Spelling suggestions: "subject:"conformal"" "subject:"nonformal""
291 |
Training a Multilayer Perceptron to predict the final selling price of an apartment in co-operative housing society sold in Stockholm city with features stemming from open data / Träning av en “Multilayer Perceptron” att förutsäga försäljningspriset för en bostadsrättslägenhet till försäljning i Stockholm city med egenskaper från öppna datakällorTibell, Rasmus January 2014 (has links)
The need for a robust model for predicting the value of condominiums and houses are becoming more apparent as further evidence of systematic errors in existing models are presented. Traditional valuation methods fail to produce good predictions of condominium sales prices and systematic patterns in the errors linked to for example the repeat sales methodology and the hedonic pricing model have been pointed out by papers referenced in this thesis. This inability can lead to monetary problems for individuals and in worst-case economic crises for whole societies. In this master thesis paper we present how a predictive model constructed from a multilayer perceptron can predict the price of a condominium in the centre of Stockholm using objective data from sources publicly available. The value produced by the model is enriched with a predictive interval using the Inductive Conformal Prediction algorithm to give a clear view of the quality of the prediction. In addition, the Multilayer Perceptron is compared with the commonly used Support Vector Regression algorithm to underline the hallmark of neural networks handling of a broad spectrum of features. The features used to construct the Multilayer Perceptron model are gathered from multiple “Open Data” sources and includes data as: 5,990 apartment sales prices from 2011- 2013, interest rates for condominium loans from two major banks, national election results from 2010, geographic information and nineteen local features. Several well-known techniques of improving performance of Multilayer Perceptrons are applied and evaluated. A Genetic Algorithm is deployed to facilitate the process of determine appropriate parameters used by the backpropagation algorithm. Finally, we conclude that the model created as a Multilayer Perceptron using backpropagation can produce good predictions and outperforms the results from the Support Vector Regression models and the studies in the referenced papers. / Behovet av en robust modell för att förutsäga värdet på bostadsrättslägenheter och hus blir allt mer uppenbart alt eftersom ytterligare bevis på systematiska fel i befintliga modeller läggs fram. I artiklar refererade i denna avhandling påvisas systematiska fel i de estimat som görs av metoder som bygger på priser från repetitiv försäljning och hedoniska prismodeller. Detta tillkortakommandet kan leda till monetära problem för individer och i värsta fall ekonomisk kris för hela samhällen. I detta examensarbete påvisar vi att en prediktiv modell konstruerad utifrån en “Multilayer Perceptron” kan estimera priset på en bostadsrättslägenhet i centrala Stockholm baserad på allmänt tillgängligt data (“Öppen Data”). Modellens resultat har utökats med ett prediktivt intervall beräknat utifrån “Inductive Conformal Prediction”- algoritmen som ger en klar bild över estimatets tillförlitlighet. Utöver detta jämförs “Multilayer Perceptron”-algoritmen med en annan vanlig algoritm för maskinlärande, den så kallade “Support Vector Regression” för att påvisa neurala nätverks kvalité och förmåga att hantera dataset med många variabler. De variabler som används för att konstruera “Multilayer Perceptron”-modellen är sammanställda utifrån allmänt tillgängliga öppna datakällor och innehåller information så som: priser från 5990 sålda lägenheter under perioden 2011- 2013, ränteläget för bostadsrättslån från två av de stora bankerna, valresultat från riksdagsvalet 2010, geografisk information och nitton lokala särdrag. Ett flertal välkända förbättringar för “Multilayer Perceptron”-algoritmen har applicerats och evaluerats. En genetisk algoritm har använts för att stödja processen att hitta lämpliga parametrar till “Backpropagation”-algoritmen. I detta arbete drar vi slutsatsen att modellen kan producera goda förutsägelser med en modell konstruerad utifrån ett neuralt nätverk av typen “Multilayer Perceptron” beräknad med “backpropagation”, och därmed utklassar de resultat som levereras av Support Vector Regression modellen och de studier som refererats i denna avhandling
|
292 |
Line defects in conformal field theory / From weak to strong couplingBarrat, Julien 14 March 2024 (has links)
