The enriched isogeometric analysis described in this research builds enriching approximations directly on the lower-dimensional geometric features that then couple sub-domains or describe cracks. Since the interface or crack geometry is explicitly represented, it is easy to apply boundary conditions in a strong sense and to directly calculate geometric quantities such as normals or curvatures at any point on the geometry. These advantages contrast against those of implicit geometry methods including level set or phase-field methods. In the enriched isogeometric analysis, the base approximations in the domain/subdomains are enriched by the interfacial fields constructed as a function of distance from the interfaces. To circumvent the challenges of measuring distance and point of influence from the interface using iterative operations, algebraic level sets and algebraic point projection are utilized. The developed techniques are implemented as a program in the MATLAB environment named as <i>Hierarchical Design and Analysis Code</i>. The code is carefully designed to ensure simplicity and maintainability, to facilitate geometry creation, pre-processing, analysis and post-processing with optimal efficiency. </div><div><br></div><div>To couple NURBS patches, a parametric stitching strategy that assures arbitrary smoothness across subdomains with non-matching discretization is developed. The key concept used to accomplish the coupling is the insertion of a “parametric stitching” or p-stitching interface between the incompatible patches. In the present work, NURBS is chosen for discretizing the parametric subdomains. The developed procedure though is valid for other representations of subdomains whose basis functions obey partition of unity. The proposed method is validated through patch tests from which near-optimal rate of convergence is demonstrated. Several two- and three-dimensional elastostatic as well as heat conduction numerical examples are presented.</div><div><br></div><div>An enriched field approximation is then developed for characterizing stress singularities at junctions of general multi-material corners including crack tips. Using enriched isogeometric analysis, the developed method explicitly tracks the singular points and interfaces embedded in a non-conforming mesh. Solution convergence to those of linear elastic fracture mechanics is verified through several examples. More importantly, the proposed method enables direct extraction of generalized stress intensity factors upon solution of the problems without the need to use <i>a posteriori</i> path-independent integral such as the J-integral. Next, the analysis of crack initiation and propagation is carried out using the alternative concept of configurational force. The configurational force is first shown to result from a configurational optimization problem, which yields a configurational derivative as a necessary condition. For specific velocities imposed on the heterogeneities corresponding to translation, rotation or scaling, the configurational derivative is shown to yield the configurational force. The use of configurational force to analyze crack propagation is demonstrated through examples.</div><div><br></div><div>The developed methods are lastly applied to investigate the risk of ratcheting-induced fracture in the back end of line structure during thermal cycle test of a epoxy molded microelectronic package. The first principal stress and the opening mode stress intensity factor are proposed as the failure descriptors. A finite element analysis sub-modeling and load decomposition procedure is proposed to study the accumulation of plastic deformation in the metal line and to identify the critical loading mode. Enriched isogeometric analysis with singular stress enrichment is carried out to identify the interfacial corners most vulnerable to stress concentration and crack initiation. Correlation is made between the failure descriptors and the design parameters of the structure. Crack path from the identified critical corner is predicted using both linear elastic fracture mechanics criterion and configurational force criterion. </div>
135

Using Blockchain to Ensure Reputation Credibility in Decentralized Review Management

