• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 97
  • 32
  • 11
  • Tagged with
  • 140
  • 140
  • 78
  • 38
  • 33
  • 31
  • 30
  • 28
  • 27
  • 26
  • 26
  • 25
  • 22
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Étude d'un modèle fin de changement de phase liquide-vapeur.<br />Contribution à l'étude de la crise d'ébullition.

Faccanoni, Gloria 21 November 2008 (has links) (PDF)
Cette thèse étudie la modélisation et la simulation numérique d'écoulements diphasiques à interfaces avec changement de phase. Cette transition est localisée en des interfaces qui sont produites dynamiquement. On prend également en compte la diffusion de la chaleur, la tension de surface et les forces de gravité. L'application envisagée est la simulation d'écoulements dans un réacteur à eau pressurisée dans l'industrie nucléaire civile. On s'intéresse ici plus précisément à un éventuel fonctionnement accidentel et en particulier au phénomène de la crise d'ébullition. On modélise les écoulements diphasiques avec changement de phase par un modèle basé sur le système des équations d'Euler fermé par une seule équation d'état obtenue en postulant un équilibre instantané et local des pressions, températures et potentiels chimiques de chaque phase. On en étudie ensuite l'hyperbolicité et le problème de Riemann qui lui est associé. Du point de vue numérique, puisqu'il n'y a pas d'expression analytique pour la loi à l'équilibre dans le cas général, on propose une méthode simple pour approcher cette loi d'état lorsque les propriétés des deux phases sont décrites par des lois très générales, éventuellement sous forme tabulée. Enfin, pour simuler des écoulements diphasiques avec changement de phase, on présente un schéma numérique de type relaxation/projection pour lequel la phase de projection utilise cette approximation de l'équilibre thermodynamique.
32

Modèle de champ de phase pour l'étude de l'ébulition.

Ruyer, Pierre 17 July 2006 (has links) (PDF)
Dans cette étude nous considérons l'ébullition en paroi sous les angles de la modélisation et de la simulation numérique. Dans un premier temps nous proposons une revue bibliographique au sujet du régime d'ébullition nucléée à fort ux de chaleur pariétal et analysons plus particulièrement la compréhension du phénomène de crise d'ébullition de type caléfaction. Nous en déduisons une motivation pour l'étude de la dynamique de croissance de bulle au moyen de la simulation numérique. L'essentiel du travail concerne alors le développement d'un modèle de type champ de phase pour l'étude des écoulements liquide-vapeur avec changement de phase. Nous proposons une fermeture thermodynamique quasi-compressible dont les propriétés sont adaptées aux simulations envisagées. Le système d'équations du mouvement qui s'en déduit constitue une régularisation thermodynamiquement cohérente de la description discontinue du système diphasique, ce qui est l'avantage des modèles à interfaces diffuses. Nous démontrons que la formulation retenue permet de définir l'épaisseur de la zone régularisée indépendamment de la description thermodynamique des phases, ce qui est intéressant numériquement. Nous établissons la relation cinétique et analysons ainsi la modélisation champ de phase des mécanismes dissipatifs. Finalement nous étudions la résolution numérique du modèle à l'aide de simulations de transition de phase en configuration simple et de dynamique de bulle en isotherme.
33

Enveloppe hybride pour bâtiment à haute performance énergétique

Faure, Xavier 17 November 2007 (has links) (PDF)
Ce travail s'inscrit dans la thématique des enveloppes de bâtiment à haute performance énergétique. Un nouveau concept d'enveloppe hybride est proposé : en hiver, le chauffage est assuré par des capteurs solaires thermiques à air associés à des panneaux d'inertie (avec matériaux à changement de phase). Une circulation d'air, dans des cavités au sein de l'enveloppe, transporte l'énergie des capteurs jusqu'au stockage ; en été, les surplus de chaleur sont absorbés dans les panneaux d'inertie puis évacués la nuit par une sur-ventilation des cavités d'air en boucle ouverte. Un modèle analytique global a été développé dans l'environnement TRNSys. Une maquette à l'échelle 1:1 (volume intérieur de 40m3), instrumentée, permet d'étudier la physique de l'enveloppe, et de valider le modèle en convection naturelle et forcée. La validation d'un modèle de transition de phase fait l'objet d'essais spécifiques. L'influence de la convection naturelle en phase liquide, ainsi que la variabilité des caractéristiques de transition de phase suivant les dynamiques des sollicitations sont mises en évidence. Les paramètres influents sont identifiés à l'aide d'une méthode d'analyse de sensibilité globale (FAST). Des études paramétriques montrent l'intérêt du système proposé : des réductions de 30% à 50% sont obtenues sur les consommations de chauffage, le nombre d'heures de surchauffe est nettement réduit, voir annulé. A consommations équivalentes, les épaisseurs des panneaux d'inertie sont de 1cm pour un stockage par chaleur latente, contre 5 à 8cm selon les climats pour un stockage par chaleur sensible.
34

