Spelling suggestions: "subject:"cellules souches pluripotent induite"" "subject:"cellules souches pluripotent induit""
11 |
Développement par génie tissulaire d’un modèle de peau humaine innervée, vascularisée et immunocompétente pour l’étude des réactions inflammatoires cutanées / Development of an immunocompetent, innervated and vascularized human tissue-engineered skin model for the study of cutaneous neuro-immune interactionsMuller, Quentin Philippe Sylvain 28 September 2018 (has links)
Les réactions immunitaires de la peau sont initiées par les cellules dendritiques cutanées (dendritic cells, DCs). L'effet potentiellement sensibilisateur d'un composé peut être prédit in vitro en utilisant des monocytes humains différenciés en DCs (MonoDCs). Cependant, ces modèles simplistes restent imprécis car l'activation des DCs cutanés par les sensibilisateurs peut être déclenchée ou modulée par des interactions microenvironnementales avec de multiples types de cellules non immunitaires. Notre objectif est de développer une peau immunocompétente qui combinera des MonoDCs avec tous les éléments structurels et fonctionnels de la peau, c'est-à-dire une barrière épidermique posée sur un derme contenant une pseudo-vascularisation et des neurones nociceptifs. Une matrice de collagène a été ensemencée avec des fibroblastes et des cellules endothéliales, puis avec des précurseurs de fibres nerveuses dérivées soit de l'iPSC humaine, soit de la DRG embryonnaire murins. Enfin, nous avons introduit les MonoDC et les kératinocytes. Nous avons observé que les neurones différenciés in situ innervent l'épiderme comme observé habituellement dans la peau humaine normale. De plus, les neurones dérivées d’iPSCs, expriment neuropeptides et canaux calcique spécifiques des fibres nociceptives. Enfin, les Mono-DC intégrés au modèle restent stable pendant toute la durée nécessaire à la formation de l’épiderme et peuvent être stimulé. Le modèle sera utilisé pour prédire le potentiel irritant des composés chimiques et l'impact de l’innervation nociceptive sur l'activation des DCs. / Immune reactions in the skin are initiated by the cutaneous dendritic cells (DCs). The potential sensitizing effect of a compound can be predicted in vitro using human monocytes differentiated into DCs (Mono-DCs). However, these simplistic models remain inaccurate because the activation of cutaneous DCs by sensitizers may be triggered or modulated by microenvironmental interactions with multiple types of non-immune cells. Our goal is to develop an immunocompetent human tissue-engineered skin that will combine DCs with all structural and functional element of the skin, i.e. an epidermal barrier laid upon a dermis containing a pseudo-vascularization and nociceptive neurons. Collagen matrix was seeded with fibroblasts and endothelial cells, then with precursors of nerve fibers derived from either human iPSC or murine embryonic DRG. Finally, we introduced Mono-DCs and keratinocytes. We observed that in situ differentiated neurons grow axons towards the epidermis as usually observed in normal human skin. What's more, the neurons derive from iPSC, express neuropeptides and calcium channel as normal nociceptive fibers. Moreover, Mono-DCs settled as expected beneath the epidermis and remained sessile to stimulation for several weeks. The model will be used to predict the irritant potential of chemical compounds, and the impact of nerves on DC activation.
|
12 |
Hépatocytes différenciés à partir de cellules souches pluripotentes induites : modèle pour la thérapie cellulaire et génique autologue de l'hémophilie B et modèle préclinique chez le primate / Hepatocytes differentiated from induced pluripotent stem cells : model for autologous cell and gene therapy of hemophilia B and preclinical model in primateLuce, Eléanor 15 December 2017 (has links)
Ce projet de thèse vise à modéliser puis à apporter la preuve de concept d’une thérapie cellulaire et génique autologue de maladies héréditaires du foie par la transplantation d’hépatocytes différenciés à partir des cellules souches pluripotentes induites (iPSC) spécifiques du patient, une fois celles-ci corrigées du défaut génétique. L’hémophilie B (HB) est une maladie héréditaire causée par une mutation du gène F9, codant le facteur IX (FIX) de la coagulation synthétisé dans le foie par les hépatocytes. Des fibroblastes d’un patient porteur de la « mutation royale » ont été reprogrammés en iPSC puis différenciés en hépatocytes. L’étude de l’ARNm du F9 par séquençage haut débit a confirmé la présence d’un site d’épissage anormal codant une protéine tronquée. D’autres iPSC ont été obtenues à partir des cellules d’un second patient HB exprimant un FIX inactif. Après insertion ciblée d’une cassette thérapeutique codant le FIX dans un site génomique sûr à l’aide d’endonucléases artificielles (CRISPR/Cas9), nous avons différencié les iPSC corrigées et non corrigées en hépatocytes (respectivement corr-HB-Heps et HB-Heps) et confirmé une expression plus importante de l’ARNm du F9 et de la protéine FIX dans les