Spelling suggestions: "subject:"qual bdynamic programming"" "subject:"qual bdynamic erogramming""
11 |
Representação de cenários de demanda e da função de produção hidrelétrica no planejamento da operação de sistemas hidrotérmicos a médio prazoFernandes, Alexandre da Silva 20 February 2018 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-05-10T12:15:28Z
No. of bitstreams: 1
alexandredasilvafernandes.pdf: 3326554 bytes, checksum: f4dfcfe70bde99c5ebe4501f03add83e (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-05-22T15:33:53Z (GMT) No. of bitstreams: 1
alexandredasilvafernandes.pdf: 3326554 bytes, checksum: f4dfcfe70bde99c5ebe4501f03add83e (MD5) / Made available in DSpace on 2018-05-22T15:33:53Z (GMT). No. of bitstreams: 1
alexandredasilvafernandes.pdf: 3326554 bytes, checksum: f4dfcfe70bde99c5ebe4501f03add83e (MD5)
Previous issue date: 2018-02-20 / O planejamento da operação do Sistema Interligado Nacional constitui-se uma
tarefa de alta complexidade, seja pela quantidade acentuada de usinas hidrelétricas e
termelétricas distribuídas nos quatro submercados interligados, ou pelas características marcantes da operação das hidrelétricas, no que diz respeito às incertezas dos cenários hidrológicos futuros e aos acoplamentos espacial e temporal. O objetivo deste planejamento é a determinação de uma política ótima de despacho das usinas do sistema de modo a minimizar o valor esperado dos custos operativos no horizonte considerado. Uma importante restrição do problema é o suprimento da demanda de energia elétrica, dado pela diferença entre a carga efetiva de cada submercado e a geração das usinas não simuladas, esta última composta pela energias alternativas (eólica, solar, biomassa), pequenas centrais hidrelétricas, entre outros. Entretanto, a crescente penetração da geração renovável, aliada às incertezas das fontes naturais como eólica e solar (pois dependem de fatores climáticos e por isso são imprevisíveis), contribui com a necessidade de representação da demanda em diversos cenários para um correto despacho das usinas e uma operação do sistema mais confiável. Sabendo que os modelos oficiais atuais tratam apenas as incertezas oriundas dos cenários hidrológicos, devido à dificuldade de implementação e alocação de memória na consideração de outras incertezas na Programação Dinâmica Dual Estocástica, o trabalho desenvolvido nesta dissertação propõe metodologias que incluem os diversos cenários de demanda, além de representar com maior detalhe a geração das hidrelétricas. Além disso, são propostos algoritmos de representação analítica da Função de Custo Imediato em sistemas isolados e com múltiplas áreas na busca por uma redução das dimensões do problema tratado. Finalmente, são realizados testes em sistemas tutorias e os resultados
são analisados para avaliar as performances computacionais das metodologias propostas. / The operation schedulling of Brazilian System constitutes a task of high complexity,
either due to the large number of hydro and thermal plants distributed in the four
interconnected submarkets, or due to the outstanding characteristics of the hydro plants, with respect to the uncertainties in the hydrological scenarios future and due to spatial and temporal couplings. The objective of this planning is the determination of an
optimal dispatch policy of plants that minimizes the expected value of the operating
costs in the considered horizon. An important constraint is the supply of demand, which is obtained by the difference between the effective load of each submarket and the generation of non-simulated plants, composed of renewable energies (wind, solar, biomass), small hydropower plants, and others. However, the growing penetration of renewable generation, coupled with the uncertainties of natural sources such as wind and solar (because they depend on climatic factors and are therefore unpredictable), contributes to the need to represent demand in different scenarios for a correct dispatch of the plants and a more reliable system operation.
Knowing that the current official models deal only with the uncertainties arising
from the hydrological scenarios, due to the difficulty of implementation and memory
allocation in the consideration of other uncertainties in Stochastic Dual Dynamic
Programming, this work proposes methodologies that include the several scenarios
demand, besides representing in greater detail the generation of hydroelectric plants.