Zaccagni, Zachary James 12 1900 (has links)
In recent years, there have been incidents which decreased people's trust in some organizations and authorities responsible for ratings and accreditation. For a few prominent examples, there was a security breach at Equifax (2017), misconduct was found in the Standard & Poor's Ratings Services (2015), and the Accrediting Council for Independent Colleges and Schools (2022) validated some of the low-performing schools as delivering higher standards than they actually were. A natural solution to these types of issues is to decentralize the relevant trust management processes using blockchain technologies. The research problems which are tackled in this thesis consider the issue of trust in reputation for assessment and review credibility at different angles, in the context of blockchain applications. We first explored the following questions. How can we trust courses in one college to provide students with the type and level of knowledge which is needed in a specific workplace? Micro-accreditation on a blockchain was our solution, including using a peer-review system to determine the rigor of a course (through a consensus). Rigor is the level of difficulty in regard to a student's expected level of knowledge. Currently, we make assumptions about the quality and rigor of what is learned, but this is prone to human bias and misunderstandings. We present a decentralized approach that tracks student records throughout the academic progress at a school and helps to match employers' requirements to students' knowledge. We do this by applying micro-accredited topics and Knowledge Units (KU) defined by NSA's Center of Academic Excellence to courses and assignments. We demonstrate that the system was successful in increasing accuracy of hires through simulated datasets, and that it is efficient, as well as scalable. Another problem is how can we trust that the peer reviews are honest and reflect an accurate rigor score? Assigning reputation to peers is a natural method to ensure correctness of these assessments. The reputation of the peers providing rigor scores needs to be taken into account for an overall rigor of a course, its topics, and its tasks. Specifically, those with a higher reputation should have more influence on the total score. Hence, we focused on how a peer's reputation is managed. We explored decentralized reputation management for the peers, choosing a decentralized marketplace as a sample application. We presented an approach to ensuring review credibility, which is a particular aspect of trust in reviews and reputation of the parties who provide them. We use a Proof-of-Stake based Algorand system as a base of our implementation, since this system is open-source, and it has a rich community support. Specifically, we directly map reputation to stake, which allows us to deploy Algorand at the blockchain layer. Reviews are analyzed by the proposed evaluation component using Natural Language Processing (NLP). In our system, NLP gauges the positivity of the written review, compares that value to a scaled numerical rating given, and determines adjustments to a peer's reputation from that result. We demonstrate that this architecture ensures credible and trustworthy assessments. It also efficiently manages the reputation of the peers, while keeping reasonable consensus times. We then turned our focus on ensuring that a peer's reputation is credible. This led us to introducing a new type of consensus called "Proof-of-Review". Our proposed implementation is again based on Algorand, since its modular architecture allows for easy modifications, such as adding extra components, but this time, we modified the engine. The proposed model then provides a trust in evaluations (review and assessment credibility) and in those who provide them (reputation credibility) using a blockchain. We introduce a blacklisting component, which prevents malicious nodes from participating in the protocol, and a minimum-reputation component, which limits the influence of under-performing users. Our results showed that the proposed blockchain system maintains liveliness and completeness. Specifically, blacklisting and the minimum-reputation requirement (when properly tuned) do not affect these properties. We note that the Proof-of-Review concept can be deployed in other types of applications with similar needs of trust in assessments and the players providing them, such as sensor arrays, autonomous car groups (caravans), marketplaces, and more.
136

CAE systém EPLAN Electric P8 - tvorba výkresové dokumentace pro dálkové ovládání motorgenerátoru / CAE system EPLAN Electric P8 and design documentation

Měřínský, Jiří January 2010 (has links)
This Graduation Theses dissertate about a creation of a drawing documentation at the professional CAE EPLAN Electric P8 system. One original solution of a remote control and of motor-generator monitoring with a mobile phone, short SMS-aided in this case, was used as an example of the drawing documentation. As has allready been noted in previous Bachelor Thesis, this application can be use not only for a remote control of a motor-generator, but this solution is suitable for other electric devices too, which are out of reach of an attendance for example. In our case a generator with 6kVA power is concerned with rated output voltage 230Vac and rated current 25A. The system of a remote control has the advantage that it is created from standard components (electric instruments, a PLC – programmable automat, a GSM modem, an operating panel and the respective program in the PLC).
137

Parametric CAD Modeling to aid Simulation-Driven Design : An evaluation and improvement of methods used at Scania

Grandicki, Andreas, Lokgård, Mattias January 2017 (has links)
This report documents a thesis conducted at Scania CV AB in Södertälje, Sweden. The main purpose of the thesis has been to examine and improve upon current practices of parametric CAD-modeling at Scania, with the ultimate goal of increased design automation and simulation-driven design. The thesis was initiated with a literature study, mainly covering the fields of parametric CAD-modeling, design automation and knowledge-based engineering. Furthermore, a questionnaire and multiple interviews were conducted to assess the awareness and mind-set of the employees. Finally, a case-study was carried out to follow current methodologies, and address any deficiencies found. Some of the most important findings were that while parametric modeling has considerable potential in enabling design automation, it is crucial, and most beneficial in terms of automation efficiency, to start with the fundamentals, namely achieving a uniform modeling practice. With these findings, a new proposed methodology has been introduced, as well as a recommended plan for a widespread implementation of parametric modeling at Scania. Such implementation would allow for shorter lead-times, faster adaptation to changing conditions, and reduced development expenditures.
138

Manufatura de microelementos ópticos difrativos / Manufacturing of diffractive optical microelements