corr-HB-Heps. En revanche, nous n’avons pas détecté d’activité du FIX transgénique sans doute à cause d’une différenciation incomplète des hépatocytes. Nous avons alors développé un protocole de différenciation en sphéroïdes permettant une différenciation plus efficace confirmée aux niveaux ARN et protéine FIX. L’analyse de l’activité du FIX produit nous permettra de valider la correction in vitro avant de la valider in vivo en transplantant les corr-HB-Heps dans un modèle de souris F9KO. Finalement, la dernière partie de ce travail a consisté à développer un protocole de différenciation d’iPSC de singe en hépatocytes en vue d’une transplantation autologue dans le foie de l’animal donneur pour valider la faisabilité et la sécurité de cette approche chez le gros animal. / This PhD project aims to model and to bring a proof of concept for autologous cell/gene therapy of inherited liver diseases by transplanting hepatocytes differentiated from patient-specific induced pluripotent stem cells (iPSCs), after correction of the genetic defect. Hemophilia B (HB) is an inherited disease caused by a mutation in the F9 gene encoding clotting factor IX (FIX), synthesized in the liver by hepatocytes. Fibroblasts of a patient with the "royal mutation" were reprogrammed in iPSCs then differentiated into hepatocytes. The study of the F9 mRNA by high-throughput sequencing confirmed the presence of an abnormal splice site leading to a truncated protein explaining hemophilia. Other iPSCs were obtained and characterized from the cells of a second HB patient expressing an inactive FIX. By targeting in these iPSCs the insertion of a therapeutic cassette encoding FIX into a safe harbor site using artificial endonucleases (CRISPR/Cas9), we differentiated the corrected and non-corrected iPSC into hepatocytes. Quantitative analyzes confirmed a higher expression of F9 mRNA and FIX protein in the corrected clones. In contrast, we did not detect transgenic FIX activity due to a lack of post-translational modifications necessary for FIX activity. We then developed a protocol of differentiation in spheroids quantitatively more efficient to produce FIX. Detection of FIX activity will validate our in vitro approach before validation in vivo by transplanting the corrected hepatocytes in a F9KO mouse model. Finally, the last part of this work consisted in the development of a differentiation protocol of nonhuman primate iPSCs into hepatocytes for autologous transplantation into the liver of the donor animal in order to validate the feasibility and the safety of such an approach in the large animal
|
13 |
Etude d’un locus soumis à empreinte parentale : le locus GNAS. Rôle des transcrits et maintien de l’empreinte / Study of a Human Imprinted Locus : the GNAS Locus. Role of the GNAS Transcripts and Imprinting MaintenanceGrybek, Virginie 13 January 2015 (has links)
GNAS est un locus complexe soumis à l'empreinte parentale. Il code pour cinq transcrits alternatifs dont l’expression est régulée de manière parentale, tissulaire et développementale : la sous-Unité alpha stimulatrice de la protéine G hétérotrimérique (Gαs), XLαs, NESP55, et deux ARNnc, A/B et GNAS-AS1. Gαs est une protéine clé dans la transduction hormonale partageant avec XLαs la capacité de produire l'AMPc intracellulaire après stimulation des récepteurs couplés à Gαs.Dans la première partie de ma thèse, je me suis concentrée sur l'étude du rôle des transcrits de GNAS, en particulier XLαs, dans la croissance fœtale et post-Natale. J’ai profité du modèle unique des pseudohypoparathyroïdies (PHPs), pathologies humaines rare de l’empreinte, causées par des anomalies génétiques ou épigénétiques du locus GNAS altérant le dosage génique des transcrits de GNAS. La croissance anormale est une caractéristique majeure des PHPs.Dans la deuxième partie de ma thèse, j’ai étudié le profil épigénétique du locus GNAS (méthylation de l'ADN et expression des transcrits) dans les cellules souches humaines embryonnaires -HESCs-, dans les cellules pluripotentes induites dérivées à partir de fibroblastes de sujets sains -IPSCs- et dans les cellules redifférenciées en cellules souches neurales et mésenchymateuses. La caractérisation précise du locus humain GNAS en physiologie (cellules souches) et pathologie (PHP) est essentielle pour une meilleure compréhension des processus développementaux importants comme la croissance. L'exploration du phénotype "croissance" de différents types de PHPs a permis de mieux comprendre le rôle des transcrits du locus GNAS dans la physiologie et la physiopathologie. L'analyse de cellules des PHPs a permis de mieux caractériser l’impact des anomalies moléculaires du locus GNAS en pathologie humaine. Les hiPSCs peuvent être un outil utile pour étudier les modifications épigénétiques au niveau du locus GNAS. / GNAS is a complex locus subjected to parental imprinting encoding five parental-, tissue- and developmental-Manner regulated transcripts : the alpha stimulatory subunit of the G protein (Gαs), XLαs, NESP55, and two ncRNAs, A/B and the antisens