Spelling suggestions: "subject:"deammonification"" "subject:"ammonification""
11 |
Deammonification efficiency in combined UASB and IFAS system for mainstream WWTKhayi, Noureddine January 2017 (has links)
The study is about Nitrogen removal from the low concentrated mainstream wastewater after Upflow Anaerobic Sludge Blanket reactor process (UASB) by single-stage Partial Nitritation/Anammox process in a pilot scale reactor at Hammarby Sjöstad in Stockholm. A mixture of various concentrations of dissolved oxygen and different aeration methods have been tested in the pilot scale reactor in five months divided into five periods where the temperature was set at 15° C throughout the study. The best result was in period 4, the average nitrogen removal efficiency was 52% varying between 40 and 60 % with aeration method of the ratio R = 1/3 (R = 20 minutes with aeration to 40 minutes without aeration) and a dissolved oxygen concentration of 1.3 mg/L. Partial nitritation/Anammox is considered more environmentally friendly due to reduced energy requirements for aeration, no need for an external carbon source. The process also allows for a more cost-effective nitrogen removal from wastewater. / Vatten är nödvändigt för existensen av allt liv på jorden och spelar en avgörande roll i alla mänskliga aktiviteter. Antropogena aktiviteter förorenar denna viktiga resurs och medför stor risk för människors och djurs hälsa samt växter. Kvävebelastning från jordbruket och avloppsvatten i mark- eller vattenmiljön har resulterat till övergödning, vilket är ett miljö- och ekonomiskt problem på grund av en obalans mellan ekosystemtillförseln och den naturliga näringsförbrukningen. I denna studie behandlades avloppsvatten i en pilotskala reaktor med en integrerad fastfilm aktiverat slam (IFAS) som drivs med ett enstegs partial nitritation/Anammox-process. Kväverening från den lågkoncentrerade huvudström avloppsvatten efter Uppflöde Anaerob Slam Blankett reaktor process (UASB) undersöktes. En blandning av olika koncentrationer av upplöst syre och olika luftningsmetoder har testats i pilotskala reaktorn i fem månader uppdelad i fem perioder där temperaturen sattes vid 15° C under hela studien. De bästa resultaten i kväve reningseffektivitet var 52 % i genomsnitt i period 4 varierande mellan 40 och 60 %, luftningsmetod med ett förhållande av R = 1/3 (R = 20 minuter med luftning till 40 minuter utan luftning) och ett upplöst syre Koncentration av 1,3 mg/l. Jämförelsen tog hänsyn till alla former av utsläpp av kväve- och energikostnader för luftning. Under de senaste decennierna har vattenbehandlingsprocesserna haft många positiva utvecklingar, vilket har lett till en kvalitetsförbättring av vatten samtidigt som kostnaden för kväveavlägsnande från avloppsvatten har minskat. För närvarande flyttar kvävereningsteknik från konventionell nitrifikations/denitrifikationsprocessen till partiell nitritation/Anammox (PN/A) -processen kallad deammonification. Det verkar som om den största svårigheten är att upprätthålla en stabil ackumulation av nitrit medan man försöker delvis med nitritation av ammonium. Partiell nitritation/Anammox (PN/A) anses vara mer kostnadseffektivt avlägsnande av kväve från avloppsvatten, mer miljövänligt än konventionella nitrifikations-denitrifikationsprocesser på grund av minskat energibehov för luftning och inget behov av en yttre källa av kol.
|
12 |
Nitrogen removal from municipal wastewater by mainstream Partial Nitritation/Anammox processRobiglio, Alessio January 2018 (has links)
Mainstream Partial Nitritation/Anammox, also known as Mainstream Deammonification, is a promising technology for future wastewater purification that aims to remove nitrogen from wastewater in order to prevent the eutrophication. It is less costly than the traditional nitrification/denitrification process and it heads towards the direction of converting the WWTPs from energy consuming into energy producing facilities. This Master’s thesis is based on a study regarding the nitrogen removal from mainstream wastewater. It was conducted at Hammarby Sjöstadsverk that is a research facility in the area of the Henriksdal Waste Wastewater Treatment Plant in Stockholm. Three parts of the study were developed. The main one had the purpose to evaluate the process performances of a biological pilot-scale IFAS reactor used for Mainstream Deammonification that was operated from October 2017 to March 2018. This evaluation was addressed to comprehend how the pilot-scale reactor works at different operational conditions. The remaining studies analysed the progress of the pilot-scale reactor in relation to different factors and to the settling properties of the activated sludge used in the process. It was found that the process performances improved by changing the aeration pattern from 40 to 50 minutes for non-aeration time and from 20 to 10 minutes for aeration time and by increasing the dissolved oxygen set-point from 0.6 to 1.0 mg/L. The enhancement of the performances consisted in an inhibition of nitrite oxidizing bacteria and rise of the total nitrogen removal efficiency. In addition, anammox biofilm was observed to grow on the carriers and it was observed that the activated sludge did not have good settling properties.