Simulation numérique des écoulements multiphasiques compressibles <br />avec ou sans changement de phase. Application à l'interaction laser-plasma

Perrier, Vincent 10 July 2007 (has links) (PDF)
Ce travail porte sur la modélisation et la simulation d'écoulements compressibles. Par une démarche d'homogénéisation, on commence par dériver un modéle d'écoulements diphasiques à sept équations. Les termes de fluctuation restants sont modélisés par des termes de relaxation. Dans le cas où ces coefficients de relaxation tendent vers l'infini, ce qui correspond à des écoulements très bien mélangés, on obtient par un développement asymptotique un modèle à cinq équations qui est strictement hyperbolique, mais non-conservatif. La discrétisation de ce modèle est obtenue par un développement asymptotique d'un schéma numérique pour le système à sept équations. Le schéma obtenu est implémenté, validé sur des cas analytiques, et comparé dans le cas de chocs multiphasiques à des résultats expérimentaux. <br /><br />On s'intéresse ensuite à la modélisation du changement de phase avec deux équations d'état. Un principe d'optimisation de l'entropie de mélange mène à distinguer trois zones: une zone où le liquide pur est le plus stable, une autre zone où le gaz pur est le plus stable, et, enfin, une zone où un mélange à l'équilibre des pressions, températures et potentiels thermodynamiques est stable. On donne alors des conditions sur le couplage des deux équations d'état pour que l'équation d'état de mélange soit convexe, et pour que le système soit hyperbolique. Afin de prendre en compte le changement de phase, on introduit dans la solution du problème de Riemann une onde de vaporisation modélisée comme une onde de déflagration. On montre ensuite que la fermeture habituelle, la fermeture de Chapman-Jouguet, est inadéquate en général, et on donne une fermeture correcte dans le cas où les deux phases sont des gaz parfaits. Enfin, la solution du problème de Riemann est implémentée dans un code multiphasique, et validée sur des cas analytiques. Dans ce même code, on met en place un modèle de dépôt laser et de conduction thermique non linéaire afin de modéliser les phénomènes physiques intervenant dans l'ablation laser. Les résultats obtenus sont comparables à ceux obtenus avec des lois d'échelle. <br /><br />Le dernier chapitre, complètement indépendant, porte sur la recherche de correcteurs en homogénéisation stochastique dans le cas de processus à queue lourde.
35

Analyse de la fiabilité de mémoires à changement de phase embarquées basées sur des matériaux innovants