Die konforme Feldtheorie findet in verschiedenen Bereichen Anwendungen, von statistischen Systemen in der Nähe kritischer Punkte bis hin zur Quantengravitation durch die AdS/CFT-Korrespondenz. Diese Theorien unterliegen starken Einschränkungen, die eine systematische nicht-perturbative Analyse ermöglichen. Konforme Defekte bieten eine kontrollierte Möglichkeit, die Symmetrie zu brechen und neue physikalische Phänomene einzuführen,
während wichtige Vorteile der zugrunde liegenden konformen Symmetrie erhalten bleiben. Diese Dissertation untersucht konforme Liniendefekte sowohl im schwachen als auch im starken Kopplungsregimes. Es werden zwei verschiedene Klassen von Modellen untersucht. Wir konzentrieren uns zuerst auf die supersymmetrische Wilson-Linie in N = 4 Super Yang-Mills, die als ideales Testfeld für die Entwicklung innovativer Techniken wie dem analytischen
konformen Bootstrap dient. Die zweite Klasse besteht aus magnetische Linien in Yukawa-Modellen, die faszinierende Anwendungen in 3d kondensierten Materiesystemen haben. Diese Systeme haben das Potenzial, Phänomene des Standardmodells in einem Niedrigenergieszenario nachzubilden. / Conformal field theory finds applications across diverse fields, from statistical systems at criticality to quantum gravity through the AdS/CFT correspondence. These theories are subject to strong constraints, enabling a systematic non-perturbative analysis. Conformal defects provide a controlled means of breaking the symmetry, introducing new physical phenomena while preserving crucial benefits of the underlying conformal symmetry. This thesis investigates conformal line defects in both the weak- and strong-coupling
regimes. Two distinct classes of models are studied. First, we focus on the supersymmetric Wilson line in N = 4 Super Yang–Mills, which serves as an ideal testing ground for the development of innovative techniques such as the analytic conformal bootstrap. The second class consists of magnetic lines in Yukawa models, which have fascinating applications in 3d condensed-matter systems. These systems have the potential to emulate phenomena observed in the Standard Model in a low-energy setting.
|
293 |
Conformally covariant differential operators acting on spinor bundles and related conformal covariantsFischmann, Matthias 27 March 2013 (has links)
Konforme Potenzen des Dirac Operators einer semi Riemannschen Spin-Mannigfaltigkeit werden untersucht. Wir präsentieren einen neuen Beweis, basierend auf dem Traktor Kalkül, für die Existenz von konformen ungeraden Potenzen des Dirac Operators auf semi Riemannschen Spin-Mannigfaltigkeiten. Desweiteren konstruieren wir eine neue Familie von konform kovarianten linearen Differentialoperatoren auf dem standard spin Traktor Bündel. Weiterhin verallgemeinern wir den Existenzbeweis für konforme ungerade Potenzen des Dirac Operators auf semi Riemannsche Spin-Mannigfaltigkeiten. Da die Existenzbeweise konstruktive sind, erhalten wir explizite Formeln für die konforme dritte und fünfte Potenz des Dirac Operators. Basierend auf den expliziten Formeln zeigen wir, dass die konforme dritte und fünfte Potenz des Dirac Operators formal selbstadjungiert (anti selbstadjungiert) bezüglich des L2-Skalarproduktes auf dem Spinorbündel ist. Abschliessend präsentieren wir neue Strukturen der konformen ersten, dritten und fünften Potenz des Dirac Operators: Es existieren lineare Differentialoperatoren auf dem Spinorbündel der Ordnung kleiner gleich eins, so dass die konforme erste, dritte und fünfte Potenz des Dirac Operators ein Polynom in jenen Operatoren ist. / Conformal powers of the Dirac operator on semi Riemannian spin manifolds are investigated. We give a new proof of the existence of conformal odd powers of the Dirac operator on semi Riemannian spin manifolds using the tractor machinery. We will also present a new family of conformally covariant linear differential operators on the standard spin tractor bundle. Furthermore, we generalize the known existence proof of conformal power of the Dirac operator on Riemannian spin manifolds to semi Riemannian spin manifolds. Both proofs concering the existence of conformal odd powers of the Dirac operator are constructive, hence we also derive an explicit formula for a conformal third- and fifth power of the Dirac operator. Due to explicit formulas, we show that the conformal third- and fifth power of the Dirac operator is formally self-adjoint (anti self-adjoint), with respect to the L2-scalar product on the spinor bundle. Finally, we present a new structure of the conformal first-, third- and fifth power of the Dirac operator: There exist linear differential operators on the spinor bundle of order less or equal one, such that the conformal first-, third- and fifth power of the Dirac operator is a polynomial in these operators.
