491 |
A DSP embedded optical naviagtion systemGunnam, Kiran Kumar 30 September 2004 (has links)
Spacecraft missions such as spacecraft docking and formation flying require high precision relative position and attitude data. Although Global Positioining Systems can provide this capability near the earth, deep space missions require the use of alternative technologies. One such technology is the vision-based navigation (VISNAV) sensor system developed at Texas A&M University. VISNAV comprises an electro-optical sensor combined with light sources or beacons. This patented sensor has an analog detector in the focal plane with a rise time of a few microseconds. Accuracies better than one part in 2000 of the field of view have been obtained. This research presents a new approach involving simultaneous activation of beacons with frequency division multiplexing as part of the VISNAV sensor system. In addition, it discusses the synchronous demodulation process using digital heterodyning and decimating filter banks on a low-power fixed point DSP, which improves the accuracy of the sensor measurements and the reliability of the system. This research also presents an optimal and computationally efficient six-degree-of-freedom estimation algorithm using a new measurement model based on the attitude representation of Modified Rodrigues Parameters.
|
492 |
Mutational Analysis and Redesign of Alpha-class Glutathione Transferases for Enhanced Azathioprine ActivityModén, Olof January 2013 (has links)
Glutathione transferase (GST) A2-2 is the human enzyme most efficient in catalyzing azathioprine activation. Structure-function relationships were sought explaining the higher catalytic efficiency compared to other alpha class GSTs. By screening a DNA shuffling library, five recombined segments were identified that were conserved among the most active mutants. Mutational analysis confirmed the importance of these short segments as their insertion into low-active GSTs introduced higher azathioprine activity. Besides, H-site mutagenesis led to decreased azathioprine activity when the targeted positions belonged to these conserved segments and mainly enhanced activity when other positions were targeted. Hydrophobic residues were preferred in positions 208 and 213. The prodrug azathioprine is today primarily used for maintaining remission in inflammatory bowel disease. Therapy leads to adverse effects for 30 % of the patients and genotyping of the metabolic genes involved can explain some of these incidences. Five genotypes of human A2-2 were characterized and variant A2*E had 3–4-fold higher catalytic efficiency with azathioprine, due to a proline mutated close to the H-site. Faster activation might lead to different metabolite distributions and possibly more adverse effects. Genotyping of GSTs is recommended for further studies. Molecular docking of azathioprine into a modeled structure of A2*E suggested three positions for mutagenesis. The most active mutants had small or polar residues in the mutated positions. Mutant L107G/L108D/F222H displayed a 70-fold improved catalytic efficiency with azathioprine. Determination of its structure by X-ray crystallography showed a widened H-site, suggesting that the transition state could be accommodated in a mode better suited for catalysis. The mutational analysis increased our understanding of the azathioprine activation in alpha class GSTs and highlighted A2*E as one factor possibly behind the adverse drug-effects. A successfully redesigned GST, with 200-fold enhanced catalytic efficiency towards azathioprine compared to the starting point A2*C, might find use in targeted enzyme-prodrug therapies.
|
493 |
Untersuchung einzelner SNARE-vermittelter Membranfusionsereignisse auf planaren porenüberspannenden Membranen / Investigation of Single SNARE-mediated Membrane Fusion Events on Planar Pore-spanning MembranesSchwenen, Lando Lantbert Gregor 04 June 2015 (has links)
No description available.
|
494 |
A DSP embedded optical naviagtion systemGunnam, Kiran Kumar 30 September 2004 (has links)
Spacecraft missions such as spacecraft docking and formation flying require high precision relative position and attitude data. Although Global Positioining Systems can provide this capability near the earth, deep space missions require the use of alternative technologies. One such technology is the vision-based navigation (VISNAV) sensor system developed at Texas A&M University. VISNAV comprises an electro-optical sensor combined with light sources or beacons. This patented sensor has an analog detector in the focal plane with a rise time of a few microseconds. Accuracies better than one part in 2000 of the field of view have been obtained. This research presents a new approach involving simultaneous activation of beacons with frequency division multiplexing as part of the VISNAV sensor system. In addition, it discusses the synchronous demodulation process using digital heterodyning and decimating filter banks on a low-power fixed point DSP, which improves the accuracy of the sensor measurements and the reliability of the system. This research also presents an optimal and computationally efficient six-degree-of-freedom estimation algorithm using a new measurement model based on the attitude representation of Modified Rodrigues Parameters.
|
495 |
Protein NMR studies of two systems involved in bacterial pathogenicity / Untersuchungen mittels Protein NMR an zwei Systemen mit Einfluss auf bakterielle PathogenitätRumpel, Sigrun 01 November 2006 (has links)
No description available.