Navarro, Gabriele 16 December 2013 (has links) (PDF)
Les Mémoires ont de plus en plus importance à l'époque actuelle, et sont fondamentales pour la définition de tous les systèmes électroniques avec lesquels nous entrons en contact dans notre vie quotidienne. Les mémoires non-volatiles (NVM), représentées par la technologie Flash, ont pu suivre jusqu'à présent l'effort à la miniaturisation pour satisfaire la demande croissante de densité de mémoire exigée par le marché. Cependant, la réduction de la taille du dispositif de mémoire est de plus en plus difficile et la complexité technologique demandé a augmenté le coût par octet. Dans ce contexte, les technologies de mémoire innovantes deviennent non seulement une alternative, mais la seule solution possible pour fournir une densité plus élevée à moindre coût, une meilleure fonctionnalité et une faible consommation d'énergie. Les Mémoires à Changement de Phase (PCM) sont considérées comme la solution de pointe pour la future génération de mémoires non-volatiles, grâce à leur non-volatilité , scalabilité, "bit-alterability", grande vitesse de lecture et d'écriture, et cyclabilité élevée. Néanmoins, certains problèmes de fiabilité restent à surmonter afin de rendre cette technologie un remplacement valable de la technologie Flash dans toutes les applications. Plus en détail, la conservation des données à haute température, est l'une des principales exigences des applications embarquées industrielles et automobiles. Cette thèse se concentre sur l'étude des mémoires à changement de phase pour des applications embarquées, dans le but d'optimiser le dispositif de mémoire et enfin de proposer des solutions pour surmonter les principaux obstacles de cette technologie, en abordant notamment les applications automobiles. Nous avons conçu, fabriqué et testé des dispositifs PCM basés sur des structures reconnues et innovantes, en analysant leurs avantages et inconvénients, et en évaluant l'impact de la réduction de la taille. Notre analyse de fiabilité a conduit au développement d'un système de caractérisation dédié à caractériser nos cellules PCM avec des impulsions de l'ordre de la nanoseconde, et à la mise en oeuvre d'un outil de simulation basé sur un solveur thermoélectrique et sur l'approche numérique "Level Set", pour comprendre les différentes mécanismes qui ont lieu dans nos cellules pendant les opérations de programmation. Afin de répondre aux spécifications du marché des mémoires non-volatiles embarquées, nous avons conçu le matériau à changement de phase intégré dans le dispositif PCM avec deux principales approches: la variation de la stoechiométrie et l'ajout de dopants. Nous avons démontré et expliqué comment la rétention des données dans les dispositifs PCM à base de GeTe peut être améliorée avec l'augmentation de la concentration de Te, et comment les inclusions de SiO2 peuvent réduire les défauts causés par la tension de lecture à températures de fonctionnement élevées. En outre, nous avons présenté les avantages sur la réduction de la puissance de programmation du dopage de carbone dans les dispositifs à base de GST. Enfin, nous avons étudié les effets de l'enrichissement en Ge dans le GST, combiné avec le dopage N et C, intégré dans des cellules PCM à l'état de l'art. Grâce à l'introduction d'une nouvelle technique de programmation, nous avons démontré la possibilité d'augmenter la vitesse de programmation de ces dispositifs, caractérisés par des performances de rétention des données parmi les meilleurs rapportés dans la littérature, et de réduire le phénomène de la dérive de la résistance qui affecte la stabilité de l'état programmé des cellules PCM. Nous avons donc prouvé, avec ces derniers résultats, la validité de la technologie PCM pour les applications embarquées.
36

Etude de matériaux pour mémoires à changement de phase : effets de dopage, de réduction de taille et d'interface

Ghezzi, Giada Eléonora 25 February 2013 (has links) (PDF)
Les mémoires à changement de phase sont l'un des candidats les plus prometteurs pour la prochaine génération de mémoires non-volatiles. Un intense effort de recherche est requis pour optimiser les matériaux à changement de phase (PC) utilisés dans ces mémoires. En particulier, il a été démontré que le dopage améliore les propriétés de rétention des dispositifs. Par ailleurs, l'étude des effets de réduction de taille et des effets des matériaux d'interface sur les propriétés des matériaux à changement de phase est encore un sujet de recherche ouvert. Dans ce contexte, la première partie de la thèse est dédiée à l'investigation de la structure locale de GeTe amorphe dopé avec C ou N. L'effet du dopage sur la structure a été observé expérimentalement via l'apparition d'un nouveau pic dans la fonction de distribution de paires de GeTe dopé, ce qui montre la formation d'une nouvelle liaison interatomique absente dans le matériau non dopé. La présence de nouvelles configurations incluant le carbone et l'azote a été confirmée par des simulations ab initio. L'objet de la deuxième partie de la thèse est l'influence de la réduction de taille sur la cristallisation de Ge2Sb2Te5 (GST). Des agrégats nanométriques de GST ont été fabriqués par pulvérisation puis déposés et étudiés par diffraction des rayons X en utilisant le rayonnement synchrotron. Dans l'état cristallisé une très forte déformation positive des agrégats est observée et attribuée à la matrice d'Al2O3 qui entoure les agrégats. La température de cristallisation des agrégats est de 25°C plus élevée que celle d'un film de GST de 10 nm déposé dans les mêmes conditions. Ce résultat est encourageant pour les futurs développements des mémoires à changement de phase car il montre que l'effet de réduction de taille sur la température de cristallisation peut-être faible. La troisième et dernière partie de la thèse est dédiée à l'investigation des effets des matériaux d'interface sur la température de cristallisation de films minces de GeTe et GST par des mesures de réflectivité et de diffraction des rayons X. Pour les deux matériaux, la température de cristallisation de films de 100 nm est plus grande pour une interface avec du Ta que pour une interface avec du TiN ou du SiO2. Une différence aussi marquée n'était jamais montré auparavant. Les résultats suggèrent que l'interface SiO2/GeTe est énergétiquement favorable pour la nucléation et la croissance de grains avec une orientation préférentielle et que les mécanismes de nucléation et croissance sont différents pour différents matériaux d'interface.
37