|
13 |
Anammox in IFAS reactor for reject water treatmentChen, Bingquan January 2019 (has links)
The aim of this study was to evaluate the performance of the integrated fixed-film activated sludge (IFAS) reactor achieving partial nitritation/anammox process to treat reject water after dewatering of digested sludge. During the study period, dissolved oxygen setpoint, aeration mode and inflow loading were changed to evaluate their influence on the process performance and efficiency in the reactor. Four different values for dissolved oxygen setpoint were tested: 2.0 mg/L, 1.8 mg/L, 1.5mg/L and 1.3 mg/L. Three different aeration modes in a one-hour cycle were tested: 30 min, 35 min, 40 min. And two different inflow loadings were tested: 2 g N/m2∙d and 1.6 g N/m2∙d. Discussion and evaluation were based on laboratory analyses and online sensors. The highest achieved total inorganic nitrogen removal efficiency was 85.6%, at 40 min aeration per hour, 2.0 mg/L dissolved oxygen and with 2 g N/m2∙day inflow NH4-N loading. Specific anammox activity (SAA) tests were also done for the anaerobic ammonia oxidizing bacteria in biofilm attached to the carriers in the IFAS reactor, and the results showed that the bacteria could achieve a higher nitrogen removal rate than in the pilot-scale IFAS reactor.
|
14 |
Evaluation of the IFAS system with Deammonification Process for Nitrogen Removal from Municipal WastewaterLos, Karolina January 2018 (has links)
No description available.
|
15 |
Deammonification Process Kinetics and Inhibition EvaluationMusabyimana, Martin 12 November 2008 (has links)
A number of innovative nitrogen removal technologies have been developed to address the treatment challenges caused by stringent regulations and increasing chemical and energy cost. A major contributing factor to these challenges is the liquid stream originating from the process of dewatering anaerobically digested solids. This liquid, also knows as centrate, reject water or sludge liquor, can cause an increase of up to 25% in ammonia loading. The recently discovered anaerobic ammonia oxidation (anammox) process is a major breakthrough for treatment of these streams as it has the potential to remove up to 85% of nitrogen load without external carbon source addition. The anammox process is combined with another process that oxidizes half of the ammonia to nitrite (nitritation) in a separate reactor such as in the SHARON process, or in the same reactor such as in the DEaMmONification (DEMON) process. Despite intensive laboratory research for the last 10 years to fully understand these processes, there is still a high level of skepticism surrounding the implementation of full-scale systems. The reason for this skepticism could be due to frequent failures observed in the lab scale systems as well as reported slow bacterial growth. We think that this technology might be used more effectively in the future if process kinetics, inhibition and toxicity can be better understood.
This work focused on the DEMON process with a goal to understand the kinetics and inhibition of the system as a whole and the anammox process in particular. A DEMON pilot study was undertaken at the Alexandria Sanitation Authority (ASA) and had several study participants, including ASA, the District of Columbia Water and Sewer Authority (DCWASA), CH2M Hill Inc., Envirosim Ltd, the University of Innsbruck and Virginia Tech. We investigated the growth rate of anammox bacteria within a quasi-optimal environment. Laboratory-scale experiments were conducted to assess anaerobic ammonia oxidation inhibition by nitrite as well as aerobic ammonia oxidation inhibition by compounds present in the DEMON reactor feed, such as a defoaming agent, a sludge conditioning polymer, and residual iron from phosphorus removal practices.
The study revealed that the DEMON process can be efficiently controlled to limit nitrite accumulation capable of causing process inhibition. The target ammonium loading rate of 0.5 kg/m3/d was reached, and no upset was noticed for a loading up to 0.80 kg/m3/d with an HRT of 1.7 days. The ammonia removal efficiency reached an average of 76% while total nitrogen removal efficiency had an average of 52%. Most of the process upsets were caused by aerobic ammonia oxidation failure rather than anammox inhibition. Failure in ammonia oxidation affected pH control, a variable which is at the center of the DEMON process control logic. The pilot study is summarized in Chapter 3 of this Dissertation.
The low anammox maximum specific growth rate (µmax,An) as well as nitrite inhibition are historically reported to be the major process challenges according to the literature, but the degree to which each contributes to process problems differs widely in the literature. In this study, we estimated µmax,An by using the high F:M protocol commonly used for nitrifying populations. We also studied the effect of both short term and sustained nitrite exposure on anammox activity. In this study, µmax,An was estimated to be 0.017 h-1. The study results also suggest that anammox bacteria can tolerate a spike of nitrite-N at concentrations as high as 400 mg/L as long as this concentration is not sustained. Sustained concentrations above 50 mg/L caused a gradual loss of activity over the long term.
