• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 3
  • Tagged with
  • 48
  • 38
  • 21
  • 21
  • 20
  • 14
  • 14
  • 13
  • 13
  • 13
  • 12
  • 11
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Um sistema hiperbólico e o custo de controlabilidade para o sistema de Stokes via método da transmutação

Sousa Neto, Jose Ribeiro de 24 April 2017 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-09-01T15:56:45Z No. of bitstreams: 1 arquivototal.pdf: 632195 bytes, checksum: e51e34b7262c30c18127847ceb580629 (MD5) / Approved for entry into archive by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2017-09-01T15:58:15Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 632195 bytes, checksum: e51e34b7262c30c18127847ceb580629 (MD5) / Made available in DSpace on 2017-09-01T15:58:15Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 632195 bytes, checksum: e51e34b7262c30c18127847ceb580629 (MD5) Previous issue date: 2017-04-24 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work, we studied the controllability cost for the Stokes system. Using the transmutation method, we show that the cost of driving the Stokes system to equilibrium at time T, is of order eC/T as T → 0+, which is of the same order of controllability of heat equation. For this, we have proved a exact controllability for the hyperbolic system with resistence term, by considering a geometric hypothesis on the control region. / Neste trabalho nos dedicamos a estudar o custo de controlabilidade para o sistema de Stokes. Usando o m´etodo da transmuta¸c˜ao, mostraremos que o custo de dirigir o sistema de Stokes ao equil´ıbrio no tempo T ´e de ordem eC/T , quando T → 0+, isto ´e, da mesma ordem de controlabilidade da equa¸c˜ao do calor. Para tornar isso poss´ıvel, provaremos um resultado de controlabilidade exata para o sistema hiperb´olico com termo de resistˆencia, o que ser´a feito com base em hip´oteses sobre a regi˜ao de controle.
22

Controlabilidade exata para um sistema de equações de onda acopladas

Pitot, João Manoel Soriano [UNESP] 15 August 2017 (has links)
Submitted by JOÃO MANOEL SORIANO PITOT null (tribalista22@hotmail.com) on 2017-08-31T13:05:34Z No. of bitstreams: 1 Tese Ficha.pdf: 737367 bytes, checksum: e2b1a948e44236ba2cef5484c4761cd5 (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-09-01T13:38:31Z (GMT) No. of bitstreams: 1 pitot_jms_dr_sjrp.pdf: 737367 bytes, checksum: e2b1a948e44236ba2cef5484c4761cd5 (MD5) / Made available in DSpace on 2017-09-01T13:38:31Z (GMT). No. of bitstreams: 1 pitot_jms_dr_sjrp.pdf: 737367 bytes, checksum: e2b1a948e44236ba2cef5484c4761cd5 (MD5) Previous issue date: 2017-08-15 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho estudamos o problema de controlabilidade exata na fronteira para um sistema de equações de onda acopladas em paralelo, em domínios suave por partes do plano, sob ação de controle do tipo Neuman. Utilizando o método empregado por D. L. Russell em [33] obtemos controlabilidade em tempo suficientemente grande para dados iniciais de energia finita e controle de quadrado integrável. A fim de obter tempo de controle próximo a valores ótimos, procedemos como em [21]: estendemos a solução do problema de Cauchy para tempo complexo e provamos que o operador solução associado ao problema de Cauchy é compacto e depende analiticamente do tempo num setor adequado do plano complexo. Utilizando decaimento local de energia, analiticidade e compacidade do operador solução obtemos o resultado desejado. / In this work we study the problem of exact controllability on the boundary for a system of wave equations coupled in parallel, in piecewise smooth domains of the plane, under the action of control of Neuman type. Using the method employed by D. L. Russell in [33] we obtain controllability in time sufficiently large for initial data of finite energy and square integrable control. In order to obtain control time close to optimal values, we proceed as in [21]: we extend the solution of the Cauchy problem to complex time and we prove that the solution operator associated with the Cauchy problem is compact and depends analytically of the time in an appropriate sector of the complex plane. Using local decay of energy, analyticity and compactness of the solution operator we obtain the desired result.
23