|
496 |
Probing modes of vesicle docking in neurosecretory cells with evanescent wave microscopy / Untersuchung zur Vesikel-Andockmodi in neurosecretorischen Zellen mit TotalreflektionsmikroskopieKochubey, Olexiy 18 January 2006 (has links)
No description available.
|
497 |
Investigation of Neuronal Membrane Fusion Using Fluorescence Correlation Spectroscopy / Untersuchung der neuronalen Membranfusion mit der Fluoreszenz Korrelations SpektroskopieVennekate, Wensi 08 November 2012 (has links)
No description available.
|
498 |
Représentations gros-grain pour la modélisation des protéines : Propriétés mécaniques et interactionsSophie, Sacquin-Mora 13 December 2011 (has links) (PDF)
Mes travaux de recherche portent sur le développement de modèles gros-grains et d'algorithmes pour l'étude des propriétés mécaniques des protéines et des interactions protéine-protéine. Sur le plan mécanique, le programme ProPHet (Probing Protein Heterogeneity) permet de sonder la rigidité protéique à l'échelle du résidu et d'étudier la réponse d'un système moléculaire soumis à une déformation anisotrope. Cette réponse mécanique peut être mise en rapport avec les propriétés structurales de la protéine concernée (notamment j'agencement de ses différents éléments de structure secondaire), mais aussi avec son fonctionnement biologique (comme l'activité enzymatique. Du point de vue des interactions protéine-protéine, l'analyse des résultats des calculs effectués avec le programme MAXDo (Macromolecular Association via Cross-Docking) sur une grille d'internautes )(WorldCommunityGrid) permet mieux comprendre la spécificité des phénomènes de reconnaissance protéique
|
499 |
Nature et conséquences des interactions entre transporteurs membranaires et pesticides / Nature and consequences of interactions between membrane transporters and pesticidesChedik, Lisa 06 December 2017 (has links)
Les pyréthrinoïdes et les organophosphorés sont des pesticides très utilisés, à l’origine d’une imprégnation forte de la population, exposée à ces contaminants principalement via l’alimentation. De plus en plus d’études scientifiques suggèrent des liens entre l’exposition à ces composés et des maladies chroniques ou des troubles du développement de l’enfant. Paradoxalement, leur devenir biologique chez l’homme est mal connu. Certaines études suggèrent que ces insecticides sont susceptibles d’intéragir avec les transporteurs membranaires ABC et SLC, protéines localisées au niveau d’interfaces hémato-tissulaires qui prennent en charge de nombreux substrats endogènes, médicaments et contaminants de l’environnement. L’objectif de notre étude a été de caractériser les effets d’insecticides des familles des pyréthrinoïdes et des organophosphorés sur l’activité de nombreux transporteurs ABC et SLC prenant en charge des médicaments (P-gp, BCRP, MRPs, OATP-1B1,-2B1,-1B3, OCT1-3, OAT1, OAT3, MATE1 et MATE2K) par une approche in vitro. Nous nous sommes également attachés à caractériser par des expérimentations in vitro et in silico, les mécanismes des interactions et les éléments structuraux des pesticides à l’origine de ces effets. Nous avons montré que de nombreux organophosphorés et pyréthrinoïdes étaient capables d’inhiber des transporteurs d’efflux (MRP, BCRP, P-gp) et d’influx (OATP1B1, OAT3, MATE1, OCT1-2) et de stimuler l’activité de certains OATPs. Les pesticides testés inhibaient très fortement l’activité des transporteurs de cations (OCT1 et OCT2) et ont pu bloquer le transport de catécholamines médiés par ces protéines. Une approche qSAR a permis de définir des paramètres physicochimiques associés aux effets modulateurs des pesticides et une approche d’amarrage moléculaire (docking) a mise en évidence les sites de liaisons de la P-gp impliquées dans ces interactions. Les conséquences des modulations de l’activité des transporteurs, en termes d’effets toxiques et d’interactions médicamenteuses, restent à définir pour les populations exposées à de fortes doses de pesticides. Toutefois, la contribution des interactions observées aux effets toxiques de ces insecticides est peu probable car nécessitant des concentrations nettement supérieures à celles atteintes dans le cadre d’une exposition environnementale de la population générale. / The general population is chronically exposed to pyrethroids and organophosphorus insecticides, mainly through alimentation. Several epidemiological studies have found an association between non-occupational exposure to these pesticides and chronic diseases and developmental disorders. Paradoxically, their biological fate in humans is poorly understood. Some studies suggest that these insecticides could interact with ABC and SLC membrane transporters. These membrane proteins, located at blood-tissue interfaces (liver, kidney, intestine ...), handle many endogenous substrates, drugs and pollutants. The objective of our study was to characterize, using an in vitro approach, the effects of pyrethroid and organophosphorus insecticides on the activity of numerous ABC and SLC human drug-transporters (P-gp, BCRP, MRPs, OATP-1B1, -2B1, -1B3, OCT1-3, OAT1, OAT3, MATE1 and MATE2K). We have also tried to analyze the mechanisms of