Finally, the inhibition of aerobic ammonia oxidizing bacteria (AerAOB) observed in the DEMON reactor was investigated using laboratory experiments and is reported in Chapter 6. AerAOB inhibition was, in most cases, the main reason for process upset. Compounds that were suspected to be the cause of the inhibition were tested. The study noticed that a defoaming agent, polymer and ferrous iron had some inhibiting properties at the concentrations tested. / Ph. D.
|
16 |
Assessment of a partial nitritation/Anammox system for nitrogen removalGut, Luiza January 2006 (has links)
<p>This thesis evaluates the performance of a deammonification system designed as a two-step tech-nology consisting of an initial partial nitritation followed by an Anammox process. Operation of a technical-scale pilot plant at the Himmerfjärden Wastewater Treatment Plant (Grödinge, Swe-den) has been assessed. Oxygen Uptake Rate (OUR) to evaluate the respiration activity of nitrifi-ers in the system and batch tests to assess reaction rates have also been applied in the study. It was found that the total inorganic nitrogen elimination strongly depended on the nitrite-to-ammonium ratio in the influent to the Anammox reactor, which was correlated with the per-formance of the partial nitritation phase. Therefore, a control strategy for oxidation of ammo-nium to nitrite has been proposed. Controlled oxygen supply to the partial nitritation reactor is obligatory to obtain a proper pH drop indicating oxidation of ammonia to nitrite at the adequate ratio. A very high nitrogen removal efficiency (an average of 84%) and stable operation of the system have been reached. Conductivity measurements were also used to monitor the system influent nitrogen load and the nitrogen removal in the Anammox reactor. The data gathered from the operation of the pilot plant enabled the use of multivariate data analysis to model the process behaviour and the assessment of the covariances between the process parameters. The options for full-scale implementation of the Anammox systems have been proposed as a result of the study.</p>
|
17 |
Mainstream deammonification reac-tor at low DO values and employing granular biomass.Salmistraro, Marco January 2015 (has links)
Nitrogen removal from wastewater has been exstensively addressed by scientific literature in recent years; one of the most widely implemented technologies consists of the combination of partial nitritation and anaerobic ammonium oxidation (ANAMMOX). Compared to traditional nitrification and denitrification techniques such solution eliminates the requirement for an external carbon source and allows for a reduced production of excess sludge; furthermore, it brings down the costs associated to aeration by 60-90% and the emissions of CO2 by 90%. Similar techniques can turn out to be particularly interesting when stringent environmental regulations have to be met. At present, most of the dedicated research dwells on wastewater at high temperatures, high nitrogen loads and low organic content, as it is typical of sidestream effluents; this project, instead, is focused on mainstream wastewater, characterized by lower temperatures and nitrogen content, but higher COD values. At the center of the thesis is the application of a one-stage reactor treating synthetic mainstream municipal wastewater. The chosen approach consisted in maintaining low DO values, allowing for both for the establishment of a proper reaction environment and for the out-selection of nitrite oxidizers; granular biomass was employed for the experiment, aiming at effective biomass retention. The HRT value was gradually decreased, with a minimum at 6 hours. Resulting nitrogen removal rates proved to be satisfactory, with a maximum TN removal efficiency of 54%. Retention of biomass was also positively enhanced throughout the experiment, and yielded a final SRT value of 15.6 days. The whole process was then inserted into a more complete framework, accounting for possible energetic optimizations of similar treatment plants. Employing COD fractionation as a primary step paves the way for anaerobic digestion side processes, which can produce methane and ultimately provide energy for the main nitrogen removal step. Therefore, envisioning energy-sufficient water treatment processes seems a more and more feasible and realistic possibility.