Colafemina, João Paulo 17 December 2010 (has links)
Os elementos ópticos difrativos representam um mercado em franco crescimento, da ordem de bilhões de dólares. Seu uso ostensivo está nos microeletrônicos, sistemas de iluminação, telecomunicações, equipamentos de segurança e outros. Por isso, esta tese teve como objetivo realizar investigação pública profunda no assunto. Insertos de cobre eletrolítico foram usados por proporcionar excelente acabamento superficial quando usinados com ferramenta de diamante monocristalino obtendo valores de Ra = 10,2 nm, Rq = 13,56 e Rt = 363,06 µm e para o aço inoxidável polido os resultados foram de Ra = 7,02 nm, Rq = 9,05 nm e Rt = 225,19 nm. As réplicas foram construídas em PMMA - DH ECL P com transmitância da luz avaliada em aproximadamente 90% em todo o espectro visível e infravermelho. Foram produzidos sete tipos de microelementos ópticos difrativos, baseados na geometria de Fresnel e nos arranjos de microlentes esféricas. Foi necessário desenvolver o código computacional denominado LF2010 para auxiliar a construção do projeto das microlentes anesféricas de Fresnel e calcular sua modulação de fase. Quatro processos determinísticos na fabricação dos µEODs foram usados: torneamento de ultraprecisão com ferramenta de diamante, microforjamento, microfresamento e a combinação dos dois últimos. O método estocástico de polimento foi usado para gerar acabamento óptico e compará-lo ao torneamento com SPDT. As análises metrológicas qualitativas e dimensionais foram conduzidas com o uso do MEV e da perfilometria óptica. No torneamento de ultraprecisão com ferramenta de diamante foi comprovada a presença do fenômeno conhecido como \"stick slip\" nos degraus da zona de Fresnel, corrigidos alterando-se o projeto. Para os arranjos de empacotamento completo os valores da rugosidade foram mais elevados em função da interatividade das lentes adjacentes do conjunto com \'fi\' = 100%, chegando até mesmo a causar microfraturas na estrutura das microlentes. Após sucessivos processos de calibragem, foram manufaturadas as réplicas pelas técnicas de termomoldagem e moldagem por injeção. Os resultados de replicação das microlentes mostraram que a razão de aspecto e a relação superfície/volume influenciaram significativamente na fidelidade de replicação das microlentes, sendo constatado que as lentes de Fresnel com altura variável possuem maior volume em relação às de altura constante e, consequentemente, melhor fidelidade na replicação. Na termomoldagem, as variações nas dimensões das cristas foram de nanômetros e a fidelidade no processo foi de aproximadamente 100% para todas as zonas de Fresnel. Nesta técnica, porém, os tempos de ciclos são até 40 vezes maiores que os da moldagem por injeção. As investigações paraxiais de FTM para a microlente de Fresnel com altura variável convexa foram de 85,2 % para 25 lp/mm, 67,5% para 50 lp/mm e 71,2% para 75 lp/mm. A simulação por elementos finitos foi usada para auxiliar nos estudos conferindo a sensibilidade do método de cálculo numérico do simulador nas escalas macroscópicas e microscópicas. No final, investigado o desgaste da aresta de corte da ferramenta, verificou-se o desgaste de flanco e a formação da APC, constituída de partículas do cavaco de cobre com formação lamelar. Conclui-se que é possível reproduzir diversos tipos de µEODs com métodos de produção em massa da moldagem por injeção tomando-se cuidado com as variáveis do processo, geometria da peça e propriedades físicas e químicas do material a ser replicado. / Diffractive optical elements represent a fast growing market, in order of billions dollars. Its use is employed in microelectronics, illumination systems, telecommunications, security devices, and others. For this reason, this thesis aimed to make depth public research in the subject. Electrolytic copper inserts were used for providing excellent surface finish when machined with monocrystalline diamond tool getting values of Ra = 10,2 nm, Rq = 13,56 e Rt = 363,06 µm, for the polished stainless steel the results were Ra = 7,02 nm, Rq = 9,05 nm e Rt = 225,19 nm. The replicas were built in PMMA - DH ECL P with light transmittance approximately 90% for visible and infrared spectrum. Seven types of diffractive optical microelements were produced, based in Fresnel geometry and spherical microlens array. For this, it was necessary to develop the computer code called LF2010 to support the construction design of aspheric Fresnel microlenses and calculate its phase transformation function. Four deterministic manufacturing processes of µDOEs were used: ultraprecision diamond turning, microforging, micromilling and the combination of the two last. Stochastic method of polishing was used to obtain mirror surface roughness and compare to SPDT. The qualitative analysis and dimensional metrology were conducted using MEV and optical profiling system respectively. In ultraprecision diamond turning has proved the presence of the phenomenon known as stick slip on the steps of Fresnel zone that was corrected by changing the design. For complete packaging arrays the roughness values were higher due the interaction of adjacent lenses of set with \'fi\' = 100% have even cause microfractures in the structure of microlenses. After successive calibration procedures in the manufacture of copper inserts, replicas were fabricated by techniques of hot emboss and injection molding. The results of microlenses replication showed that the aspect ratio and surface/volume ratio affected the fidelity replication of microlenses, and had been noted that the Fresnel lenses with variable height have higher volume in relation to constant height and consequently better fidelity in replication. Hot emboss process show little variations in the dimensions of the crests, in order of few nanometers, resulting a fidelity approximately 100% for all zones of Fresnel, however the cycle\'s technique are up to 40 times higher than injection molding. The paraxial FTM analysis shows 85,2% for 25 lp/mm, 67,5% for 50 lp/mm and 71,2% for 75 lp/mm to convex Fresnel microlens with variable height. Finite element analysis was used to aid in the studies giving the sensitivity of numerical method adopted in terms of macroscale and microscale. In the end, the wear of edge cutting tool was investigated and found wear flank and formation of built up edge that was made up of chip particles of copper, witch were formed continuously with segmented structure lamellar. Hence, after numerous studies and analysis we can conclude that it is possible to construct µDOEs by means of mass production methods of injection molding taking care of process variables, part geometry and physical and chemical properties of material being replicated.
139

