• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 12
  • 10
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 85
  • 85
  • 32
  • 19
  • 16
  • 13
  • 13
  • 12
  • 11
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Semigrupos de operadores lineares aplicados às equações diferenciais parciais /

Rosa, Rosemeire Aparecida. January 2011 (has links)
Orientador: Germán Jesus Lozada Cruz / Banca: Marcos Roberto Teixeira Primo / Banca: Andréa Cristina Prokopezyk Arita / Resumo: Neste trabalho vamos estudar a existência e unicidade de solução para equações da forma { u + Au = f(t,u) u(t0)= u0 ∈ X, (I) onde X é um espaço de Banach, A : D(A) ⊂ X → X é um operador linear, f é uma função não linear conhecida, u0 ∈ X é um dado inical conhecido e u : I ⊂ R → X é uma função desconhecida e t0 ∈ I. Faremos este estudo usando a Teoria dos Semigrupos de Operadores Lineares. Para melhor entendimento do estudo das equações (I), faremos duas aplicações. A primeira tratando de um modelo (linear) de divisão celular e a segunda, do modelo (não linear) de condução do calor. / Abstract: In this work we will study the existence and uniqueness of the solutions for the following equation { u + Au = f(t,u) u(t0)= u0 ∈ X, (I) where X is a Banach space, A : D(A) ⊂ X → X is a linear operator, f is a nonlinear function, u : I ⊂ R → X is unknown function. In this study we will use the theory of semigroup of linear operators. For a best understanding of the study of equations (I), we will do two applications. The first one, is a (linear) model of cellular division and the second one, is about the (nonlinear) model od conduction of the heat. / Mestre
62

Le problème de Cauchy en relativité générale / The Cauchy problem in general relativity

Czimek, Stefan 07 July 2017 (has links)
Dans cette thèse nous étudions le problème de Cauchy en relativité générale. Motivés par la conjecture de censure cosmique faible formulée par Penrose, nous analysons le problème aux données initiales pour les équations d'Einstein dans le vide en faible régularité. Nous démontrons les deux résultats suivants. o Premièrement, nous nous intéressons aux équations de contrainte pour les données initiales et mettons en place une procédure de prolongement. Plus précisément, étant donné des données initiales pour les équations d'Einstein sur la boule unité dans R3, nous les prolongeons de manière continue en des données globales, asymptotiquement plates sur R3. Les équations de contrainte forment un système couplé d'équations non-lineaires sous-determinées géométriques. La preuve de notre procédure de prolongement repose sur un schéma iteratif où nous séparons ce système en deux problèmes de prolongement decouplés et solubles. Enfin, le résultat de prolongement pour les équations de contrainte est obtenu par un argument de point fixe. o Deuxièment, nous prouvons une version localisée du théorème de courbure L2 de Klainerman-Rodnianski-Szeftel. Nous montrons que, étant données des données initiales pour les équations d'Einstein sur une variété compacte avec bord, le temps d'existence de la solution des équations d'Einstein dans le domaine de dépendance de ces données initiales ne dépend que de normes de basse régularité des données initiales. En particulier, notre résultat est un critère localisé de continuité pour les équations d'Einstein. Notre preuve utilise un argument de localisation où, tout d'abord, nous généralisons la théorie de Cheeger-Gromov de convergence pour les variétés Riemanniennes à notre cas de régularité faible, et ensuite nous appliquons la procédure de prolongement pour les équations de contrainte mentionnée ci-dessus avec un argument de changement d’échelle. / In this thesis we study the Cauchy problem of general relativity. Motivated by the weak cosmic censorship conjecture formulated by Penrose, we analyse the initial value problem for the Einstein vacuum equations in low regularity. We prove the following two results. First, we consider the constraint equations of the initial data and demonstrate an extension procedure. More precisely, given small initial data for the Einstein equations on the unit ball in R3, we continuosly extend it to global, asymptotically flat initial data on R3. The constraint equations for the Einstein vacuum equations are a coupled system of non-linear under-determined geometric elliptic equations. The proof of our extension procedure is based on an iterative scheme where we split this system into two decoupled, solvable extension problems. The extension result for the constraint equations follows then by a fix point argument. Second, we prove a localised version of the bounded L2-curvature theorem by Klainerman-Rodnianski-Szeftel. We show that given low regularity initial data to the Einstein equations on a compact manifold with boundary, the time of existence of the solution to the Einstein equations in the domain of dependence of the initial data depends only on low regularity geometric data. In particular, this result is a localised continuation criterion for the Einstein vacuum equations. Our proof uses a localisation argument where we first generalise the known Cheeger-Gromov convergence theory for Riemannian manifolds to our low regularity setting, and then apply the above extension procedure for the constraint equations with a scaling argument.
63