Etude de l’émissivité des solides et liquides des températures cryogéniques aux très hautes températures / Study on the emissivity of solid and liquid materials from cryogenic temperature to very high temperature

Wang, Xingkai 12 November 2015 (has links)
L’échange d’énergie par rayonnement est proportionnel à l’émissivité. Ce facteur dépend de la température et de la longueur d’onde mais aussi de l’état de surface, de la composition et de la phase. Sa mesure précise est donc toujours un défi à cause des influences connues ou inconnues. Par rapport à d’autres travaux, le but de ce travail est de l’étudier dans des conditions extrêmes, des températures cryogéniques aux hautes températures : Nous avons ainsi étudié à 80K l’absorption d’un diélectrique pour la protection thermique d’un satellite et celles de surfaces en or de différentes rugosités. A la température ambiante nous avons déterminé par une méthode en réflexion, l’émission de vitrages dans le but de la recherche d‘économie d’énergie. Nous avons aussi étudié la variation de l’émissivité pendant le changement de phase solidus-liquidus et α-β de second ordre. Autour de 100°C le soufre devient plus émissif lorsqu’il passe du solide au liquide mais par contre il n’y a pas de différence sur l’émissivité pour ses deux variétés allotropiques principales. A une beaucoup plus haute température, le silicium liquide se comporte comme un métal avec une émissivité très faible et un saut net a été constaté à son passage au point de fusion. Une variation marquée de l’émissivité pour les deux phases solides du SiC a été observée entre 8-11μm dans notre étude. Contrairement aux résultats de la littérature, les sommets d’émissivité diminuent progressivement avec l’augmentation de la température. Enfin trois points X, longueur d’onde où l’émissivité ne dépend pas de la température, ont été observés pour chaque phase. / Heat transferred by radiation is proportional to the emissivity. This coefficient depends not only on the wavelength and the temperature, but also on the surfaceroughness, the chemical composition and the phase. A precise measurement is always a challenge because of the known and unknown factors. Compared with others, this thesis aims at the studies in extreme conditions, from cryogenic temperature to very high temperature: The absorptivity of a dielectric applied to the thermal protector for the satellite and the emissivity of gold surfaces with different roughness have been measured at 80K. The emissivity of different windows has been determined by the reflection method at room temperature for the research of energy saving. We have also studied the variation of the emissivity during the solid to liquid and α-β phase transition. The sulfur becomes more emissive when it changes from solid to liquid around 100°C, but there is no difference on the emissivity between its two major allotropies. The liquid silicon behaves like a metal with a very low emissivity and an obvious bound has been measured when it crosses its melting point. A marked variation of the emissivity of SiC for its two solid-state phases has been observed between 8-11μm. Contrary to other results, the peak values of the emissivity attenuate with the increase of temperature. Finally, three X points at which the emissivity doesn’t depend on the temperature have been measured for each phase.
38

Etude de la variabilité des technologies PCM et OxRAM pour leur utilisation en tant que synapses dans les systèmes neuromorphiques / A variability study of PCM and OxRAM technologies for use as synapses in neuromorphic systems