|
294 |
UNIVERSAL CONSTRAINTS ON 2D CFTS AND 3D GRAVITYQualls, Joshua D 01 January 2014 (has links)
We study constraints imposed on a general unitary two-dimensional conformal field theory by modular invariance. We begin with a review of previous bounds on the conformal dimension Delta1 of the lowest primary operator assuming unitarity, a discrete spectrum, modular invariance, cL, cR > 1, and no extended chiral algebra. We then obtain bounds on the conformal dimensions Delta2, Delta3 using no additional assumptions. We also show that in order to find a bound for Delta4 or higher Deltan, we need to assume a larger minimum value for ctot that grows logarithmically with n. We next extend the previous results to remove the requirement that our two-dimensional conformal field theories have no extended chiral algebra.
We then show that modular invariance also implies an upper bound on the total number of states of positive energy less than ctot=24 (or equivalently, states of conformal dimension between ctot=24 and ctot=12), in terms of the number of negative energy states. Finally, we consider the case where the CFT has a gravitational dual and investigate the gravitational interpretation of our results. Using the AdS3/CFT2 correspondence, we obtain an upper bound on the lightest few massive excitations (both with and without the constraint of no chiral primary operators) in a theory of 3D matter and gravity with Lambda < 0. We show our results are consistent with facts and expectations about the spectrum of BTZ black holes in 2+1 gravity. We then discuss the upper and lower bounds on number of states and primary operators in the dual gravitational theory, focusing on the case of AdS3 pure gravity.
|
295 |
Modeling and simulation of silicon interposers for 3-d integrated systemsXie, Biancun 21 September 2015 (has links)
Three-dimensional (3-D) system integration is believed to be a promising technology and has gained tremendous momentum in the semiconductor industry recently. The Silicon interposer is the key enabler for the 3-D systems, and is expected to have high input/output counts, fine wiring lines and many TSVs. Modeling and design of the silicon interposer can be challenging and is becoming a critical task. This dissertation mainly focuses on developing an efficient modeling approach for silicon interposers in 3-D systems. The developed numerical methods can be classified as several categories. 1. The investigation of the coupling effects in large TSV arrays in silicon interposers. The importance of coupling between TSVs for low resistivity silicon substrates is quantified both in frequency and time domains. This has been compared with high resistivity silicon substrates. 2. The development of an electromagnetic modeling approach for non-uniform TSVs. To model the complex TSV structures, an approach for modeling conical TSVs is proposed first. Later a hybrid modeling method which combines the conical TSV modeling method and cylindrical modeling method is proposed to model the non-uniform TSV structures. 3. The development of a hybrid modeling approach for power delivery networks (PDN) with through-silicon vias (TSVs). The proposed approach extends multi-layer finite difference method (M-FDM) to include TSVs by extracting their parasitic behavior using an integral equation based solver. 4. The development of an efficient approach for modeling signal paths with TSVs in silicon interposers. The proposed method utilizes the 3-D finite-difference frequency-domain (FDFD) method to model the redistribution layer (RDL) transmission lines. A new formulation on incorporating multiport networks into the 3-D FDFD formulation is presented to include the parasitic effects of TSV arrays in the system matrix. 5. The development of a 3-D FDFD non-conformal domain decomposition method. The proposed method allows modeling individual domains independently using the FDFD method with non-matching meshing grids at interfaces. This non-conformal domain decomposition method is applied to model interconnections in silicon interposer.