Desigualdade de Carleman e Controlabilidade Nula para uma EDP com Coeficientes Complexos / Carleman Inequality and null controllability for a PDE with complex coefficients

Santos, Maurício Cardoso 31 August 2010 (has links)
Made available in DSpace on 2015-05-15T11:46:18Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1803826 bytes, checksum: 7e6b888ce249e6a65e6ceb39484c36e5 (MD5) Previous issue date: 2010-08-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In the present work, we study controllability results for two problems on the theory of the partial differential equations. We use global Carleman inequalities to show the null controllability for the heat equation and for a PDE with complex principal part. We obtain the control of minimal norm solving a dual minimization problem. / No presente trabalho, estudaremos resultados de controlabilidade para dois problemas da teoria das equações diferenciais parciais. Por meio de estimativas globais de Carleman, mostraremos detalhadamente a controlabilidade nula para a equação do calor e para uma equação diferencial parcial com parte principal complexa. Obteremos o controle de norma mínima resolvendo um problema dual de minimização.
24

Resultados teÃricos de controlabilidade para algumas EDPs nÃo-lineares da fÃsica / Theoretical controllability results for some nonlinear PDEs from physics

Ivaldo Tributino de Sousa 07 December 2015 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / Esta tese trata do controle nulo local de um problema de fronteira-livre para a equaÃÃo do calor semilinear 1D com controles distribuÃdos (apoiado localmente no espaÃo) ou controles de fronteira (atuando em x = 0). provamos que, se o tempo final T à fixado e o estado inicial à suficientemente pequeno, existe controles que dirigem o estado exatamente para descansar no tempo t = T. AlÃm disso, analisamos a controlabilidade nulo de um sistema nÃo-linear 1D que modela a interaÃÃo de um fluido e sua fronteira. O fluido à governado pela equaÃÃo de Burgers viscosa e os controles distribuÃdos. Por Ãltimo, vamos lidar com o sistema de Navier-Stokes e Boussinesq 3D, definido em um cubo. Neste contexto, provamos um resultado sobre a sua controlabilidade aproximada global por meio de controles de fronteira que atuam em alguma parte da faces do cubo. / This Thesis deals with the local null control of a free-boundary problem for the 1D semilinear heat equation with distributed controls (locally supported in space) or boundary controls (acting at x = 0). we prove that, if the final time T is fixed and the initial state is sufficiently small, there exists controls that drive the state exactly to rest at time t = T. Furthermore, we analyze the null controllability of a 1D nonlinear system which models the interaction of a fluid and its boundary. The fluid is governed by the viscous Burgers equation and the distributed controls. Lastly, we deal with the 3D Navier-Stokes and Boussinesq system, posed in a cube. In this context, we prove a result concerning its global approximate controllability by means of boundary controls which act in some part of cube faces.
25

Controlabilidade de sistemas de hardware para computação quântica: definição do problema e discussão de aspectos analíticos e numéricos. / Controllability of hardware systems for quantum computing: problem possing and discussion of analytical and numerical topics.