GNAS-AS1. Gαs is a key protein in hormonal signaling sharing with XLαs the ability to produce intracellular cAMP upon stimulation of Gαs-Coupled receptors. In the first part of my thesis, I focused on studying the role of the GNAS transcripts, particularly XLαs, in fetal and postnatal growth. I took advantage of the unique model of pseudohypoparathyroidism (PHP), a rare human disease, caused by genetic or epigenetic abnormalities at the GNAS locus leading to various combinations of GNAS transcripts alterations. Abnormal growth appears to be a major feature of PHP. In the second part of my thesis, I studied the epigenetic pattern of GNAS (DNA methylation and transcripts expression) in human embryonic stem cells -HESCs-, in induced pluripotent stem cells -IPSCs- derived from fibroblasts from healthy individuals, and in cells re-Differentiated from these stem cells in neuronal and mesenchymal cells. The precise characterization of the human GNAS locus in physiology (stem cells) and pathology (PHP) is critical for a better understanding of major processes like growth. Through exploration of the "growth" phenotype of different groups of PHPs we have participated to the better understanding of the role of the GNAS transcripts in the physiology and pathophysiology. Human iPSCs may be an useful tool to study epigenetic modifications at the GNAS locus.
|
14 |
Immune potential and differentiation of equine induced pluripotent stem cells (eiPSC)Aguiar, Christie 08 1900 (has links)
Induced pluripotent stem cells (iPSC) have the capacity to self renew and
differentiate into a myriad of cell types making them potential candidates for cell therapy
and regenerative medicine. The goal of this thesis was to determine the characteristics of
equine iPSC (eiPSC) that can be harnessed for potential use in veterinary regenerative
medicine. Trauma to a horse’s limb often leads to the development of a chronic non-healing
wound that lacks a keratinocyte cover, vital to healing. Thus, the overall hypothesis of this
thesis was that eiPSC might offer a solution for providing wound coverage for such
problematic wounds. Prior to considering eiPSC for clinical applications, their
immunogenicity must be studied to ensure that the transplanted cells will be accepted and
integrate into host tissues.
The first objective of this thesis was to determine the immune response to eiPSC.
To investigate the immunogenicity of eiPSC, the expression of major histocompatibility
complex (MHC) molecules by the selected lines was determined, then the cells were used
in an intradermal transplantation model developed for this study. While transplantation of
allogeneic, undifferentiated eiPSC elicited a moderate cellular response in experimental
horses, it did not cause acute rejection. This strategy enabled the selection of weakly
immunogenic eiPSC lines for subsequent differentiation into lineages of therapeutic
importance.
Equine iPSC offer a potential solution to deficient epithelial coverage by providing
a keratinocyte graft with the ability to differentiate into other accessory structures of the
epidermis. The second objective of this thesis was to develop a protocol for the
differentiation of eiPSC into a keratinocyte lineage. The protocol was shown to be highly
efficient at inducing the anticipated phenotype within 30 days. Indeed, the eiPSC derived
vi
keratinocytes (eiPSC-KC) showed both morphologic and functional characteristics of
primary equine keratinocytes (PEK). Moreover, the proliferative capacity of eiPSC-KC was
superior while the migratory capacity, measured as the ability to epithelialize in vitro
wounds, was comparable to that of PEK, suggesting exciting potential for grafting onto in
vivo wound models.
In conclusion, equine iPSC-derived keratinocytes exhibit features that are promising
to the development of a stem cell-based skin construct with the potential to fully regenerate lost or damaged skin in horses. However, since eiPSC do not fully escape immune surveillance despite low MHC expression, strategies to improve engraftment of iPSC derivatives must be pursued. / Les cellules souches pluripotentes induites (iPSC) ont la capacité de s'auto
renouveler et de se différencier en une myriade de types cellulaires, ce qui en fait des outils
intéressants pour la thérapie cellulaire et la médecine régénérative. Le but de cette thèse
était de déterminer les caractéristiques des iPSC équines (eiPSC) qui peuvent être
exploitées pour l'usage potentiel en médecine régénérative vétérinaire. Chez le cheval, une
plaie cutanée est souvent cicatrisée par seconde intention et est sujette à de nombreuses
complications lorsque située sur le membre, notamment une épithélialisation lente. Ainsi,
l'hypothèse globale de cette thèse était que les eiPSC pourraient offrir une solution
novatrice de couverture pour de telles blessures. Avant d'envisager l’utilisation d'eiPSC à
des fins cliniques, leur immunogénicité doit être étudiée afin de s'assurer que les cellules
transplantées seront acceptées et intégrées dans les tissus du receveur.