Garbin, Daniele 15 December 2015 (has links)
Le cerveau humain est composé d’un grand nombre de réseaux neuraux interconnectés, dont les neurones et les synapses en sont les briques constitutives. Caractérisé par une faible consommation de puissance, de quelques Watts seulement, le cerveau humain est capable d’accomplir des tâches qui sont inaccessibles aux systèmes de calcul actuels, basés sur une architecture de type Von Neumann. La conception de systèmes neuromorphiques vise à réaliser une nouvelle génération de systèmes de calcul qui ne soit pas de type Von Neumann. L’utilisation de mémoire non-volatile innovantes en tant que synapses artificielles, pour application aux systèmes neuromorphiques, est donc étudiée dans cette thèse. Deux types de technologies de mémoires sont examinés : les mémoires à changement de phase (Phase-Change Memory, PCM) et les mémoires résistives à base d’oxyde (Oxide-based resistive Random Access Memory, OxRAM). L’utilisation des dispositifs PCM en tant que synapses de type binaire et probabiliste est étudiée pour l’extraction de motifs visuels complexes, en évaluant l’impact des conditions de programmation sur la consommation de puissance au niveau du système. Une nouvelle stratégie de programmation, qui permet de réduire l’impact du problème de la dérive de la résistance des dispositifs PCM est ensuite proposée. Il est démontré qu’en utilisant des dispositifs de tailles réduites, il est possible de diminuer la consommation énergétique du système. La variabilité des dispositifs OxRAM est ensuite évaluée expérimentalement par caractérisation électrique, en utilisant des méthodes statistiques, à la fois sur des dispositifs isolés et dans une matrice complète de mémoire. Un modèle qui permets de reproduire la variabilité depuis le niveau faiblement résistif jusqu’au niveau hautement résistif est ainsi développé. Une architecture de réseau de neurones de type convolutionnel est ensuite proposée sur la base de ces travaux éxperimentaux. La tolérance du circuit neuromorphique à la variabilité des OxRAM est enfin démontrée grâce à des tâches de reconnaissance de motifs visuels complexes, comme par exemple des caractères manuscrits ou des panneaux de signalisations routières. / The human brain is made of a large number of interconnected neural networks which are composed of neurons and synapses. With a low power consumption of only few Watts, the human brain is able to perform computational tasks that are out of reach for today’s computers, which are based on the Von Neumann architecture. Neuromorphic hardware design, taking inspiration from the human brain, aims to implement the next generation, non-Von Neumann computing systems. In this thesis, emerging non-volatile memory devices, specifically Phase-Change Memory (PCM) and Oxide-based resistive memory (OxRAM) devices, are studied as artificial synapses in neuromorphic systems. The use of PCM devices as binary probabilistic synapses is studied for complex visual pattern extraction applications, evaluating the impact of the PCM programming conditions on the system-level power consumption.A programming strategy is proposed to mitigate the impact of PCM resistance drift. It is shown that, using scaled devices, it is possible to reduce the synaptic power consumption. The OxRAM resistance variability is evaluated experimentally through electrical characterization, gathering statistics on both single memory cells and at array level. A model that allows to reproduce OxRAM variability from low to high resistance state is developed. An OxRAM-based convolutional neural network architecture is then proposed on the basis of this experimental work. By implementing the computation of convolution directly in memory, the Von Neumann bottleneck is avoided. Robustness to OxRAM variability is demonstrated with complex visual pattern recognition tasks such as handwritten characters and traffic signs recognition.
39

Analyse de la fiabilité de mémoires à changement de phase embarquées basées sur des matériaux innovants / Reliability analysis of embedded Phase-Change Memories based on innovative materials