In addition, algorithms are proposed for analytical representation of the Immediate
Cost Function in isolated systems with multiple areas in the search for a reduction of
the dimensions of the problem. Finally, tests are performed on tutorial systems and
the results are analyzed to evaluate the computational performances of the proposed
methodologies.
|
12 |
[pt] GESTÃO DE RISCOS ESTRATÉGICOS: UM MODELO PARA INVESTIMENTO EM GERAÇÃO RENOVÁVEL SOB INCERTEZA / [en] STRATEGIC RISK MANAGEMENT: A FRAMEWORK FOR RENEWABLE GENERATION INVESTMENT UNDER UNCERTAINTYSERGIO VITOR DE BARROS BRUNO 22 September 2016 (has links)
[pt] O investimento em fontes renováveis, apesar do crescimento recente, ainda é
dificultado devido à volatilidade dos mercados de curto prazo. Contratos forward são
essenciais mesmo em mercados de balcão como o Ambiente de Contratação Livre (ACL)
Brasileiro. Contatos forward permitem a redução da incerteza sobre a receita, ajudam a
garantir a adequação do fornecimento graças à sinalização de preços para a expansão e
podem também ser obrigatórios para realização do project finance de novos
empreendimentos. Apesar da oferta de contratos, as fontes renováveis ainda possuem o
risco adicional em sua geração, o que pode, combinando-se altos preços spot em um
momento de baixa geração, ocasionar uma exposição ao risco de preço-quantidade.
Investimento em fontes renováveis pode ser incentivado através da aplicação de técnicas
de gestão de riscos como contratação forward, diversificação e definição do momento
ótimo de investimento. Através da negociação de contratos e aproveitando
complementariedades sazonais entre as fontes, é possível minimizar a exposição aos
riscos do mercado. O problema de investimento em centrais de energia renovável pode
ser visto como um modelo de otimização estocástica multiestágio com variáveis inteiras,
de difícil resolução. As principais soluções disponíveis na literatura simplificam o
problema ao reduzir a dimensionalidade da árvore de cenários, ou assumindo hipóteses
simplificadoras sobre os processos estocásticos. Nosso objetivo é apresentar um
framework para valoração de investimentos em energia renovável, considerando as
principais fontes de incerteza e alternativas para composição de uma carteira de
investimentos. A principal contribuição desse trabalho é uma metodologia para resolver,
utilizando técnicas de decomposição, o problema de investimento ótimo em centrais
renováveis complementares no mercado elétrico brasileiro. Este é um problema
estocástico multiestágio e não convexo. Nossas políticas de investimento são geradas
através de um algoritmo baseado em Programação Dinâmica Dual Estocástica (SDDP).
Restrições de integralidade são consideradas no passo forward, onde as políticas são
avaliadas, e relaxados no passo backward, onde as políticas são geradas, para garantir a
convexidade das funções de recurso. Os resultados numéricos mostram que não é possível
assumir independência entre estágios dos processos estocásticos de preços. A estrutura
Markoviana dos processos estocásticos é preservada usando uma discretização do espaço
de probabilidade, que é resolvida utilizando uma conhecida extensão do SDDP. A
avaliação da performance é feita utilizando os dados originais, validando nossa heurística.
Nosso framework requer um modelo para o preço forward de energia. Nós aplicamos o
modelo Schwartz-Smith usando dados do mercado spot e de balcão para construir a curva
forward do mercado brasileiro. O framework contempla as particularidades do ACL no
mercado brasileiro, mas também pode ser utilizado em mercados similares. Utilizando
medidas coerentes de risco, incorporamos aversão a risco e avaliamos as estratégias
concorrentes utilizando conceitos modernos de gestão de riscos. / [en] Despite recent trend for investment in renewable energy, high volatility in shortterm
markets still may hinder some opportunities. Forwarding contracting is essential
even in Over The Counter (OTC) markets such as the Brazilian Free Trading
Environment. Forward contracts allow reducing revenue uncertainty, help ensure supply
adequacy by signaling generation expansion and may also be required for project
financing in new ventures. Still, renewable sources face the additional risk of uncertain
generation, which, in low periods, combined with high spot prices, pose the hazardous
price-quantity risk. Renewable investment may be fostered by applying risk management
techniques such as forward contracting, diversification and optimal investment timing. By
trading contracts and exploiting the seasonal complementarity of the renewable sources, it
is possible to reduce risk exposure. The problem of investment in renewable energy
plants may be seen as a multistage stochastic optimization model with integer variables,
which is very hard to solve. The main approaches in the current literature simplify the
problem by reducing the dimensionality of the scenario tree or by assuming simplifying
hypothesis on the stochastic processes. Our objective is to introduce a renewable
investment valuation framework, considering the main uncertainty sources and portfolio
investment alternatives. The main contribution of this work is a method to solve, by
applying decomposition techniques, the problem of optimal investment in seasonal
complementary renewable plants in the Brazilian energy market. This is a multistage
stochastic and non-convex problem. Our investment policies are devised using an
algorithm based on Stochastic Dual Dynamic Programming (SDDP). Integrality
constraints are considered in the forward step, where policies are evaluated, and relaxed
in the backward step, where policies are built, to ensure convexity of the recourse
functions. Numerical results show that it
is not possible to assume stagewise independence of the price processes. We maintain the
Markovian property of the stochastic processes by a discretization of the probability
space, solvable by a known extension to the SDDP method. Performance evaluation is
carried out using the original data, validating our heuristic. A forward energy price model
is required in our framework. We apply the Schwartz-Smith model with spot and OTC
data of the Brazilian market to build such a forward price curve. The framework is able to
represent the characteristics of the Brazilian FTE and may be applied to similar markets.