Le premier objectif de cette thèse était de définir la réponse immunitaire suscitée
par les eiPSC. Afin d'étudier l'immunogénicité d'eiPSC, l'expression de molécules du
complexe majeur d’histocompatibilité (MHC) des lignes choisies a été déterminée, puis les
cellules ont été utilisées dans un modèle de transplantation intradermique développé pour
cette étude. Bien que la transplantation allogénique d'eiPSC non différenciées ait induit
une réponse cellulaire modérée chez les chevaux d'expérimentation, elle n'a pas provoqué
de rejet. Cette stratégie a permis la sélection de lignées d'eiPSC faiblement immunogènes
pour la différenciation ultérieure en des lignées d'importance thérapeutique.
Les eiPSC représentent une solution intéressante et qui, par l’entremise du
développement d’une lignée de kératinocytes, pourraient servir à la création d’une greffe
ayant la capacité de former non seulement l’épithélium manquant mais aussi d'autres
structures accessoires de l'épiderme. Le deuxième objectif de cette thèse était donc de
iv
développer un protocole pour la différentiation des eiPSC en lignée de kératinocytes. Un
protocole visant cette différenciation fut ainsi développé et ce dernier a démontré une
grande efficacité à produire le phénotype attendu dans une période de 30 jours. En effet, les
kératinocytes dérivés d'eiPSC (eiPSC-KC) ont montré des caractéristiques morphologiques
et fonctionnelles des kératinocytes primaires équins (PEK). En outre, la capacité de
prolifération d'eiPSC-KC est supérieure tandis que la capacité migratoire, mesurée comme
l'aptitude à cicatriser les plaies in vitro, est comparable à celle du PEK.
En conclusion, les eiPSC-KC ont des caractéristiques intéressantes pour le
développement d'un substitut cutané à base de cellules souches, ayant le potentiel de
régénérer la peau perdue lors de trauma ou de maladie, chez le cheval. Cependant, parce
que les eiPSC n'échappent pas totalement à la surveillance immunitaire, malgré une faible
expression du MHC, des stratégies pour améliorer la prise de greffe eiPSC-KC doivent être élaborées.
|
15 |
Modélisation de maladies neurodégénératives à l'aide de cellules souches pluripotentes induites humainesLemonnier, Thomas 25 September 2012 (has links) (PDF)
La technologie de reprogrammation de cellules somatiques en cellules souches pluripotentes induites (iPS) offre aujourd'hui l'opportunité de modéliser des maladies neurodégénératives et d'étudier des neurones de patients. Nous avons utilisé cette technologie pour générer deux modèles de maladies neurodégénératives : la mucopolysaccharidose de type IIIB (MPSIIIB) et la forme ALS2 de la sclérose latérale amyotrophique (SLA). Dans le modèle MPSIIIB, nous avons montré que les iPS et les neurones de patients présentaient des défauts caractéristiques de la pathologie telle que l'accumulation de vésicules de surcharge. Des altérations de l'appareil de Golgi dans ces cellules ont également été mises en évidence. Une analyse du transcriptome de précurseurs neuraux MPSIIIB a montré des modifications transcriptionnelles touchant notamment des gènes impliqués dans les interactions de la cellule avec la matrice extracellulaire. Ainsi, dans une seconde étude, des altérations de la migration et de l'orientation de cellules de souris mutantes MPSIIIB ou de patients ont été démontrées. Ces altérations pourraient être responsables des perturbations de la neurogénèse et de la neuritogénèse chez les enfants malades. Dans le modèle SLA/ALS2, nous avons montré que les neurones de patients présentaient des défauts incluant une diminution de la surface des endosomes et des anomalies de la croissance neuritique. Alors qu'il n'existait jusqu'alors aucun modèle cellulaire pertinent reproduisant cette maladie, ce modèle permettra à présent d'étudier les processus physiopathologiques impliqués dans la maladie. En conclusion, la génération de cellules iPS permet de modéliser des maladies neurodégénératives et d'étudier les processus physiopathologiques qui sont associés sur des neurones humains en culture. Ces modèles cellulaires pourraient permettre dans un avenir proche de réaliser des criblages de molécules à visée thérapeutique
|
16 |
Génération de progéniteurs hépatiques dérivés de cellules souches : application à l'hypercholestérolémie familialeCorbineau, Sébastien 05 October 2011 (has links) (PDF)
La transplantation d'hépatocytes représente une alternative à la transplantation hépatique pour le traitement de certaines maladies métaboliques dont l'hypercholestérolémie familiale. Les cellules souches embryonnaires (ES) et les cellules souches pluripotentes induites (iPS) humaines représentent de nouvelles sources de cellules hépatiques. Nous avons mis au point une approche de différenciation des cellules souches humaines en cellules hépatiques et généré ainsi des cellules dérivées de cellules iPS de patients atteints d'hypercholestérolémie familiale.