Stratégies de résolution numérique pour des problèmes d'identification de fissures et de conditions aux limites / Numerical resolution strategies for cracks and boundary conditions identification problems

Ferrier, Renaud 27 September 2019 (has links)
Le but de cette thèse est d'étudier et de développer des méthodes permettant de résoudre deux types de problèmes d'identification portant sur des équations elliptiques. Ces problèmes étant connus pour leur caractère fortement instable, les méthodes proposées s'accompagnent de procédures de régularisation, qui permettent d'assurer que la solution obtenue conserve un sens physique.Dans un premier temps, on étudie la résolution du problème de Cauchy (identification de conditions aux limites) par la méthode de Steklov-Poincaré. On commence par proposer quelques améliorations basées sur le solveur de Krylov utilisé, en introduisant notamment une méthode de régularisation consistant à tronquer la décomposition de Ritz de l'opérateur concerné. Par la suite, on s'intéresse à l'estimation d'incertitude en utilisant des techniques issues de l'inversion Bayésienne. Enfin, on cherche à résoudre des problèmes plus exigeants, à savoir un problème transitoire en temps, un cas non-linéaire, et on donne des éléments pour effectuer des résolutions sur des géométries ayant un très grand nombre de degrés de liberté en s'aidant de la décomposition de domaine.Pour ce qui est du problème d'identification de fissures par la méthode de l'écart à la réciprocité, on commence par proposer et tester numériquement différents moyens de stabiliser la résolution (utilisation de fonctions-tests différentes, minimisation des gradients a posteriori ou régularisation de Tikhonov). Puis on présente une autre variante de la méthode de l'écart à la réciprocité, qui est applicable aux cas pour lesquels les mesures sont incomplètes. Cette méthode, basée sur une approche de Petrov-Galerkine, est confrontée entre autres à un cas expérimental. Enfin, on s'intéresse à certaines idées permettant d'étendre la méthode de l'écart à la réciprocité à l'identification de fissures non planes. / The goal of this thesis is to study and to develop some methods in order to solve two types of identification problems in the framework of elliptical equations. As those problems are known to be particularly unstable, the proposed methods are accompanied with regularization procedures, that ensure that the obtained solutions keep a physical meaning.Firstly, we study the resolution of the Cauchy problem (boundary conditions identification) by the Steklov-Poincaré method. We start by proposing some improvements based on the used Krylov solver, especially by introducing a regularization method that consists in truncating the Ritz values decomposition of the operator in question. We study afterwards the estimation of uncertainties by the mean of techniques stemming from Bayesian inversion. Finally, we aim at solving more demanding problems, namely a time-transient problem, a non-linear case, and we give some elements to carry out resolutions on geometries that have a very high number of degrees of freedom, with help of domain decomposition.As for the problem of crack identification by the reciprocity gap method, we firstly propose and numerically test some ways to stabilize the resolution (use of different test-functions, a posteriori minimization of the gradients or Tikhonov regularization). Then we present an other variant of the reciprocity gap method, that is applicable on cases for which the measurements are incomplete. This method, based on a Petrov-Galerkin approach, is confronted, among others, with an experimental case. Finally, we investigate some ideas that allow to extend the reciprocity gap method for the identification of non-plane cracks.
64

Semilinear elastic waves with different damping mechanisms

Chen, Wenhui 14 July 2020 (has links)
Elastic waves describe particles vibrating in materials holding the property of elasticity. Particularly, several kinds of resistance in elasticity lead to the models of elastic waves with different damping mechanisms. In the thesis, the influence from friction, structural damping, Kelvin-Voigt damping on the linear and semilinear elastic waves in two or three dimensions are studied. Concerning the Cauchy problem for linear elastic waves, some qualitative properties of solutions including well-posedness, smoothing effect, propagation of singularities, energy estimates and diffusion phenomena, are derived by using WKB analysis associated with diagonalization procedures or the spectral theory. By constructing suitable time-weighted Sobolev spaces and using Banach's fixed point theorem, global (in time) existence of small data solutions to the weakly coupled systems for semilinear elastic waves with different damping terms have been proved. The main tools to treat the nonlinear terms in Sobolev spaces are some fractional tools in Harmonic Analysis. Finally, well-posedness and Lp-Lq estimates for elastic waves without any damping terms in three dimensions are analyzed by employing Riesz transform theory and stationary phase methods.
65