We incorporate risk aversion with coherent measures of risk and evaluate alternative
strategies based on modern risk management concepts.
|
13 |
[pt] INCORPORAÇÃO DA INCERTEZA DOS PARÂMETROS DO MODELO ESTOCÁSTICO DE VAZÕES NA POLÍTICA OPERATIVA DO DESPACHO HIDROTÉRMICO / [en] STOCHASTIC HYDROTHERMAL SCHEDULING WITH PARAMETER UNCERTAINTY IN THE STREAMFLOW MODELSBERNARDO VIEIRA BEZERRA 26 October 2015 (has links)
[pt] O objetivo do planejamento da operação hidrotérmica de médio e longo
prazo é definir as metas para geração de cada hidroelétrica e termelétrica, a fim de
atender à carga ao menor custo esperado de operação e respeitando as restrições
operacionais. Algoritmos de Programação Dinâmica Estocástica (PDE) e de
Programação Dinâmica Dual Estocástica (PDDE) têm sido amplamente aplicados
para determinar uma política operativa ideal o despacho hidrotérmico. Em ambas
as abordagens a estocasticidade das afluências é comumente produzida por
modelos periódicos autoregressivos de lag p - PAR(p), cuja estimativa dos
parâmetros é baseada nos dados históricos disponíveis. Como os estimadores são
funções de fenômenos aleatórios, além da incerteza sobre as vazões, também há
incerteza sobre os parâmetros estatísticos, o que não é capturado no modelo PAR
(p) padrão. A existência de incerteza nos parâmetros significa que há um risco de
que a política da operação hidrotérmica planejada não será a ótima. O objetivo
desta tese é apresentar uma metodologia para incorporar a incerteza dos
parâmetros do modelo PAR (p) no problema de programação estocástica
hidrotérmica. São apresentados estudos de caso ilustrando o impacto da incerteza
dos parâmetros nos custos operativos do sistema e como uma política operativa
que incorpore esta incerteza pode reduzir este impacto. / [en] The objective of the medium and long-term hydrothermal scheduling
problem is to define operational target for each power plant in order to meet the
load at the lowest expected cost and respecting the operational constraints.
Stochastic Dynamic Programming (SDP) and Stochastic Dual Dynamic
Programming (SDDP) algorithms have been widely applied to determine the
optimal operating policy for the hydrothermal dispatch. In both approaches, the
stochasticity of the inflows is usually produced by periodic auto-regressive
models - PAR (p), whose parameters are estimated based on available historical
data. As the estimators are a function of random phenomena, besides the inflows
uncertainty there is statistical parameter uncertainty, which is not captured in the
standard PAR (p) model. The existence of uncertainty in the parameters means
that there is a risk that the hydrothermal operating policy will not be optimal. This
thesis presents a methodology to incorporate the PAR(p) parameter uncertainty
into stochastic hydrothermal scheduling and to assess the resulting impact on the
computation of a hydro operations policy. Case studies are presented illustrating
the impact of parameter uncertainty in the system operating costs and how an
operating policy that incorporates this uncertainty can reduce this impact.