|
17 |
Développement d'une méthode innovante pour la génération sécurisée de cellules souches pluripotentes induites par transfert de protéines / Development of an innovative method for the safe generation of induced pluripotent stem cells by protein transductionBerthoin, Lionel 02 October 2015 (has links)
Les cellules souches pluripotentes induites (iPS) partagent avec les cellules souches embryonnaires la capacité à se différencier en tous les types cellulaires d'un organisme, mais leur obtention ne nécessite pas l'utilisation d'embryons. Elles sont générées par la surexpression de facteurs de transcription embryonnaires au sein de cellules somatiques. Les iPS représentent un outil de choix en biologie fondamentale et appliquée ainsi qu'en médecine régénérative.La plupart des protocoles de génération d'iPS reposent sur un transfert des séquences nucléotidiques codant les facteurs de transcription embryonnaires impliqués dans la mise en place du réseau de pluripotence. Bien qu'efficaces, ces méthodes présentent des problèmes de sécurité majeurs, incompatibles avec une utilisation clinique des iPS générées. La voie la plus rationnelle pour produire des iPS de manière parfaitement sécurisée est d'apporter les facteurs exogènes directement sous leur forme protéique. Des protocoles de reprogrammation par transfert de protéines ont été récemment développés, mais les efficacités associées sont relativement faibles et les protocoles relativement fastidieux.L'objectif de ce projet de thèse était de mettre au point une nouvelle approche de transfert de protéines, sécurisée et simplifiée, pour la génération de cellules souches pluripotentes induites utilisables en clinique. Les cellules à reprogrammer ont été choisies en fonction des applications potentielles des iPS générées : (i) les fibroblastes, faisant référence dans la bibliographie et permettant d'envisager des thérapies autologues avec notamment de nombreuses applications en hématologie ; (ii) les cellules souches hématopoïétiques de sang de cordon, l'un des matériaux biologiques les plus sûrs, afin de générer des globules rouges in vitro, dans la perspective de répondre aux demandes croissantes en terme de transfusion, en particulier pour les groupes sanguins rares.Nous avons donc comparé les différents vecteurs de transduction de protéines développés par l'équipe TheREx du laboratoire TIMC-IMAG, en termes de facilité de production, d'efficacité de transfert ainsi que sur l'activité des facteurs de transcription associés. Le vecteur sélectionné est une micro-seringue naturelle portée par la bactérie Pseudomonas aeruginosa, capable d'injecter les facteurs Oct4, Sox2, Nanog et Lin28 (facteurs de Thomson) mais aussi c-Myc, directement dans le cytoplasme des cellules cibles, sans étape de purification nécessaire. Les facteurs de transcription injectés sont adressés jusqu'au noyau des cellules en moins de 2h, où ils activent rapidement la transcription des gènes de pluripotence, avec des réponses significatives mesurées dès 24h après injection. Nous avons également mis en évidence le caractère sécurisé et contrôlable du vecteur puisque nous sommes capables d'éliminer complètement les bactéries des cultures grâce à un traitement antibiotique, et ce dès quelques heures après l'injection. Des optimisations des conditions de reprogrammation ont été réalisées en modifiant les principaux paramètres que sont, le choix des facteurs de transcription, la fréquence des injections et le ratio bactéries : cellules.Ainsi, bien que nous ne soyons pas parvenus à générer des iPS à ce jour avec ce système, la micro-seringue naturelle que nous avons développé et optimisé se positionne comme un vecteur de choix pour le transfert de protéines dans l'optique de générer des iPS, en termes d'efficacité de vectorisation et d'induction transcriptionnelle, de sécurité mais aussi de facilité d'utilisation. / Like embryonic stem cells, induced pluripotent stem cells (iPS) are characterized by their ability to differentiate into any cell type in an organism. However their use doesn't raise the ethical issue linked to the use of embryos. iPS are generated from somatic cells by overexpression of embryonic transcription factors. iPS are thereby very promising in fundamental and applied biology as well as for regenerative medicine.Most of the protocols used to generate iPS are based on the delivery of nucleic acid sequences encoding embryonic transcription factors responsible for the activation of the pluripotency gene network. In spite of their efficiency, these methods are associated with major safety concerns incompatible with clinical applications. The more rational path to safely produce iPS is to deliver the exogenic transcription factors under their protein form. Recently some protocols using protein delivery have been developed to produce iPS. However associated efficiencies are very low and protocols are quite fastidious.The aim of this Ph.D. project was to develop a new efficient and simplified protein delivery method for the safe generation of iPS compatible with clinical applications. Cell sources were selected depending of the final applications of iPS: (i) fibroblasts, extensively used and described in bibliography and allowing autologous therapies with many applications in the field of hematology; (ii) cord blood hematopoietic stem cells, one of the safest biomaterials, with the aim to generate red blood cells in vitro in order to respond to increasing needs for transfusion products, particularly for rare blood types.First, different protein vectors developed by the TheREx team of the TIMC-IMAG laboratory were compared for their efficiency of production and delivery as well as for the activity of associated factors. The selected vector is a natural micro-syringe expressed by Pseudomonas aeruginosa, able to inject the transcription factors Oct4, Sox2, Nanog and Lin28a (Thomson combination) with c-Myc directly into the cytoplasm of target cells, without the need for any purification step. Once injected, transcription factors are addressed to the nucleus in less than 2 hours where they efficiently activate transcription of pluripotency genes, with significant responses observed as early as 24h after injection. We also highlighted the secured and controllable nature of this vector by completely eliminating the bacteria from the cultures in a few hours after injection with an antibiotic treatment. Optimizations of the reprogramming conditions were also made by adjusting many parameters such as the combination of transcription factors, the injection frequency and the bacteria : cell ratio.