Manufatura de microelementos ópticos difrativos / Manufacturing of diffractive optical microelements

João Paulo Colafemina 17 December 2010 (has links)
Os elementos ópticos difrativos representam um mercado em franco crescimento, da ordem de bilhões de dólares. Seu uso ostensivo está nos microeletrônicos, sistemas de iluminação, telecomunicações, equipamentos de segurança e outros. Por isso, esta tese teve como objetivo realizar investigação pública profunda no assunto. Insertos de cobre eletrolítico foram usados por proporcionar excelente acabamento superficial quando usinados com ferramenta de diamante monocristalino obtendo valores de Ra = 10,2 nm, Rq = 13,56 e Rt = 363,06 µm e para o aço inoxidável polido os resultados foram de Ra = 7,02 nm, Rq = 9,05 nm e Rt = 225,19 nm. As réplicas foram construídas em PMMA - DH ECL P com transmitância da luz avaliada em aproximadamente 90% em todo o espectro visível e infravermelho. Foram produzidos sete tipos de microelementos ópticos difrativos, baseados na geometria de Fresnel e nos arranjos de microlentes esféricas. Foi necessário desenvolver o código computacional denominado LF2010 para auxiliar a construção do projeto das microlentes anesféricas de Fresnel e calcular sua modulação de fase. Quatro processos determinísticos na fabricação dos µEODs foram usados: torneamento de ultraprecisão com ferramenta de diamante, microforjamento, microfresamento e a combinação dos dois últimos. O método estocástico de polimento foi usado para gerar acabamento óptico e compará-lo ao torneamento com SPDT. As análises metrológicas qualitativas e dimensionais foram conduzidas com o uso do MEV e da perfilometria óptica. No torneamento de ultraprecisão com ferramenta de diamante foi comprovada a presença do fenômeno conhecido como \"stick slip\" nos degraus da zona de Fresnel, corrigidos alterando-se o projeto. Para os arranjos de empacotamento completo os valores da rugosidade foram mais elevados em função da interatividade das lentes adjacentes do conjunto com \'fi\' = 100%, chegando até mesmo a causar microfraturas na estrutura das microlentes. Após sucessivos processos de calibragem, foram manufaturadas as réplicas pelas técnicas de termomoldagem e moldagem por injeção. Os resultados de replicação das microlentes mostraram que a razão de aspecto e a relação superfície/volume influenciaram significativamente na fidelidade de replicação das microlentes, sendo constatado que as lentes de Fresnel com altura variável possuem maior volume em relação às de altura constante e, consequentemente, melhor fidelidade na replicação. Na termomoldagem, as variações nas dimensões das cristas foram de nanômetros e a fidelidade no processo foi de aproximadamente 100% para todas as zonas de Fresnel. Nesta técnica, porém, os tempos de ciclos são até 40 vezes maiores que os da moldagem por injeção. As investigações paraxiais de FTM para a microlente de Fresnel com altura variável convexa foram de 85,2 % para 25 lp/mm, 67,5% para 50 lp/mm e 71,2% para 75 lp/mm. A simulação por elementos finitos foi usada para auxiliar nos estudos conferindo a sensibilidade do método de cálculo numérico do simulador nas escalas macroscópicas e microscópicas. No final, investigado o desgaste da aresta de corte da ferramenta, verificou-se o desgaste de flanco e a formação da APC, constituída de partículas do cavaco de cobre com formação lamelar. Conclui-se que é possível reproduzir diversos tipos de µEODs com métodos de produção em massa da moldagem por injeção tomando-se cuidado com as variáveis do processo, geometria da peça e propriedades físicas e químicas do material a ser replicado. / Diffractive optical elements represent a fast growing market, in order of billions dollars. Its use is employed in microelectronics, illumination systems, telecommunications, security devices, and others. For this reason, this thesis aimed to make depth public research in the subject. Electrolytic copper inserts were used for providing excellent surface finish when machined with monocrystalline diamond tool getting values of Ra = 10,2 nm, Rq = 13,56 e Rt = 363,06 µm, for the polished stainless steel the results were Ra = 7,02 nm, Rq = 9,05 nm e Rt = 225,19 nm. The replicas were built in PMMA - DH ECL P with light transmittance approximately 90% for visible and infrared spectrum. Seven types of diffractive optical microelements were produced, based in Fresnel geometry and spherical microlens array. For this, it was necessary to develop the computer code called LF2010 to support the construction design of aspheric Fresnel microlenses and calculate its phase transformation function. Four deterministic manufacturing processes of µDOEs were used: ultraprecision diamond turning, microforging, micromilling and the combination of the two last. Stochastic method of polishing was used to obtain mirror surface roughness and compare to SPDT. The qualitative analysis and dimensional metrology were conducted using MEV and optical profiling system respectively. In ultraprecision diamond turning has proved the presence of the phenomenon known as stick slip on the steps of Fresnel zone that was corrected by changing the design. For complete packaging arrays the roughness values were higher due the interaction of adjacent lenses of set with \'fi\' = 100% have even cause microfractures in the structure of microlenses. After successive calibration procedures in the manufacture of copper inserts, replicas were fabricated by techniques of hot emboss and injection molding. The results of microlenses replication showed that the aspect ratio and surface/volume ratio affected the fidelity replication of microlenses, and had been noted that the Fresnel lenses with variable height have higher volume in relation to constant height and consequently better fidelity in replication. Hot emboss process show little variations in the dimensions of the crests, in order of few nanometers, resulting a fidelity approximately 100% for all zones of Fresnel, however the cycle\'s technique are up to 40 times higher than injection molding. The paraxial FTM analysis shows 85,2% for 25 lp/mm, 67,5% for 50 lp/mm and 71,2% for 75 lp/mm to convex Fresnel microlens with variable height. Finite element analysis was used to aid in the studies giving the sensitivity of numerical method adopted in terms of macroscale and microscale. In the end, the wear of edge cutting tool was investigated and found wear flank and formation of built up edge that was made up of chip particles of copper, witch were formed continuously with segmented structure lamellar. Hence, after numerous studies and analysis we can conclude that it is possible to construct µDOEs by means of mass production methods of injection molding taking care of process variables, part geometry and physical and chemical properties of material being replicated.
140