Navarro, Gabriele 16 December 2013 (has links)
Les Mémoires ont de plus en plus importance à l'époque actuelle, et sont fondamentales pour la définition de tous les systèmes électroniques avec lesquels nous entrons en contact dans notre vie quotidienne. Les mémoires non-volatiles (NVM), représentées par la technologie Flash, ont pu suivre jusqu'à présent l'effort à la miniaturisation pour satisfaire la demande croissante de densité de mémoire exigée par le marché. Cependant, la réduction de la taille du dispositif de mémoire est de plus en plus difficile et la complexité technologique demandé a augmenté le coût par octet. Dans ce contexte, les technologies de mémoire innovantes deviennent non seulement une alternative, mais la seule solution possible pour fournir une densité plus élevée à moindre coût, une meilleure fonctionnalité et une faible consommation d'énergie. Les Mémoires à Changement de Phase (PCM) sont considérées comme la solution de pointe pour la future génération de mémoires non-volatiles, grâce à leur non-volatilité , scalabilité, "bit-alterability", grande vitesse de lecture et d'écriture, et cyclabilité élevée. Néanmoins, certains problèmes de fiabilité restent à surmonter afin de rendre cette technologie un remplacement valable de la technologie Flash dans toutes les applications. Plus en détail, la conservation des données à haute température, est l'une des principales exigences des applications embarquées industrielles et automobiles. Cette thèse se concentre sur l'étude des mémoires à changement de phase pour des applications embarquées, dans le but d'optimiser le dispositif de mémoire et enfin de proposer des solutions pour surmonter les principaux obstacles de cette technologie, en abordant notamment les applications automobiles. Nous avons conçu, fabriqué et testé des dispositifs PCM basés sur des structures reconnues et innovantes, en analysant leurs avantages et inconvénients, et en évaluant l'impact de la réduction de la taille. Notre analyse de fiabilité a conduit au développement d'un système de caractérisation dédié à caractériser nos cellules PCM avec des impulsions de l'ordre de la nanoseconde, et à la mise en oeuvre d'un outil de simulation basé sur un solveur thermoélectrique et sur l'approche numérique "Level Set", pour comprendre les différentes mécanismes qui ont lieu dans nos cellules pendant les opérations de programmation. Afin de répondre aux spécifications du marché des mémoires non-volatiles embarquées, nous avons conçu le matériau à changement de phase intégré dans le dispositif PCM avec deux principales approches: la variation de la stoechiométrie et l'ajout de dopants. Nous avons démontré et expliqué comment la rétention des données dans les dispositifs PCM à base de GeTe peut être améliorée avec l'augmentation de la concentration de Te, et comment les inclusions de SiO2 peuvent réduire les défauts causés par la tension de lecture à températures de fonctionnement élevées. En outre, nous avons présenté les avantages sur la réduction de la puissance de programmation du dopage de carbone dans les dispositifs à base de GST. Enfin, nous avons étudié les effets de l'enrichissement en Ge dans le GST, combiné avec le dopage N et C, intégré dans des cellules PCM à l'état de l'art. Grâce à l'introduction d'une nouvelle technique de programmation, nous avons démontré la possibilité d'augmenter la vitesse de programmation de ces dispositifs, caractérisés par des performances de rétention des données parmi les meilleurs rapportés dans la littérature, et de réduire le phénomène de la dérive de la résistance qui affecte la stabilité de l'état programmé des cellules PCM. Nous avons donc prouvé, avec ces derniers résultats, la validité de la technologie PCM pour les applications embarquées. / Memories are getting an exponential importance in our present era, and are fundamental in the definition of all the electronic systems with which we interact in our daily life. Non-volatile memory technology (NVM), represented by Flash technology, have been able to follow till now the miniaturization trend to fulfill the increasing memory density demanded by the market. However, the scaling is becoming increasingly difficult, rising their cost per byte due to the incoming technological complexity. In this context, innovative memory technologies are becoming not just an alternative, but the only possible solution to provide higher density at lower cost, better functionality and low power consumption. Phase-Change Memory (PCM) technology is considered the leading solution for the next NVM generation, combining non-volatility, scalability, bit-alterability, high write speed and read bandwidth and high cycle life endurance. However, some reliability issues remain to overcome, in order to be a valid Flash replacement in all the possible applications. In particular, retention of data at high temperature, is one of the main requirements of industrial and automotive embedded applications. This work focuses on the study of embedded Phase-Change Memories, in order to optimize the memory device and finally propose some solutions to overcome the main bottlenecks of this technology, in particular addressing automotive applications. We designed, fabricated, and tested PCM devices based on recognized and innovative structures, analyzing their advantages and disadvantages, and evaluating the scaling impact. Our reliability analysis led to the development of a characterization setup dedicated to characterize our PCM cells with pulses in the order of nanoseconds, and to the implementation of a simulation tool based on a thermoelectrical solver and on the Level Set numerical approach, to understand the different mechanisms taking place in our cells during the programming operations. In order to fulfill embedded NVM requirements, we engineered the phase-change material integrated in the PCM device with two main approaches: the stoichiometry variation and the dopants addition. We showed and explained how the data retention in GeTe based PCM devices can be enhanced increasing Te content, and how SiO2 inclusions can reduce the read voltage disturbs at high operating temperatures. Moreover, we reported the advantages on the programming power reduction of carbon doping in GST based devices. Finally, we studied the effects of Ge enrichment in GST, combined with N or C doping, integrated in state of the art PCM cells. Through the introduction of a new programming technique, we demonstrated the possibility to improve the programming speed of these devices, characterized by data retention performance among the best reported in the literature, and to reduce the drift phenomenon that affects the resistance state stability of PCM technology. We then proved, with these last results, the suitability of PCM for embedded applications.
40