|
18 |
Modélisation de maladies neurodégénératives à l’aide de cellules souches pluripotentes induites humaines / Modeling of neurodegenerative diseases using human induced pluripotent stem cellsLemonnier, Thomas 25 September 2012 (has links)
La technologie de reprogrammation de cellules somatiques en cellules souches pluripotentes induites (iPS) offre aujourd’hui l’opportunité de modéliser des maladies neurodégénératives et d’étudier des neurones de patients. Nous avons utilisé cette technologie pour générer deux modèles de maladies neurodégénératives : la mucopolysaccharidose de type IIIB (MPSIIIB) et la forme ALS2 de la sclérose latérale amyotrophique (SLA). Dans le modèle MPSIIIB, nous avons montré que les iPS et les neurones de patients présentaient des défauts caractéristiques de la pathologie telle que l’accumulation de vésicules de surcharge. Des altérations de l’appareil de Golgi dans ces cellules ont également été mises en évidence. Une analyse du transcriptome de précurseurs neuraux MPSIIIB a montré des modifications transcriptionnelles touchant notamment des gènes impliqués dans les interactions de la cellule avec la matrice extracellulaire. Ainsi, dans une seconde étude, des altérations de la migration et de l’orientation de cellules de souris mutantes MPSIIIB ou de patients ont été démontrées. Ces altérations pourraient être responsables des perturbations de la neurogénèse et de la neuritogénèse chez les enfants malades. Dans le modèle SLA/ALS2, nous avons montré que les neurones de patients présentaient des défauts incluant une diminution de la surface des endosomes et des anomalies de la croissance neuritique. Alors qu’il n’existait jusqu’alors aucun modèle cellulaire pertinent reproduisant cette maladie, ce modèle permettra à présent d’étudier les processus physiopathologiques impliqués dans la maladie. En conclusion, la génération de cellules iPS permet de modéliser des maladies neurodégénératives et d’étudier les processus physiopathologiques qui sont associés sur des neurones humains en culture. Ces modèles cellulaires pourraient permettre dans un avenir proche de réaliser des criblages de molécules à visée thérapeutique / Reprogramming technology of somatic cells in induced pluripotent stem cells (iPS) now offers the opportunity to model neurodegenerative diseases and to study patient’s neurons. We used this technology for generating two models of neurodegenerative diseases: the muccopolysaccharidosis type IIIB (MPSIIIB) and the ALS2 form of amyotrophic lateral sclerosis (ALS). In the MPSIIIB model, we have shown that iPS and neurons of patients had characteristic defects of the disease such as the accumulation of storage vesicles. Alterations of the Golgi apparatus in these cells were also highlighted. Transcriptome analysis of MPSIIIB neural precursors showed transcriptional changes involving particularly genes implicated in cell-extracellular matrix interactions. Thus, in a subsequent study, alterations of migration and orientation of MPSIIIB mutant mouse cells and MPSIIIB patients’ cells have been demonstrated. These alterations may be responsible for the disruption of neurogenesis and neuritogenesis in sick children. In the ALS2 model, we have shown that patients’ neurons had defects including decreased endosomes’ surface and abnormal neurite outgrowth. As there was previously no relevant cellular model reproducing the disease, this model will now allow the study of physiopathological processes involved in the disease. In conclusion, the generation of iPS cells allows to model neurodegenerative diseases and to study associated physiopathological processes on cultured human neurons. These cell models could allow in the near future the screening of molecules of potential therapeutical interest
|
19 |
Études de nouvelles thérapies pour la choroïdérémie dans un modèle d'épithélium pigmentaire rétinien dérivé de cellules souches pluripotentes induites spécifique au patient / Testing novel therapies for Choroideremia using patient-specific iPSc-derived Retinal Pigment EpitheliumTorriano, Simona 21 November 2017 (has links)
Les dystrophies rétiniennes héréditaires (DRH) sont un groupe de maladies génétiquement et cliniquement hétérogènes, lesquelles se caractérisent par une perte progressive de la vision. La choroïdérémie (CHM) est une choriorétinopathie qui représente environ 3% des DRH. Elle se caractérise par une cécité nocturne durant l’enfance suivie par une perte du champ visuel périphérique lente et progressive. Cela aboutit à une cécité vers l’âge de 40 à 50 ans. Généralement, la vision centrale demeure préservée plus longtemps. Génétiquement, la maladie est causée par des mutations dans le gène CHM localisé dans le chromosome X qui code pour la Rab Escort Protein 1 (REP1).Cette protéine est impliquée dans la prénylation des Rab GTPasas qui régulent le trafic vésiculaire au sein de la cellule. La plupart des mutations responsables de la maladie