Cunha, Leandro Dias 21 March 2016 (has links)
Este trabalho possui como tema principal o estudo da dinâmica de sistemas quânticos da perspectiva da teoria de sistemas dinâmicos, em particular, do ponto de vista da teoria de controle. Os principais tópicos abordados são (i) a análise da controlabilidade dos sistemas quânticos em dimensão finita e infinita e (ii) a teoria generalizada de medição de sistemas quânticos com o objetivo de obter as equações diferenciais estocásticas associadas a sistemas submetidos a processos de medição contínuos. Com relação à controlabilidade de sistemas dinâmicos quânticos fechados em dimensão finita resgatamos da literatura os resultados, já consolidados, da aplicação da teoria de grupos e álgebras de Lie aos essa classe de sistemas dinâmicos. Em dimensão infinita, a aplicação direta das técnicas de controle geométrico já não ocorre diretamente. Em espaços de estados de dimensão infinita as técnicas de análise matemática devem ser mais sofisticadas, há problemas relacionados à convergência e problemas relacionados a operadores não limitados. Os principais resultados conhecidos da literatura são apresentados e suas limitações são discutidas. Realizamos em seguida uma analogia entre sistemas clássicos lineares e sistemas dinâmicos quânticos de dimensão infinita cuja dinâmica é restrita a uma álgebra de operadores auto adjuntos comutativa. Observamos também que a controlabilidade de alguns sistemas quânticos em dimensão infinita está associada a Hamiltonianos não lineares. Notamos, em particular, que os sistemas quânticos comutativos estão associados a operadores não lineares. Com relação à teoria de medição de sistemas quânticos, partimos da teoria de sistemas quânticos abertos para a obtenção da equação dinâmica que rege a evolução dos sistemas não conservativos. Em paralelo, realizamos uma análise da descrição matemáticas dos experimentos de medição em sistemas quânticos desde os postulados de medição ortogonal até a descrição de processos de medição contínuos. Observamos que a equação de Schrödinger estocástica associada a um processo de medição contínuo possui como gerador infinitesimal um Hamiltoniano não linear no operador auto adjunto associado ao observável. Realizamos em seguida uma discussão a respeito das implicações de processos de medição contínuos na dinâmica de sistemas quânticos, analisando possíveis impactos em sua controlabilidade. Analisamos também o caso particular de sistemas quânticos cujos operadores associados a sua dinâmica e a seus observáveis estão restritos a uma mesma álgebra comutativa. Concluímos com sugestões de trabalhos futuros relacionados controlabilidade em dimensão infinita e a à dinâmica de sistemas quânticos sujeitos a medição. / The main theme of this work is to study the dynamics of quantum systems from the perspective of the theory of dynamical systems, in particular, from the point of view of control theory. The main topics covered are (i) the analysis of controllability of quantum systems in finite and infinite dimensions and (ii) the general theory of measurement of quantum systems in order to get to the stochastic differential equations associated with systems subject to continuous measurement. Regarding the controllability of closed quantum dynamical systems in finite dimension, the standard results from the literature were presented: the application of group theory and Lie algebra to this class of dynamical systems. In infinite dimensions, the direct application of geometric control techniques is no longer possible. In infinite dimensional state spaces the mathematical analysis techniques need to be more sophisticated, there are problems related to convergence and issues related to unbounded operators. The main results known from the literature were presented and their limitations discussed. Then an analogy was performed between linear classical systems and infinite dimensional quantum dynamical systems whose dynamics is restricted to a commutative algebra of self adjoint operators. We also note that the controllability of some quantum systems in infinite dimension is associated with nonlinear Hamiltonians. We note, in particular, that the commutative quantum systems are associated with nonlinear operators. With respect to the measurement theory of quantum systems, we start in the structure of the theory of open quantum systems in order to obtain the dynamical equation governing the evolution of non-conservative systems. In parallel, we conducted an analysis of the mathematical description of the measurement experiments in quantum systems from the orthogonal measurement postulates to the description of continuous measurement. We noted that the stochastic Schrödinger equation associated with a continuous measurement process has as its infinitesimal generator a Hamiltonian nonlinear in the self-adjoint operator associated with the observable. Then a discussion about the implications of continuous measurement processes in the dynamics of quantum systems was conducted, analyzing possible impacts on its controllability. We also looked at the particular case of quantum systems whose operators associated with their dynamics and their observable are restricted to the same commutative algebra. We cluded with suggestions for future work related to controllability in infinite dimension and the dynamics of quantum systems subjected to measurement processes.
26

Propriedades das soluções de equações diferenciais em medida / Properties of solutions of measure differential equations