interactions and the structural requirements for insecticides-mediated modulation of drug transporters activities using in vitro and in silico approach. We have shown that many organophosphorus and pyrethroids are able to inhibit ABC (MRP, BCRP, P-gp) and SLC (OATP1B1, OAT3, MATE1, OCT1-2) transporters and can stimulate the activity of some OATPs. Moreover, the tested pesticides inhibited very strongly the activity of OCT1 and OCT2 and blocked catecholamine transport mediated by these transporters. A qSAR approach allowed to define physicochemical parameters associated with the modulating effects of pesticides and a molecular docking approach revealed the P-gp binding sites involved in these interactions. The consequences of transporter activitie modulation, in terms of toxic effects and drug interactions, remain to be defined for populations exposed to high doses of pesticides, occurring notably in response to poisoning. However the alterations of these transporter activities by insecticides are unlikely to contribute to organophosphorus or pyrethroids toxicities of chronic low-dose exposure.
|
500 |
Critical assessment of predicted interactions at atomic resolutionMendez Giraldez, Raul 21 September 2007 (has links)
Molecular Biology has allowed the characterization and manipulation of the molecules of life in the wet lab. Also the structures of those macromolecules are being continuously elucidated. During the last decades of the past century, there was an increasing interest to study how the different genes are organized into different organisms (‘genomes’) and how those genes are expressed into proteins to achieve their functions. Currently the sequences for many genes over several genomes have been determined. In parallel, the efforts to have the structure of the proteins coded by those genes go on. However it is experimentally much harder to obtain the structure of a protein, rather than just its sequence. For this reason, the number of protein structures available in databases is an order of magnitude or so lower than protein sequences. Furthermore, in order to understand how living organisms work at molecular level we need the information about the interaction of those proteins. Elucidating the structure of protein macromolecular assemblies is still more difficult. To that end, the use of computers to predict the structure of these complexes has gained interest over the last decades.<p>The main subject of this thesis is the evaluation of current available computational methods to predict protein – protein interactions and build an atomic model of the complex. The core of the thesis is the evaluation protocol I have developed at Service de Conformation des Macromolécules Biologiques et de Bioinformatique, Université Libre de Bruxelles, and its computer implementation. This method has been massively used to evaluate the results on blind protein – protein interaction prediction in the context of the world-wide experiment CAPRI, which have been thoroughly reviewed in several publications [1-3]. In this experiment the structure of a protein complex (‘the target’) had to be modeled starting from the coordinates of the isolated molecules, prior to the release of the structure of the complex (this is commonly referred as ‘docking’).<p>The assessment protocol let us compute some parameters to rank docking models according to their quality, into 3 main categories: ‘Highly Accurate’, ‘Medium Accurate’, ‘Acceptable’ and ‘Incorrect’. The efficiency of our evaluation and ranking is clearly shown, even for borderline cases between categories. The correlation of the ranking parameters is analyzed further. In the same section where the evaluation protocol is presented, the ranking participants give to their predictions is also studied, since often, good solutions are not easily recognized among the pool of computer generated decoys.<p>An overview of the CAPRI results made per target structure and per participant regarding the computational method they used and the difficulty of the complex. Also in CAPRI there is a new ongoing experiment about scoring previously and anonymously generated models by other participants (the ‘Scoring’ experiment). Its promising results are also analyzed, in respect of the original CAPRI experiment. The Scoring experiment was a step towards the use of combine methods to predict the structure of protein – protein complexes. We discuss here its possible application to predict the structure of protein complexes, from a clustering study on the different results.<p>In the last chapter of the thesis, I present the preliminary results of an ongoing study on the conformational changes in protein structures upon complexation, as those rearrangements pose serious limitations to current computational methods predicting the structure protein complexes. Protein structures are classified according to the magnitude of its conformational re-arrangement and the involvement of interfaces and particular secondary structure elements is discussed. At the end of the chapter, some guidelines and future work is proposed to complete the survey. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0312 seconds