Structural damped sigma-evolution operators

Kainane Mezadek, Mohamed 05 March 2014 (has links)
The subject of the thesis is the investigation of asymptotic properties of solutions of the Cauchy problem for structurally damped sigma-evolution operators with time dependent, monotonous, dissipation term. An appropriate energy for solutions of the sigma-evolution equations is defined and some estimates for energies of higher order are proved. In the scale invariant case the optimality of these estimates is shown. Further, the influence of properties of the time dependent dissipation on L^p-L^q estimates for the energy with p and q bigger or equal to 2 and from the conjugate line is clarified. Also smoothing properties of the operators under consideration are investigated. The connection between the regularity of the data and the regularity of the solution in terms of L^2 based Gevrey spaces is considered. Finally, L^1-L^1-estimates in the special case delta = sigma/2 and decreasing dissipative coefficient. / Thema der vorliegenden Dissertation ist die Untersuchung asymptotischer Eigenschaften von Lösungen des Cauchy Problems für strukturell gedämpfte sigma-Evolutions-Operatoren mit zeitabhängigem, monotonen Dissipationskoeffizienten. Es wird eine geeignete Energie definiert und für diese Abschätzungen, auf für entsprechende Energien höherer Ordnung gezeigt. Darüber hinaus wird der Einfluss des Dissipationskoeffizienten auf L^p-L^q Abschätzungen auf und entfernt von der konjugierten Linie untersucht. Im skaleninvarianten Fall wird die Schärfe der Abschätzungen bewiesen. Weiterhin wird der Zusammenhang zwischen der Regularität der Daten und der der Lösung in Termen von L^2-basierten Gevrey-Räumen untersucht. Schließlich werden L^1-L^1-Abschätzungen für den Spezialfall delta = sigma/2 und monoton fallenden Dissipationskoeffizienten gezeigt.
66

Teoria de semigrupos e aplicações a equações impulsivas com retardamento dependendo do estado / Semigroup theory and applications to impulsive differential equation with state-dependent delay

União, Gabriel Gonçalves 17 April 2006 (has links)
Neste trabalho estudaremos a existência de soluções fracas para uma classe de equações diferenciais funcionais impulsivas com retardamento dependendo do estado modeladas na forma \'x POT. PRIME\'(t) = Ax(t) + f(t;\' x IND. p(t, xt)), t \'PERTENCE A\'I = [0,a], \'x IND. 0\' =\\varphi \'PERTENCE A\' B, \'DELTA\' \'x(t IND. i) = \'I IND.i\'i(\'x IND.i\'); i = 1, ...n, onde A é o gerador infinitesimal de um \'C IND. 0\'-semigrupo compacto de operadores lineares limitados (\'T\'(t))t \'. OU =\'0 definido em um espaço de Banach X; as fun»ções \'x IND. s\' : (- \'INFIINITO\', 0] \'SETA\' X, \'x IND. s\' ( teta\') = x(s + \'teta\'), estão em um espaço de fase B descrito axiomaticamente; f : I X B \'seta\' X, \'rô\' : I X B \'SETA\' ( - \'INFINITO\', a], \'I IND. i\' : B \'SETA\'X, i=1, ...n , são funções apropriadas; 0 < \'t IND.1\' <... < \'t IND. n\' < a são n¶umeros pré-fixados e o símbolo \'DELTA\'\'ksi\'(t) = \'Ksi\'(\'t POT. + ) - \'ksi\'( \'t POT. -). / In this work we stablish the existence of mild solutions for an impulsive abstract functional differential equation with state-dependent delay described in the form \'x POT. PRIME\'(t) = Ax(t) + f(t;\' x IND. p(t, xt)), t \'BELONGS\'I = [0,a], \'x IND. 0\' =\\varphi \'IS CONTAINED\' B, \'DELTA\' \'x(t IND. i) = \'I IND.i\'i(\'x IND.i\'); i = 1, ...n, where A is the infinitesimal generator of a compact \'C IND. 0\'-semigroup of bounded linear operators (\'T\'(t))t \'. OU =\'0 defined on a Banach space X; the functions \'x IND. s\': ( - INFINito, 0] \'SETA X, \'x IND. s\'(\'teta\') , belongs to some space B described axiomatically; f : I X B \'seta\' X, \'rô\' : I X B \'SETA\' ( - \'INFINITO\', a], \'I IND. i\' : B \'SETA\'X, i=1, ...n , são funções apropriadas; 0 < \'t IND.1\' <... < \'t IND. n\' < a são n¶umeros pré-fixados e o símbolo \'DELTA\'\'ksi\'(t) = \'Ksi\'(\'t POT. + ) - \'ksi\'( \'t POT. -).
67