Andrade, Fernando Gomes de 01 February 2019 (has links)
Equações diferenciais funcionais em medida podem ser usadas como ferramentas para o estudo de modelos físicos mais próximos da realidade, por exemplo, modelos com fenômeno de \"jump\" e constituem um ramo relativamente novo de equações diferenciais. Embora esse campo tenha se desenvolvido nos últimos anos, a teoria sobre equações diferenciais funcionais em medida é escassa, com algumas classes de equações ainda não pesquisadas. Neste trabalho, vamos explorar as equações diferenciais funcionais neutras em medida com retardo infinito. Usando técnicas conhecidas na literatura, obtemos propriedades qualitativas para sua solução, como existência, unicidade e dependência contínua com relação as condições iniciais. Além disso, estudamos a controlabilidade de um sistema descrito por este tipo de equação. / Measure differential equations is a branch of differential equations area recently discovered that can be used as a tool to study physical models closer to the reality, for example, models with the phenomenon of jump. Although this field has been developed in the recent years, the theory of measure functional differential equations is still scarce, and some classes of these equations have not been described yet. Here, we will explore the neutral measure functional differential equations with infinite delay. Using techniques known in the literature, we obtain qualitative properties of their solutions, such as existence, uniqueness and continuous dependence. In addition, we study controllability for systems described by this type of equation.
27

Controlabilidade de sistemas de hardware para computação quântica: definição do problema e discussão de aspectos analíticos e numéricos. / Controllability of hardware systems for quantum computing: problem possing and discussion of analytical and numerical topics.

Leandro Dias Cunha 21 March 2016 (has links)
Este trabalho possui como tema principal o estudo da dinâmica de sistemas quânticos da perspectiva da teoria de sistemas dinâmicos, em particular, do ponto de vista da teoria de controle. Os principais tópicos abordados são (i) a análise da controlabilidade dos sistemas quânticos em dimensão finita e infinita e (ii) a teoria generalizada de medição de sistemas quânticos com o objetivo de obter as equações diferenciais estocásticas associadas a sistemas submetidos a processos de medição contínuos. Com relação à controlabilidade de sistemas dinâmicos quânticos fechados em dimensão finita resgatamos da literatura os resultados, já consolidados, da aplicação da teoria de grupos e álgebras de Lie aos essa classe de sistemas dinâmicos. Em dimensão infinita, a aplicação direta das técnicas de controle geométrico já não ocorre diretamente. Em espaços de estados de dimensão infinita as técnicas de análise matemática devem ser mais sofisticadas, há problemas relacionados à convergência e problemas relacionados a operadores não limitados. Os principais resultados conhecidos da literatura são apresentados e suas limitações são discutidas. Realizamos em seguida uma analogia entre sistemas clássicos lineares e sistemas dinâmicos quânticos de dimensão infinita cuja dinâmica é restrita a uma álgebra de operadores auto adjuntos comutativa. Observamos também que a controlabilidade de alguns sistemas quânticos em dimensão infinita está associada a Hamiltonianos não lineares. Notamos, em particular, que os sistemas quânticos comutativos estão associados a operadores não lineares. Com relação à teoria de medição de sistemas quânticos, partimos da teoria de sistemas quânticos abertos para a obtenção da equação dinâmica que rege a evolução dos sistemas não conservativos. Em paralelo, realizamos uma análise da descrição matemáticas dos experimentos de medição em sistemas quânticos desde os postulados de medição ortogonal até a descrição de processos de medição contínuos. Observamos que a equação de Schrödinger estocástica associada a um processo de medição contínuo possui como gerador infinitesimal um Hamiltoniano não linear no operador auto adjunto associado ao observável. Realizamos em seguida uma discussão a respeito das implicações de processos de medição contínuos na dinâmica de sistemas quânticos, analisando possíveis impactos em sua controlabilidade. Analisamos também o caso particular de sistemas quânticos cujos operadores associados a sua dinâmica e a seus observáveis estão restritos a uma mesma álgebra comutativa. Concluímos com sugestões de trabalhos futuros relacionados controlabilidade em dimensão infinita e a à dinâmica de sistemas quânticos sujeitos a medição. / The main theme of this work is to study the dynamics of quantum systems from the perspective of the theory of dynamical systems, in particular, from the point of view of control theory. The main topics covered are (i) the analysis of controllability of quantum systems in finite and infinite dimensions and (ii) the general theory of measurement of quantum systems in order to get to the stochastic differential equations associated with systems subject to continuous measurement. Regarding the controllability of closed quantum dynamical systems in finite dimension, the standard results from the literature were presented: the application of group theory and Lie algebra to this class of dynamical systems. In infinite dimensions, the direct application of geometric control techniques is no longer possible. In infinite dimensional state spaces the mathematical analysis techniques need to be more sophisticated, there are problems related to convergence and issues related to unbounded operators. The main results known from the literature were presented and their limitations discussed. Then an analogy was performed between linear classical systems and infinite dimensional quantum dynamical systems whose dynamics is restricted to a commutative algebra of self adjoint operators. We also note that the controllability of some quantum systems in infinite dimension is associated with nonlinear Hamiltonians. We note, in particular, that the commutative quantum systems are associated with nonlinear operators. With respect to the measurement theory of quantum systems, we start in the structure of the theory of open quantum systems in order to obtain the dynamical equation governing the evolution of non-conservative systems. In parallel, we conducted an analysis of the mathematical description of the measurement experiments in quantum systems from the orthogonal measurement postulates to the description of continuous measurement. We noted that the stochastic Schrödinger equation associated with a continuous measurement process has as its infinitesimal generator a Hamiltonian nonlinear in the self-adjoint operator associated with the observable. Then a discussion about the implications of continuous measurement processes in the dynamics of quantum systems was conducted, analyzing possible impacts on its controllability. We also looked at the particular case of quantum systems whose operators associated with their dynamics and their observable are restricted to the same commutative algebra. We cluded with suggestions for future work related to controllability in infinite dimension and the dynamics of quantum systems subjected to measurement processes.
28