|
14 |
[en] ON THE SOLUTION VARIABILITY REDUCTION OF STOCHASTIC DUAL DYNAMIC PROGRAMMING APPLIED TO ENERGY PLANNING / [pt] REDUÇÃO DA VARIABILIDADE DA SOLUÇÃO DA PROGRAMAÇÃO DINÂMICA DUAL ESTOCÁSTICA APLICADA AO PLANEJAMENTO DA OPERAÇÃO DE SISTEMAS HIDROTÉRMICOSMURILO PEREIRA SOARES 28 October 2015 (has links)
[pt] No planejamento da operação hidrotérmica brasileiro, assim como em
outros países hidro dependentes, a Programação Dinâmica Dual Estocástica
(PDDE) é utilizada para calcular uma política ótima avessa a risco que, muitas
vezes, considera modelos autorregressivos para modelagem das afluências às
hidrelétricas. Em aplicações práticas, estes modelos podem induzir a uma
variabilidade indesejável de variáveis primais (geração térmica) e duais (custo
marginal e preço spot), que são altamente sensíveis a mudanças nas condições
iniciais das vazões. Neste trabalho, são propostas duas abordagens diferentes
para estabilizar as soluções da PDDE no problema de planejamento da
operação energética: a primeira abordagem visa regularizar variáveis primais
considerando uma penalidade adicional sobre as mudanças no despacho térmico
ao longo do tempo. A segunda abordagem reduz indiretamente a variabilidade
da geração térmica e do custo marginal ao ignorar informações de afluências
passadas na função de custo futuro e compensando-a com um aumento na
aversão ao risco. Para fins de comparação, a qualidade solução foi avaliada
com um conjunto de índices propostos que resumem cada aspecto importante
de uma política de planejamento hidrotérmico. Em conclusão, mostramos que
é possível obter soluções com boa qualidade em comparação com benchmarks
atuais e com uma redução significativa variabilidade. / [en] In the hydrothermal energy operation planning of Brazil and other
hydro-dependent countries, Stochastic Dual Dynamic Programming (SDDP)
computes a risk-averse optimal policy that often considers river-inflow
autoregressive models. In practical applications, these models induce an
undesirable variability of primal (thermal generation) and dual (marginal cost
and spot price) solutions, which are highly sensitive to changes in current
inflow conditions. In this work, we propose two differing approaches to stabilize
SDDP solutions to the energy operation planning problem: the first approach
aims at regularizing primal variables by considering an additional penalty on
thermal dispatch revisions over time. The second approach indirectly reduces
thermal generation and marginal cost variability by disregarding past inflow
information in the cost-to-go function and compensating it with an increase
in risk aversion. For comparison purposes, we assess solution quality with a
set of proposed indexes summarizing each important aspect of a hydrothermal
operation planning policy. In conclusion, we show it is possible to obtain high-
quality solutions in comparison to current benchmarks and with significantly
reduced variability.
|
15 |
[en] A FRAMEWORK FOR ASSESSING THE IMPACTS OF NETWORK FORMULATIONS IN THE OPERATION OF HYDROTHERMAL POWER SYSTEMS / [pt] UM FRAMEWORK PARA AVALIAR OS IMPACTOS DAS FORMULAÇÕES DE REDE NA OPERAÇÃO DE SISTEMAS DE ENERGIA HIDROTÉRMICAANDREW DAVID WERNER ROSEMBERG 25 February 2021 (has links)
[pt] Um dos algoritmos mais eficientes para resolver problemas de planejamento
de operações hidrotérmicas, que são modelos estocásticos multiestágio de
larga escala, é o chamado algoritmo de programação dinâmica dupla estocástica
(SDDP). O planejamento da operação dos sistemas de energia visa
avaliar o valor dos recursos escassos (por exemplo, água) para alimentar
os modelos de despacho de curto prazo usados na implementação real das
decisões. Quando o modelo de planejamento se desvia significativamente
da realidade da operação implementada, as políticas de decisão são consideradas
inconsistentes no tempo. A literatura recente explorou diferentes
fontes de inconsistência, como medidas de risco dinâmico inconsistentes no
tempo, representação imprecisa do processo de informação e simplificações
no modelo de planejamento de rede. Este trabalho aborda a inconsistência
no tempo devido a simplificações na representação da rede no modelo de
planejamento que estende a literatura existente.