Funções s-assintoticamente periódicas em espaços de Banach e aplicações à equações diferenciais funcionais / S-asymptotically periodic functions on Banach spaces and applications for functional differential equations

Hernandez, Michelle Fernanda Pierri 13 April 2009 (has links)
Este trabalho está voltado para o estudo de uma classe de funções contínuas e limitadas f : [0; \'INFINITO\') \'SETA\' X para as quais existe \'omega\' \'> OU =\' 0 tal que \'lim IND. t\' \'SETA\' \'INFINITO\' (f(t + \'omega\') - f(t)) = 0. No decorrer do trabalho, chamaremos estas funções de S-assintoticamente \'omega\'-periódicas. Nós discutiremos propriedades qualitativas para estas funções e algumas relações entre este tipo de funções e a classe de funções assintoticamente \'omega\'-periódicas. Também estudaremos a existência de soluções fracas S-assintoticamente \'omega\'-periódicas para uma classe de primeira ordem de um problema de Cauchy abstrato bem como para algumas classes de equações diferenciais funcionais parciais neutras com retardo não limitado. Algumas aplicações para equações diferenciais parciais serão consideradas / This work is devoted to the study of the class of continuous and bounded functions f : [0 \'INFINIT\') \'ARROW\' X for which there exists \'omega\' > 0 such that \'limt IND.t \'ARROW\' \'INFINIT\'(f(t + \'omega\'!) - f(t)) = 0 (in the sequel called S-asymptotically !-periodic functions). We discuss qualitative properties and establish some relationships between this type of functions and the class of asymptotically \'omega\'-periodic functions. We also study the existence of S-asymptotically \'omega\'-periodic mild solutions for a first-order abstract Cauchy problem in Banach spaces and for some classes of abstract neutral functional differential equations with infinite delay. Furthermore, applications to partial differential equations are given
68

Modelling and control of systems of conservation laws with a moving interface : an application to an extrusion process / Étude des systèmes de lois de conservation à interfaces mobiles : application à un procédé d'extrusion

Diagne, Mamadou Lamine 26 June 2013 (has links)
Cette thèse porte sur l’étude des systèmes de lois de conservation couplés par une interface mobile. Un modèle dynamique d’un procédé d’extrusion obtenu à partir des bilans de masse, de taux d’humidité et d’énergie est proposé. Ce modèle exprime le transport de la matière et de la chaleur dans une extrudeuse par des systèmes d’équations hyperboliques définis sur deux domaines complémentaires variant dans le temps. L’évolution des domaines est dictée par une Equation aux Dérivées Ordinaires (EDO) issue du bilan de masse total dans une extrudeuse. Par le principe des applications contractantes l’existence et l’unicité de la solution pour cette classe de système sont prouvées. Le problème de stabilisation de l’interface mobile est aussi abordé en utilisation le formalisme des systèmes à retard. La méthode des caractéristiques permet de représenter le système composé des équations issues du bilan de masse par un système à retard sur l’entrée. Au moyen d’un contrôleur prédictif la position de l’interface est stabilisée autour d’un point équilibre. La dernière partie de ce travail est dédiée à l’étude des systèmes Hamiltoniens à ports frontière couplés par une interface mobile. Ces systèmes augmentés de variables couleur qui sont des fonctions caractéristiques du domaine peuvent s’exprimer comme des systèmes Hamiltoniens à ports frontière / This thesis is devoted to the analysis of Partial Differential Equations (PDEs) which are coupled through a moving interface. The motion of the interface obeys to an Ordinary Differential Equation (ODE) which arises from a conservation law. The first part of this thesis concerns the modelling of an extrusion process based on mass, moisture content and energy balances. These balances laws express heat and homogeneous material transport in an extruder by hyperbolic PDEs which are defined in complementary time-varying domains. The evolution of the coupled domains is given by an ODE which is derived from the conservation of mass in an extruder. In the second part of the manuscript, a mathematical analysis has been performed in order to prove the existence and the uniqueness of solution for such class of systems by mean of contraction mapping principle. The third part of the thesis concerns the transformation of an extrusion process mass balance equations into a particular input delay system framework using characteristics method. Then, the stabilization of the moving interface by a predictor-based controller has been proposed. Finally, an extension of the analysis of moving interface problems to a particular class of systems of conservations laws has been developed. Port-Hamiltonian formulation of systems of two conservation laws defined on two complementary time-varying intervals has been studied. It has been shown that the coupled system is a port-Hamiltonian system augmented with two variables being the characteristic functions of the two spatial domains
69