Caractérisation thermique d'un matériau à changement de phase dans une structure conductrice

Merlin, Kevin 30 September 2016 (has links)
La récupération de chaleur fatale est un véritable challenge pour l’amélioration de l’efficacité énergétique. Le stockage par chaleur latente est une solution qui répond à cet enjeu. Nous nous intéressons aux procédés industriels avec un rapport puissance sur énergie élevé. L’un des procédés identifiés est la stérilisation de produits agroalimentaires. Cependant, les matériaux à changement de phase, peu conducteurs, ne permettent pas d’obtenir des puissances thermiques suffisantes pour ces applications. L’amélioration de la surface d’échange ou l’augmentation de la conductivité thermique du matériau sont alors nécessaires. Un premier dispositif expérimental de stockage thermique comparant différentes techniques d’intensification des transferts a été réalisé. Le concept à base de paraffine et de Graphite Naturel Expansé (GNE) s’est montré le plus performant par rapport à des solutions de type ailettes ou poudre de graphite. La caractérisation thermique du matériau composite GNE/paraffine sélectionné a été réalisée par plusieurs méthodes. Des valeurs de conductivité thermique effective de l’ordre 20 W.m-1.K-1 ont été obtenues. Dans un second temps, un démonstrateur de 100kW/6kW.h est dimensionné et réalisé. Ce dispositif testé sur un procédé de stérilisation existant permet une économie d’énergie de 15%, conforme aux prévisions. L’identification de la conductivité thermique plane du matériau et l’influence de la résistance thermique de contact sont réalisées à l’aide d’un dispositif expérimental, couplé à un modèle numérique. Enfin, le développement d’un dispositif de vieillissement permet l’étude de la stabilité thermique de ce matériau. / Waste heat recovery is a challenge for the improvement of energy efficiency. Latent heat storage is a solution that addresses this issue. We focus on industrial processes with high energy on power ratios. One of the identified processes is the sterilization of food products. However, phase change materials, which have low thermal conductivities, do not provide sufficient thermal powers for these applications. The improvement of the heat exchange surface or the increase in thermal conductivity of the material are then necessary. A first experimental thermal storage comparing various heat transfer intensification techniques was achieved. The concept based on paraffin and Expanded Natural Graphite (ENG) has proven to be the most efficient compared to solutions using fins or graphite powder. The thermal characterization of the selected composite material ENG/paraffin was performed by several methods. Effective thermal conductivities values of about 20 W.m-1.K-1 were obtained. In a second step, a 100kW/6kW.h demonstrator is designed and realized. This device tested on an existing sterilization process provides an energy saving of 15%, as expected. The identification of the planar thermal conductivity of the composite material and the influence of the thermal contact resistance are carried out using an experimental device, coupled to a numerical model. Finally, an aging device is used to study the thermal stability of this material

Page generated in 0.0409 seconds