O objetivo deste trabalho é propor uma estrutura, composta por uma
metodologia e um pacote computacional de código aberto, para testar o
impacto operacional e econômico das simplificações da modelagem sobre
o fluxo de energia da rede em sistemas de energia hidrotérmica. Entre as
inúmeras formulações disponíveis no pacote, nos concentramos em avaliar o
custo e o desempenho operacional das seguintes aproximações de modelos:
o modelo de rede de transporte (NFA), atualmente em uso pelo operador
de sistema brasileiro; o relaxamento de cone de segunda ordem (SOC); o
relaxamento de programação semidefinida (SDP); a aproximação do fluxo
de energia de corente continua (DC); e o DC com aproximação de fluxo de
potência com perda de linha (DCLL). Todas as formulações mencionadas
anteriormente são testadas como aproximações para o modelo de rede na
fase de planejamento, onde é construída a função de custo futuro. Em
seguida, avaliamos cada aproximação simulando a operação do sistema
usando um modelo de implementação que minimiza o custo imediato sob as
restrições de fluxo de energia AC e a respectiva função de custo futuro. A
comparação é feita para dois sistemas, um composto por um ciclo e o outro
aproximadamente radial. / [en] One of the most efficient algorithms for solving hydrothermal operation
planning problems, which are large-scale multi-stage stochastic models,
is the so-called stochastic dual dynamic programming (SDDP) algorithm.
Operation planning of power systems aims to assess the value of the scarce
resources (e.g. water) to feed short-term dispatch models used in the actual
implementation of the decisions. When the planning model significantly
deviates from the reality of the implemented operation, decision policies
are said to be time-inconsistent. Recent literature has explored different
sources of inconsistency such as time-inconsistent dynamic risk measures,
inaccurate representation of the information process and simplifications in
the network planning model. This work addresses the time-inconsistency
due to simplifications in the network representation in the planning model
extending the existing literature.
The objective of this work is to propose a framework, comprised of a
methodology and an open-source computational package, for testing the operative
and economic impact of modeling simplifications over the network
power-flow in hydrothermal power systems. Among the myriad of formulations
available in the package, we focused on assessing the cost and operative
performance of the following model approximations: the transportation
network-flow model (NFA), currently in use by the Brazilian system operator;
the second-order cone relaxation (SOC); the semidefinite programming
relaxation (SDP); the DC power-flow approximation (DC); and the DC with
line-loss power-flow approximation (DCLL). All the previously mentioned
formulations are tested as approximations for the network model in the
planning stage, where the cost-to-go function is built. Then, we evaluate
each approximation by simulating the system s operation using an implementation
model, which minimizes the immediate cost under AC power-flow
constraints and the respective cost-to-go function. The comparison is made
for two systems, one composed of a cycle and the other approximately radial.
|
16 |
[en] ASSESSING THE VALUE OF NATURAL GAS UNDERGROUND STORAGE IN THE BRAZILIAN SYSTEM: A STOCHASTIC DUAL DYNAMIC PROGRAMMING APPROACH / [pt] ESTIMANDO O VALOR DO ARMAZENAMENTO SUBTERRÂNEO DE GÁS NATURAL NO SISTEMA BRASILEIRO: UMA ABORDAGEM DE PROGRAMAÇÃO DINÂMICA DUAL ESTOCÁSTICALARISSA DE OLIVEIRA RESENDE 04 May 2020 (has links)
[pt] O cenário atual da indústria de gás natural brasileira é caracterizado por baixa maturidade e dinamismo de mercado. O comportamento estocástico da demanda por gás, somado volatilidade do preço de mercado do
GNL, motiva a utilização de estocagem subterrânea como forma de inserir flexibilidade no suprimento, além de promover proteção contra flutuação no preço. No entanto, a literatura existente carece de uma uma ferramenta analítica mais robusta para apoiar uma análise quantitativa dos benefícios que
a atividade UNGS poderia proporcionar à indústria de gás natural. Nesta tese, propomos um modelo de programação dinâmica estocástica para planejamento de longo/médio prazo, a fim de determinar a política ótima de fornecimento juntamente com a possibilidade de armazenamento de gás. Um modelo markoviano caracteriza a demanda termoelétrica, enquanto o preço de GNL é representado por um processo estocástico temporalmente independente. O modelo proposto é eficientemente resolvido usando o algoritmo de programação dinâmica dual estocástica para o estudo de caso brasileiro, considerando dados dos setores de gás e setor elétrico. Para uma escolha exógena, mas significativa, da localização e tamanho do armazenamento subterrâneo, observamos os benefícios operacionais e econômicos da
flexibilidade que esta atividade poderia proporcionar. Além disso, comparando os custos de OPEX e CAPEX de investimentos em infraestrutura de armazenamento em campos depletados e cavernas de sal com as economias proporcionadas pelo armazenamento na operação de fornecimento, é possível observar o benefício econômico da atividade de estocagem. A estrutura proposta fornece suporte quantitativo importante para discussões sobre precificação de infraestrutura e modelo de negócios para Armazenamento
Subterrâneo de Gás Natural. / [en] The current scenario of the Brazilian natural gas industry is characterized by low maturity and dynamism of the market.The stochastic behavior of Brazilian demand for natural gas, added to its associated market price volatility, motivates the usage of underground storage due to supply flexibility and protection against price fluctuations. However, the existing literature lacks a more robust analytical tool to support a quantitative analysis of the benefits that the UNGS activity could provide to the natural gas industry.