Um estudo sobre a boa colocação local da equação não linear de Schrödinger cúbica unidimensional em espaços de Sobolev periódicos / A study about the locally well posed of cubic nonlinear Schrödinger equation in periodic Sobolev spaces

Romão, Darliton Cezario 25 March 2009 (has links)
In this work we study, in details, the Cauchy problem of the nonlinear Schrödinger equation, with initial datas in periodic Sobolev spaces. Specifically, we prove that this problem is locally well posed for datas in Hsper, with s &#8805; 0. Particularly, for initial datas in L2 the problem is globally well posed, due to the conservation law of the equation in this space. Moreover, we prove the this result is the best one, seeing we expose examples that show that the equation flow is not locally uniformly continuous for initial datas with regularity less than L2. / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho, fazemos um estudo detalhado do problema de Cauchy para a equação não-linear cúbica de Schrödinger, com dados iniciais em espaços de Sobolev no toro. Especificamente, provaremos que este modelo é localmente bem posto para dados em Hsper, com s &#8805; 0. Em particular, para dados iniciais em L2 o modelo é globalmente bem posto, devido à lei de conservação da equação neste espaço. Além disso, provaremos que os resultados obtidos são os melhores possíveis, visto que exibiremos exemplos que mostram que o fluxo da equação não é localmente uniformemente contínuo para dados iniciais com regularidade menor que L2.
70

Sobre o teorema de Campbell-Magaard e o problema de Cauchy na relatividade

Sanomiya, Thais Akemi Tokubo 11 March 2016 (has links)
Submitted by Vasti Diniz (vastijpa@hotmail.com) on 2017-09-18T11:49:17Z No. of bitstreams: 1 arquivototal.pdf: 2571485 bytes, checksum: 176b4eb5f639864aaef387d41330b286 (MD5) / Made available in DSpace on 2017-09-18T11:49:17Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 2571485 bytes, checksum: 176b4eb5f639864aaef387d41330b286 (MD5) Previous issue date: 2016-03-11 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / After the formulation of general relativity differential geometry has become an increasing important tool in theoretical physics. This is even more clear in the investigation of the so-called embedding space-time theories. In this work we focus our attention in the Cauchy problem. These have played a crucial role in our understanding of the mathematical struc­ture of general relativity and embedding theories. We investigate the similarities and diffe­rences between the two approaches. We also study an extension of the Campbell-Magaard theorem and give two examples of both formalisms. / A geometria diferencial passou a ser uma ferramenta fundamental na fisica com o surgi­mento da relatividade geral. Em particular, destacamos sua importância na investigado das chamadas teorias de imersdo do espaco-tempo. Neste trabalho analisamos dois grandes for­malismos fundamentados de forma direta ou indireta na teoria de imersões: o teorema de Campbell-Magaard e o problema de Cauchy para a relatividade geral. Tendo como princi­pal objetivo tracar um paralelo entre esses dois formalismos, estudamos, nesta dissertacdo, o problema de valor inicial (pvi) para a relatividade geral mostrando que alem de admitir a formulae-do de pvi, a mesma é bem posta. Ademais, aplicamos este formalismo para o caso de uma metrica do tipo Friedmann-Robertson-Walker em (3+1). Estudamos tambem o teorema de Campbell-Magaard e sua extensdo para o espaco-tempo de Einstein e aplicamos este teorema para uma metrica do tipo de Sitter em (2+1).

Page generated in 0.0359 seconds