sont des mutations pertes de fonction. La conséquence de ces mutations est l’absence de REP1 entrainant un défaut de prénylation des Rabs. Ce qui cause la dégénérescence des photorécepteurs, de l’épithélium pigmentaire rétinien (EPR) et de la choroïde. À ce jour, il n’existe pas de thérapie pour la CHM. Cependant, le diagnostic précoce de la maladie et son évolution lente donnent une fenêtre thérapeutique large et en font un candidat idéal pour la réussite d’un traitement.En raison de l’absence d’un modèle animal pertinent pour tester de nouvelles thérapies pour cette maladie, nous avons développé un modèle cellulaire humain d’EPR in vitro dérivé des cellules pluripotentes induites propres au patient. Ce tissu est morphologiquement et fonctionnellement représentatif de l’EPR in vivo et reproduit les défauts biochimiques de prénylation présents dans la CHM. De ce fait, il s’agit d’un modèle puissant pour évaluer l’efficacité de différentes approches thérapeutiques. Dans cette perspective, nous avons étudié une approche de thérapie génique par AAV2/5 afin de fournir le gène CHM dans le cas particulier de mutation faux sens et l’utilisation d’une translational read-through inducing drug (TRID) PTC124 pour le traitement des mutations non-sens.J’ai démontré pour la première fois la faisabilité de la thérapie génique pour la CHM dans le cas d’une expression résiduelle de REP1 muté, permettant de considérer les patients porteurs de mutations faux sens comme éligible à des essais cliniques de thérapie génique. De plus, j’ai démontré que l’efficacité de PTC124 peut être dépendante du type cellulaire. Dans l’ensemble, mes résultats suggèrent que l’efficacité de la molécule semblerait dépendre de la conservation de l’acide aminé muté et de sa localisation dans le domaine fonctionnel de REP1. Nous avons ainsi mis en valeur que le contexte génétique devrait être pris en compte dans la perspective d’une thérapie avec TRID pour cette maladie ainsi que d’autres pathologies.Pour conclure, j’ai souligné le potentiel prédictif du modèle d’EPR dérivé d’iPSc propre au patient pour évaluer de nouvelles approches thérapeutiques en l’absence d’un modèle animal approprié avant les essais cliniques. / Inherited retinal dystrophies (IRDs) are a class of genetically and clinically heterogeneous diseases, which are characterized by a progressive loss of vision. Choroideremia (CHM) is a chorioretinopathy, which accounts for ~3% of all IRDs. It is characterized by night blindness in childhood, followed by slow and progressive loss of the peripheral visual field. This results in legal blindness by the fourth to fifth decade of life. Generally, central vision is preserved till late in life. Genetically, the disease is caused by mutations in the CHM gene located on the X chromosome and encoding the Rab Escort Protein 1 (REP1). This protein is involved in the prenylation of Rab GTPasas, which regulate vesicular cell trafficking. Most of the disease-causing mutations are loss-of-function and the absence of REP1 leads to a Rab prenylation defect and subsequent degeneration of photoreceptors, retinal pigment epithelium (RPE) and underlying choroid. To date, an established therapy is not available for CHM, but the early diagnosis and its slow evolution provide a large therapeutic window, that renders this disease a good candidate for successful treatment.In order to palliate the lack of a pertinent animal model for testing novel disease therapies, we developed a human cellular model using patient-specific induced pluripotent stem cells (iPSc)-derived RPE. This tissue is morphologically and functionally representative of the RPE in vivo, and reproduces the biochemical prenylation defect present in CHM. Therefore, it is a powerful model to evaluate the efficacy of different therapeutic approaches. Along this line, we investigated a gene augmentation approach, via AAV2/5 delivery of the CHM gene in the particular case of a CHM missense mutation, and the use of the translational read-through inducing drug (TRID) PTC124 for treating CHM nonsense mutations.I demonstrated for the first time the feasibility of gene augmentation therapy for CHM in the case of residual mutated REP1 expression, suggesting that missense-carrying patients can be considered for inclusion in clinical gene therapy trials. Moreover, I showed that the efficiency of PTC124 may be dependent on the cell type. In addition, my results suggest that drug efficiency likely depends on the conservation of the mutated amino acid residue and its localization with regards to REP1 functional domains. We thus highlight that genetic considerations should be taken into account when considering TRID therapy for this and other disorders.Taken together, I highlighted the predictive potential of the patient-specific iPSc-derived RPE model for screening of novel and varied therapeutic approaches in the absence of a suitable animal model prior to clinical translation.