|
296 |
Transport laplacien, problème inverse et opérateurs de Dirichlet-NeumannBaydoun, Ibrahim 03 November 2011 (has links)
Le travail de ma thèse est basé sur ces 4 points :i) Transport laplacien d'une cellule absorbante :Soit un certain espèce (cellule) de concentration C(x), qui diffuse dans un milieu homogène et isotrope à partir d'une lointaine source localisée sur la frontière fermée $partial Omega_{0}$ vers une interface compact semi-perméable $partial Omega$ (membrane de la "cellule") à laquelle elle disparaisse àun taux d'absorption donné : W>=0. La concentration C (transport laplacien avec un coefficient de diffusion D) satisfaite le problème (P1) (voir la thèse). On s'intéresse à résoudre le problème (P1) en dimension dim = 2; 3 et à calculer les courants local et total à travers les frontières des $partial Omega$ et $partial Omega_{0}$ qui seront utiles pour résoudre le problèmeinverse de localisation. Pour faciliter les calculs et les rendre explicites, on prend $partial Omega$ et $partial Omega_{0}$ avec des formes géométriquement régulières, précisément des boules, en distinguant les deux cas : $Omega$ et $Omega_{0}$ sont concentriques ou non-concentriques. Pour le cas non-concentriques , on utilise la technique de transformation conforme et le développement orthogonal en série de Fourier pour résoudre le problème (P1) en cas bidimensionnel. Tandis que en cas tridimensionnel, on résout le problème (P1) en utilisant le développement orthogonal suivant les fonctions sphériques harmoniques.ii) Problème inverse de localisationOn s'intéresse dans cette partie à résoudre le problème inverse de localisation associé au problème (P1) où les domaines $Omega$ et $Omega_{0}$ sont considérés avec des formes géométriques régulières (précisément des boules) . Ce problème consiste à trouver les conditions de Dirichlet-Neumann sur $partial Omega_{0}$ (courant local, courant total) suffisantes pour déterminer la position de la cellule $partial$ (par rapport à $Omega_{0}$), dont ces conditions sont disponibles par une suite des mesures expérimentales.iii) Problème invesre géomètrique :Dans cette partie on traite un autre type de problème inverse qui consiste à trouver la forme géométrique de la cellule en sachant les conditions de Dirichlet-Neumann au bord extérieur(partial Omega_{0}) qui sont mésurables par une suite d'expérience. Ce type du problème, on l'appelle le problème inverse géométrique. On résout ce problème en utilisant des techniques concernant les fonctions harmoniques et les transformations conformes.iv) Opérateur de Dirichlet-NeumannOn étudie l'opérateur de Dirichlet-Neumann relatif au problème (P1) dans les dimension deux et trois en distinguant les deux cas concentriques et non-concentriques. Ensuite, on montre que cet opérateur de Dirichlet-Neumann engendre certain semi-groupe qu'on l'appelle semi-groupe de Lax. Enfin, on construit ce semi-groupe de Lax associé à cet opérateur en cas tridimensionnel concentriques afin de vérifier que ce semi-groupe admet les mêmes propriétés que celui dans le cas général. / The outline of my thesisi) Let some "species" of concentration C(p), x 2 Rd, diuse stationary in the isotropic bulk from a (distant) source localised on the closed boundary $partial Omega_{0}$ towards a semipermeable compact interface $partial Omega$ of the cell $Omega in Omega_{0}$ where they disappear at a given rate $W >= 0$. Then the steady field of concentrations C satisfy the problem $(P1)$. (see the Thesis). We interest to solve (P1) in Twodimensional and Tridimensional cases and to calculate the local and total flux in order to solving the localisation inverse problem. In order to make easy the calculations, we take $Omega$ and $Omega_{0}$ with a regularly geometricals forms by distinguishing the two cases : Concentrics and non-concentrics case. For the non-cncentrics case, we use the conformal mapping technique for resolving the problem (P1) in the twodimensional case. whereas in the tridimensional case, we use the development according to the spherical harmonics functions.ii) Localisation inverse problemThe aim of the localisation inverse problem is to find the necessary Dirichlet-to-Neumann conditions in order to determine the position of thecell $Omega$, where these conditions are measurable.iii) Geometrical inverse problemOur main results concerns a formal solution of the geometrical inverse problem for the form of absorbing domains. We restrict this study to two dimensions and we study it by the conformal mapping technique and harmonic functions.iv) Dirichlet-to-Neumann operatorWe study the Dirichlet-to-Neumann operatot relative to problem (P1) in the twodimensional and tridimensionnal cases by distinguishing the two cases : Concentrics and non-concentrics case. We prove that the Dirichlet-to-Neumann operator generates some semi-group, we call it the Lax semi-group. Finally we construct this semi group and verify that this demi-group satisfies the generals properties of a operator.