In this thesis, we propose a stochastic dynamic programming model for long/medium term planning to determine the supply optimal policy together with the possibility of storing gas. A markovian model characterizes thermoelectric demand while market price is represented by a stagewise independent
stochastic process. The proposed model is efficiently solved using the Stochastic Dual Dynamic Programming algorithm for the Brazilian case study considering realistic data for the actual gas network and electric power system. For an exogenous but meaningful choice of underground storage location
and size, we observe the operational and economic benefits of the provided storage flexibility. Additionally, comparing the OPEX and CAPEX costs of investments in storage infrastructure in depleted fields and
salt caverns with the savings provided by storage in the supply operation, it is possible to observe the economic benefit of storage. The proposed framework provides an important quantitative support for discussion about Underground Natural Gas Storage infrastructure pricing and business models.
|
17 |
[en] OPTIMIZATION UNDER UNCERTAINTY FOR ASSET ALLOCATION / [pt] OTIMIZAÇÃO SOB INCERTEZA PARA ALOCAÇÃO DE ATIVOSTHUENER ARMANDO DA SILVA 27 April 2016 (has links)
[pt] A alocação de ativos é uma das mais importantes decisões financeiras
para investidores. No entanto, as decisões humanas não são totalmente racionais.
Sabemos que as pessoas cometem muitos erros sistemáticos como, excesso
de confiança, aversão à perda irracional e mau uso da informação entre outros.
Nesta tese desenvolvemos duas metodologias distintas para enfrentar esse problema.
A primeira abordagem é qualitativa, utiliza o modelo de Black-Litterman
e tenta mapear a visão que o investidor tem do mercado. Esse método tenta
mitigar a irracionalidade na tomada de decisão tornando mais fácil para um investidor
demonstrar suas preferências em relação aos ativos. Black e Litterman
desenvolveram um método para otimização de carteiras com a proposta de melhorar
o modelo Markowitz, utilizando a construção de visões para representar
a opinião do investidor sobre o futuro. No entanto, a forma de construir essas
visões é bastante confusa e exige que o investidor estime vários parâmetros
que são subjetivos. Assim, propomos uma nova forma de criar essas visões,
utilizando Análise Verbal de Decisão. A segunda pesquisa envolve métodos
quantitativos para resolver o problema de alocação de ativos com múltiplos
estágios com premissas mais realistas. Embora a Programação Dinâmica Dual
Estocástica (PDDE) seja uma técnica promissora para a solução de problemas
de grande porte, não é adequada para o problema de alocação de ativos devido
à dependência temporal associada aos retornos dos ativos. PDDE assume que
o processo estocástico tem independência por estágio assegurando uma função
única de custo futuro para cada estágio. No problema de alocação de ativos, a
dependência do tempo é tipicamente não-linear e no lado esquerdo, o que torna
PDDE tradicional não aplicável. Propomos uma variação do PDDE usando
modelo oculto de Markov com estados discretos para resolver problemas reais
de alocação de ativos com múltiplos períodos e dependência no tempo. Ambas
as abordagens foram testadas em dados reais e empiricamente analisadas. As
principais contribuições são as metodologia desenvolvidas para simplificar a
construção de portfólios e para resolver o problema de alocação de ativos com
múltiplos estágios. / [en] Asset allocation is one of the most important financial decisions made
by investors. However, human decisions are not fully rational, and people
make several systematic mistakes due to overconfidence, irrational loss aversion
and misuse of information, among others. In this thesis, we developed two
distinct methodologies to tackle this problem. The first approach has a more
qualitative view, trying to map the investor s vision of the market. It tries to
mitigate irrationality in decision-making by making it easier for an investor to
demonstrate his/her preferences for specirfic assets. This first research uses the
Black-Litterman model to construct portfolios. Black and Litterman developed