|
20 |
Analyse des variations du nombre de copies d'ADN dans une cohorte d'hommes infertiles et génération de modèles génétiques d’étude de la méiose à partir de cellules iPS de patients infertiles / DNA copy number variations study in a cohort of infertile men and generation of an in vitro model for the study of meiosis from infertile patient's iPS cellsMouka, Aurélie 28 September 2017 (has links)
L’infertilité représente un problème majeur de santé publique en concernant 10 à 15% des couples en âge de procréer. Un facteur masculin est responsable de l’infertilité du couple dans près de la moitié des cas. Pour environ 30% d'entre eux, l'étiologie reste inexpliquée. Le premier axe du travail a concerné l’étude moléculaire d’une cohorte de patients infertiles (azoospermie non-obstructive/cryptozoospermie ou désordre du développement sexuel ou DSD) pour lesquels les analyses du caryotype standard et/ou des microdélétions des régions AZF par PCR n’ont pas permis d’expliquer le phénotype. L'impact des variations de nombre de copies de l'ADN (CNV) détectées par l'hybridation génomique comparative sur puce à ADN est peu documenté. Un design personnalisé de puce à ADN de format 400K, pangénomique et enrichi sur un large panel de 445 gènes liés à l'infertilité et à un DSD a été développé. Cette puce a permis l’identification de 171 CNV d’intérêt. Ces résultats soulignent l’intérêt de ce design comme outil diagnostic dans le cadre du bilan de l’infertilité masculine. Le second axe du travail a été de modéliser l’infertilité masculine in vitro dans un contexte d’anomalie génétique. Des cellules souches pluripotentes induites humaines (hiPS) ont été générées à partir d’érythroblastes de deux patients infertiles porteurs d’un remaniement chromosomique complexe ou d’un caryotype 46,XX-SRY négatif avec mutation du gène de l’AMH. Dans un deuxième temps, la fonctionnalité des lignées de cellules hiPS générées a été testée par différenciation in vitro en cellules germinales primordiales (CGP). Elles expriment les marqueurs clés du stade CGP dont SOX17, le déterminant germinal le plus précoce des CGP. Les perspectives de ce travail seront de poursuivre la différenciation germinale vers des stades plus matures et ainsi de pouvoir étudier le processus méiotique dans un contexte d’anomalie génétique. / Infertility represents a major public health problem and concerns 10 to 15% of couples in the general population. A male factor is responsible for the infertility of the couple in about half of all cases. In approximately 30% of them, the etiology remains unexplained.The first working axis concerned the molecular study of a cohort of infertile patients (nonobstructiveazoospermia/ cryptozoospermia and disorder of the sex development or DSD) for whom analyses of standard karyotype and/or microdeletions of AZF regions were not able to explain the phenotype. The impact of copy number variations of DNA (CNVs) detected by comparative genomic hybridization (CGH-array) is poorly documented. A custom design 400K micoarray, genome-wide and enriched on a wide panel of 445 genes linked with infertility and DSD has been achieved. This array allowed the identification of 171 CNVs of interest.These results underline the potential of this design for diagnosis of male infertility. The second objective of this work was the in vitro modelisation of male infertility in a context of genetic abnormality. For that purpose, human induced pluripotent stem cells (hiPSCs) were generated from erythroblasts by means of not integrative Sendaï virus, in two patients carrying genetic abnormalities (complex chromosomal rearrangement and 46,XX-SRY negative karyotype associated with AMH gene mutation). Secondly, functionality of hiPSCs generated was tested by germ cells in vitro differentiation. Primordial germ cell (PGC) stage was successfully obtained. Cells expressed key PGC markers such as SOX17. The perspectives of this work will be to continuethe germinal differentiation towards more mature stages and so to be able studying the meiotic process in a context of genetic abnormality.
|
Page generated in 0.119 seconds