|
297 |
Fenômeno de bifurcação no problema de Yamabe sobre variedades riemannianas com bordo / Phenomenon of bifurcation in Yamabe problem on Riemannian manifolds with boundaryCardenas Diaz, Elkin Dario 16 August 2016 (has links)
No presente trabalho consideramos o produto de uma variedade Riemanniana compacta sem bordo de curvatura escalar zero e uma variedade Riemanniana compacta com bordo, curvatura escalar zero e curvatura media constante no bordo, e fazemos uso da teoria de bifurcação para provar a existência de um numero infinito de classes conforme com, pelo menos, duas métricas Riemannianas não homotéticas de curvatura escalar zero e curvatura média constante no bordo, sobre a variedade produto. / In this work, we consider the product of a compact Riemannian manifold without boundary, null scalar curvature and a compact Riemannian manifold with boundary, null scalar curvature and constant mean curvature on the boundary and we use the bifurcation theory to prove the existence of a infinite number of conformal classes with at least two non homothetic Riemannian metrics of null scalar curvature and constant mean curvature of the boundary on the product manifold.
|
298 |
Aspectos das transformações conformes na eletrodinâmica: invariância e leis de conservação / Aspects of the conformal transformations in the electrodynamics: invariance and conservation lawsSantos, Vaguiner Rodrigues dos 21 August 2013 (has links)
Neste trabalho, discutem-se aspectos das transformações conformes na eletrodinâmica clássica com ênfase na invariância e nas leis de conservação. Inicialmente, abordaram-se aspectos gerais das transformações conformes e fez-se um resumo histórico da evolução dessas transformações. Procurou-se fazer uma apresentação didática, revisando-se a formulação Lagrangiana e o Teorema de Noether para campos aplicado à eletrodinâmica. Estudaram-se as transformações conformes no espaço plano, onde se mostrou que para dimensões maiores ou iguais a três o número de transformações é finito. A partir das equações de Maxwell em coordenadas curvilíneas, chegou-se à condição para que essas equações mantivessem sua forma cartesiana. Com essa condição, mostrou-se que a eletrodinâmica clássica é invariante para o grupo de transformações conformes. Foram discutidas as leis de conservação associadas à invariância conforme da eletrodinâmica clássica a partir do teorema de Noether. Das simetrias por translações no espaço-tempo, obtiveram-se as leis de conservação do momento linear e da energia. Das simetrias associadas às rotações, obtiveram-se seis quantidades conservadas: três delas ligadas à conservação do momento angular e, com relação às três restantes, observou-se, a partir de analogias com a mecânica, que estavam associadas ao movimento do centro de energia do campo. Para a interpretação da grandeza conservada por simetria de escala, verificou-se, também a partir de uma analogia mecânica, que essa simetria somente é verificada para partículas não massivas ou para partículas massivas a altas energias. Finalmente, para as transformações conformes especiais, verificou-se que as leis de conservação resultantes são consequências das leis anteriores de conservação para o campo eletromagnético, e neste caso, essa simetria também somente se manifesta para partículas de massa nula ou para altas energias. / In this work, aspects of conformal transformations in classical electrodynamics are discussed with emphasis on the invariance and conservation laws. Initially, a general view of conformal transformations was shown and a summary of the historical evolution of those transformations was presented. The work was approached didactically, and Noethers theorem based on the electrodynamics Lagrangian formulation was revised. The conformal transformations were studied in plane spaces and it was shown that, for dimensions greater than or equal to three, the number of transformations is finite. Starting from Maxwells equations in curvilinear coordinates, a condition for maintaining those equations in Cartesian form was established. With that condition, it was shown that the classical electrodynamics laws are invariant for the group of conformal transformations. The conservation laws associated with the conformal invariance of classical electrodynamics were discussed, based on Noethers theorem. From the space-time translation symmetry, the laws of conservation of linear momentum and of energy were obtained. From rotational symmetry, six conserved quantities were obtained: three of them associated with angular momentum and the remaining three, observed, starting from analogies with mechanics, were associated with the movement of the center of energy of the field. For the interpretation of the quantity conserved by scale symmetry, it was verified, also from a mechanical analogy, that that symmetry is only valid for null mass particles or for high energies. Finally, for the special conformal transformations, it was verified that the resultant laws of conservation are consequences of the previous laws, and in that case, symmetry is also valid only for particles of null mass or for high energies.