Alcançabilidade e controlabilidade médias para sistemas lineares com saltos markovianos a tempo contínuo / Average reachability and average controllability for continuous-time markov jum linear systems

Narvaez, Alfredo Rafael Roa 06 March 2015 (has links)
Neste trabalho estudamos as noções de alcançabilidade e controlabilidade para sistemas lineares a tempo contínuo com perturbações aditivas e saltos nos parâmetros sujeitos a uma cadeia de Markov geral. Definimos conceitos de alcançabilidade e controlabilidade médios de maneira natural exigindo que os valores esperados dos gramianos correspondentes sejam definidos positivos. Visando obter uma condição testável para ambos os conceitos, introduzimos conjuntos de matrizes de alcançabilidade e de controlabilidade para esta classe de sistemas e usamos certas propriedades de invariância para mostrar que: o sistema é alcançável em média, e, analogamente, controlável em média, se e somente se as matrizes respectivas, de alcançabilidade e de controlabilidade, têm posto completo. Usamos alcançabilidade média de sistemas para mostrar que a matriz de segundo momento do estado é definida positiva com uma margem uniforme. Uma consequência deste resultado no problema de estimação linear do estado é que a matriz de covariância do erro de estimação é positiva definida em média, no sentido que existe um nível mínimo de ruído nas estimativas. Na sequência, para estimadores lineares markovianos, estudamos a limitação do valor esperado da matriz de covariância do erro para mostrar que o filtro é estável num certo sentido, sendo esta uma propriedade desejável em aplicações reais. Quanto às aplicações da controlabilidade média, usamos este conceito para estabelecer condições necessárias e suficientes que garantem a existência de um processo de controle que leva a componente contínua do estado do sistema para a origem em tempo finito e com probabilidade positiva. / In this work we study the reachability and controllability notions for continuous-time linear systems with exogenous inputs and jump parameters driven by a quite general Markov chain. We define a rather natural average reachability and controllability concepts by requiring that the associated gramians are average positive definite, respectively. Aiming at testable conditions for each concept, we introduce certain sets of matrices linked with the gramians, and employ some invariance properties to find rank-based conditions. We show for average reachable systems that the state second moment is positive definite. One consequence of this result in the context of linear estimation for reachable systems is that the expectation of the error covariance matrix is positive definite. Moreover, for linear markovian filters we study the average boundedness of the error covariance matrix to show that the filter is stable in an appropriate sense, which consists in a property that is desirable in real applications. Regarding the average controllability concept, we show that it is a necessary and sufficient condition for the feasibility of the following control problem: find a control process that drives the continuous component of the state to zero in finite time with positive probability.
29