|
18 |
Environmental Impacts of a Wastewater Treatment Plant – With Sidestream Deammonification / Miljöpåverkan från ett Avloppsreningsverk – Med Deammonifikation i SidoströmmenEkman, Malin January 2020 (has links)
Människan ger upphov till avloppsvatten varje dag. Kommunalt avloppsvatten är rikt på kol, kväve och fosfor, vilka har en stor miljöpåverkan. Vattenrening är i och med detta en nödvändighet för att minimera den antropogena inverkan på naturen och den biologiska mångfalden. Genom att rena vatten i avloppsreningsverk så kan halterna av dessa ämnen reduceras markant. Ett av många reningsverk är Himmerfjärdsverket som är beläget i Sverige, som bland annat använder deammonifikation vilket är en vattenreningsmetod för att rena ammoniumrikt avloppsvatten. I det här examensarbetet genomförs en livscykelanalys för att utvärdera hela reningsverkets miljöprofil under år 2019 och år 2015. Dessa två år använder sig utav två olika deammonifikationsmetoder, nämligen DEMON och DeAmmon. Resultaten utvärderas enligt följande miljöpåverkanskategorier: växthuseffekt, övergödning i marina- och sötvattensekosystem, humantoxicitet, ozonnedbrytning och försurning. Livscykelanalysen genomfördes i mjukvaran GaBi med ecoinvent version 3.3 som databas och ReCiPe som metod. Resultaten tyder på att de största bidragande orsakerna till miljöpåverkan beror på anaerob rötning av slam, vilket är en process som stabiliserar slam och även från utsläpp till mark som uppkommer genom deponering av rötat slam. Andra faktorer som bidrar till miljöpåverkan är kemikalier, utsläpp av det behandlade avloppsvattnet och övriga uppkomna utsläpp från olika processer. Inom analysens gränser så dras även slutsatsen att det inte är någon markant skillnad på de två reningsmetoderna. / We, the humans, give rise to wastewater everyday. Municipal wastewater is rich in carbon, nitrogen and phosphorus, of which have large impacts on the environment. Wastewater treatment is therefore a necessity to minimize the anthropogenic impacts on both nature and biodiversity. To reduce the content of these substances, the wastewater is treated in wastewater treatment plants. One of them is Himmerfjärdsverket located in Sweden that uses, among others, deammonification of which is a biological technology for treating ammonium rich wastewaters. In this thesis, a life cycle assessment is conducted in order to do an overall evaluation of the environmental profile of this entire plant during two different years, 2019 and 2015. These years also have different deammonification technologies implemented, DEMON and DeAmmon. The results are evaluated upon the following impact categories: climate change, freshwater and marine eutrophication, human toxicity, ozone depletion and acidification.The impact assessment is conducted in GaBi software with the database ecoinvent version 3.3 and ReCiPe as method. Results indicate that the main contributors to pollution are due to anaerobic digestion, which is a process that stabilize sludge and also from emissions to soil that arise from disposal of digested sludge. Other large impacts come from chemicals that are added to the process, the effluent and other arising emissions from the different processes. It is further concluded that there are no major differences between the two deammonification technologies within the boundaries of this assessment.
|
19 |
Comparison of Aeration Strategies for Optimization of Nitrogen Removal in an Adsorption/Bio-oxidation (A/B) Process with an Emphasis on Ammonia vs. NOx (AvN) controlSadowski, Michael Stuart 08 December 2015 (has links)
Research was performed at a pilot-scale wastewater treatment plant operating an adsorption/bio-oxidation (A/B) process at 20C. The study compared B-Stage performance under DO Control, Ammonia Based Aeration Control (ABAC), and Ammonia vs. NOx (AvN) control. AvN in 1) fully-intermittent and 2) intermittently-aerated MLE configurations was compared to DO Control and ABAC, each with continuous aeration, in an MLE configuration. The study also examined operation of each aeration strategy with two different feed types: A-Stage effluent (ASE) and primary clarifier effluent (PCE). Operating modes were compared on the basis of nitrogen removal performance, COD utilization efficiency for denitrification, and alkalinity consumption.
AvN was found to provide comparable nitrogen removal performance to DO Control and ABAC. The highest nitrogen removal performance was seen when operating DO Control (81.4 ± 1.2%) and ABAC (81.1 ± 1.2%) with PCE. High nitrogen removal efficiency (77.5 ± 6.1%) was seen when fully-intermittent AvN operation was fed ASE containing a high particulate COD fraction. A high effluent nitrite accumulation ratio (NAR = NO2-/(NO2-+NO3-)) was seen during this period (46 ± 15%) accompanied by the out-selection of Nitrospira. Feeding effluent from AvN control to an Anammox MBBR improved removal efficiency.
Increased soluble COD loading resulted in greater nitrogen removal with strategies operating in an MLE configuration while particulate COD was found to be important for processes where removal was designed to occur in downstream reactors. Efficiency of COD for denitrification was found to vary based on the amount and type of influent COD; however AvN in an MLE configuration was found to use COD more efficiently than fully-intermittent AvN. In either configuration, AvN required less alkalinity addition than DO Control or ABAC. High sCOD concentrations in PCE led to increased nutrient removal as compared to ASE but increased heterotrophic growth and mixed liquor concentrations in the B-Stage making the A-Stage an attractive option for its ability to control the C/N ratio fed to BNR processes. / Master of Science
|
20 |
Mathematical and Molecular Modeling of Ammonia Electrolysis with Experimental ValidationEstejab, Ali 14 June 2018 (has links)
No description available.
|
Page generated in 0.1054 seconds