|
299 |
Férmions em teorias de campos de supercordas / Fermions in superstring field theoriesLemos, Luciano Barosi de 06 May 2003 (has links)
O objetivo deste trabalho é calcular a ação de teoria de campos de supercordas para os dois primeiros níveis de massa da supercorda, incluindo os dois setores de projeção GSO. Considerando uma corda tipo II-A na presença de uma D9-brana instável, calcula-se a ação para o táquion, o campo de gauge e os férmions GSO(+) e GSO(-). O trabalho é realizado usando o formalismo híbrido e usando-se a ação de campos de supercordas de Berkovits, que inclui o setor Ramond. Para tanto, inclui-se amplo material de revisão sobre teorias e teorias de campos de supercordas. A construção de operadores de vértice GSO(-) no formalismo híbrido é feita em detalhes. Considerações sobre a ação obtida e perspectivas futuras do trabalho são discutidas no final. / The goal of this work is to compute the superstring field theory action contribution for the two first mass level of the superstring, including both GSO sectors. A type IIA superstring in the presence of an unstable non-BPS D9 brane is considered and the computation of the action for the Tachyon, Gauge Field and Massless fermions from GSO(+) and GSO(-) sectors is done. The main work is accomplished using the hybrid formalism and the superstring field theory action of Berkovits, including the Ramond Sector. This task is accomplished by including revision material thoroughly, for conformal and super conformal field theory. Construction of physical GSO(-) vertex operators is considered in detail. At the end, theres a discussion about the action for these fields and some future perspectives are considered.
|
300 |
Invariância conforme e modelos com expoentes críticos variáveis / Conformal invariance and statistical mechanics dels with continuonsly varying exponentesMartins, Marcio Jose 27 January 1989 (has links)
Nesta tese estudamos as propriedades críticas dos modelos anisotrópicos (isotrópicos) de Heisenberg com spin s arbitrário. O espectro das Hamiltonianas, com condições periódicas de contorno, foi calculado para redes finitas, resolvendo-se as equações do Bethe ansatz associadas. Nossos resultados indicam que a anomalia conforme destes modelos tem o valor c=3s/(1+s), independente da anisotropia, e os expoentes críticos variam continuamente com a anisotropia assim como no modelo de 8-vértices. O conteúdo de operadores destes modelos indica que a teoria de campos que governa a criticalidade destes modelos de spin é descrita por operadores formados pelo produto de um operador Gaussiano por outro com simetria Z(2s). Estudando estes modelos, com certas condições especiais de contorno, mostramos que eles são relacionados com uma nova classe de teorias unitárias recentemente propostas / This thesis is concerned with the critical properties of anisotropic (isotropic) Heisenberg chain,with arbitrary spin-s. The eigenspectrum of these Hamiltoniana, with periodic boundaries, are calculated for finite chains by solving numerically their associated Bethe ansatz equations. The results indicate that the conformal anomaly hás the value c=3s/1+s, independently of the anisotropy, and the exponentes vary continuously with the anisotropy like in the 8-vertex model. The operator content of these models indicate that the underlying field theory governing these critical spin-s models are described by composite fields formed by the product of Gaussian and Z(2s) fields. Studying these models, with some special boundary conditions, we show that they are related with a large class of unitary conformal field theories recntly introduced
|
Page generated in 0.0375 seconds