Controle Hierárquico da Equação da Onda

Santiago, Claudemir Rodrigues 22 July 2011 (has links)
Made available in DSpace on 2015-05-15T11:45:59Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 715500 bytes, checksum: d95f1a0101cba7f4f31b21e2b0da1bb3 (MD5) Previous issue date: 2011-07-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The present work has the distributed control v applied to the linear wave's equation. We seek to reach two objective, one of the kind Controllability and another the not system state distance to a state y2 (x; t) predefined. This is an problem of multicriteria optimization, and to solves him, introduce the notion Stackelberg's Optimal Control (classical in economy), in which we divide v into two, tell v1 and v2, and each one will act in the respective part from the Boundary 1;2 with a hierarchy between the same. This way, we take over that v1 is the control leader and v1 will be the follower. To leave of this terminogy, we use the idea of the hierarchical control, that is, admit that given a right v1, optimize the second goal concerning v2 and find a relation such that v2 = F (v1). So, the first goal became function of v1, belonging to the kind approximate controlability that will be proved through a density criterion and a Holmgren's uniqueness theorem. Finally, proved for controlability close, from unicidade of the solution, find Optimality system for the control leader. / O presente trabalho tem o controle distribuído v aplicado á fronteira da Equação da Onda Linear. Buscamos atingir dois objetivos: um do tipo controlabilidade, e outro o não distanciamento do estado do sistema a um estado y2 (x; t) predefinido. Esse é um problema de otimização multicritério, e para solucioná-lo, introduzimos a noção de controle ótimo de Stackelberg (clássico em economia), no qual dividimos v em dois, digamos v1 e v2; e cada um atuará na respectiva parte da fronteira -1; -2, com uma hierarquia entre os mesmos. Assim, assumimos que v1 é o controle líder e v2 será o seguidor. A partir dessa terminologia, usamos a ideia do controle hierárquico, isto é, admitimos que dado um certo v1, otimizamos o segundo objetivo com respeito a v2 e encontramos uma relação tal que v2 = F (v1). Então, o primeiro objetivo tornou-se função de v1; sendo do tipo controlabilidade aproximada que será provado através de um critério de densidade e do teorema de unicidade de Holmgren. Por último, provada a controlabilidade aproximada e a partir da unicidade da solução, encontramos o sistema de otimalidade para o controle líder.
30

Controle hierárquico para a equação do calor via estratégia Stackelberg-Nash

Albuquerque., Islanita Cecília Alcantara de 29 September 2011 (has links)
Made available in DSpace on 2015-05-15T11:46:05Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 674722 bytes, checksum: eb17d5816a0fce98d1def5be593711f1 (MD5) Previous issue date: 2011-09-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / We have as main issue in this work the Hierarchical Control, which consists in a leader-followers system. We studied in special the heat equation approximate controllability under Stackelberg-Nash’s strategy, which is directed in controlling every system from local controls choices with the minimum possible costs. / Temos como principal tema neste trabalho o Controle Hierárquico, que consiste em um sistema de líder e seguidores. Estudamos em especial a controlabilidade aproximada da equação do Calor sob a estratégia de Stackelberg-Nash, estratégia esta direcionada em controlar todo sistema a partir de escolhas de controles locais com o mínimo de custos possíveis.

Page generated in 0.0501 seconds