Studies on Glass Fiber-Reinforced Composites for CAE-Driven Design of Impact Safety Countermeasures

Lakshmanan, P January 2014 (has links) (PDF)
Man-made materials such as fiber-reinforced composites (FRCs) can be tailored for optimum performance in product design applications in terms of strength and weight. The current work is aimed at studying the behaviors of composite laminates based on E-glass CSM (Chopped Strand Mat) or WRM (Woven Roving Mat) plies with a polyester resin for impact protection applications. Detailed mechanical characterization of CSM and WRM laminates till failure is carried out for tensile, compressive and shear loads by varying manufacturing process, number of plies, and laminate thickness. The effect of fiber volume fraction on mechanical properties is shown. The efficacy of CSM and WRM laminates as energy- absorbing countermeasures is studied by performing quasi-static and axial impact tests on cylindrical tubes made of the stated FRCs. In addition to load-displacement and specific energy absorption attributes, failure modes are of interest in such studies. The potential of FRC laminates for protection against projectile impact is investigated by performing low velocity impact perforation tests with a falling tup fitted with an indentor, and medium to high velocity projectile impact tests in a gas gun-based device. The valuable results generated are used for the validation of nonlinear finite element-based CAE (Computer-Aided Engineering) procedures including application of a multi-modal failure criterion for explicit dynamic analysis. The present study not only throws light on complex mechanical behavior of an important class of lightweight materials under static and dynamic loads, but also simulation tools for the design of impact safety countermeasures such as bullet-proof laminates and energy–absorbing components for automotive body structures.

Page generated in 0.0201 seconds