a method for portfolio optimization as an improvement over the Markowitz
model. They suggested the construction of views to represent an investor s
opinion about future stocks returns. However, constructing these views has
proven difficult, as it requires the investor to quantify several subjective
parameters. This work investigates a new way of creating these views by using
Verbal Decision Analysis. The second research focuses on quantitative methods
to solve the multistage asset allocation problem. More specifically, it modifies
the Stochastic Dynamic Dual Programming (SDDP) method to consider real
asset allocation models. Although SDDP is a consolidated solution technique
for large-scale problems, it is not suitable for asset allocation problems due
to the temporal dependence of returns. Indeed, SDDP assumes a stagewise
independence of the random process assuring a unique cost-to-go function
for each time stage. For the asset allocation problem, time dependency is
typically nonlinear and on the left-hand side, which makes traditional SDDP
inapplicable. This thesis proposes an SDDP variation to solve real asset
allocation problems for multiple periods, by modeling time dependence as a
Hidden Markov Model with concealed discrete states. Both approaches were
tested in real data and empirically analyzed. The contributions of this thesis
are the methodology to simplify portfolio construction and the methods to
solve real multistage stochastic asset allocation problems.
|
18 |
[pt] AVERSÃO A RISCO E POLÍTICA ÓTIMA DE INVESTIMENTOS E FINANCIAMENTOS DE UMA CORPORAÇÃO: UMA ABORDAGEM VIA PROGRAMAÇÃO DINÂMICA ESTOCÁSTICA / [en] RISK AVERSION AND OPTIMAL INVESTMENT AND FINANCING CORPORATE POLICY: A STOCHASTIC DYNAMIC PROGRAMMING APPROACH22 March 2021 (has links)
[pt] Finanças Corporativas tem como objetivo encontrar a política de investimentos
e financiamentos que maximize o valor para o acionista. Baseada
no modelo estático de Modigliani e Miller, a literatura recente apresenta
modelos dinâmicos que buscam maior aderência à realidade. No entanto,
para obter uma metodologia de solução computacionalmente tratável, duas
simplificações são usualmente adotadas: (i) agentes financeiros são neutros
a risco; (ii) custo de financiamento são fixos e independentes da alavancagem
da empresa. Neste trabalho, é proposto um modelo de programação
dinâmica estocástica para a determinação da política ótima de investimentos
e financiamentos considerando acionistas avessos a risco e empresas
que enfrentam incerteza na receita e custos marginais de financiamentos
não-decrescentes com o nível de alavancagem da empresa. O modelo proposto
é resolvido de maneira eficiente utilizando o algoritmo de Programação
Dinâmica Dual Estocástica. Ao final do trabalho, são realizados estudos empíricos
e análises de sensibilidade para melhor compreensão das políticas de
investimentos e financiamentos das corporações. / [en] Corporate Finance is the study of investment and financing policies
in order to maximize shareholder value. Based on the static model of
Modigliani and Miller, recent literature presents dynamic models that seek
greater adherence to reality. However, to obtain a computationally treatable
solution methodology, two simplifications are usually adopted: (i) financial
agents are risk neutral; (ii) cost of financing is static and independent of the
company s leverage. In this work, a dynamic stochastic programming model
is proposed to determine the optimum investment and financing policy,
considering risk-averse shareholders and companies that face uncertainty
on income and non-decreasing marginal costs of financing. The proposed
model is efficiently solved using the Stochastic Dual Dynamic Programming
algorithm. At the end of the study, empirical studies and sensitivity analyzes
are carried out to the better understanding of corporate investment and
financing policies.
|
19 |
[en] ENSURING RESERVE DEPLOYMENT IN HYDROTHERMAL POWER SYSTEMS PLANNING / [pt] GARANTINDO A ENTREGABILIDADE DE RESERVAS NO PLANEJAMENTO DE SISTEMAS DE POTÊNCIA HIDROTÉRMICOSARTHUR DE CASTRO BRIGATTO 03 November 2016 (has links)
[pt] Atualmente a metodologia correspondente ao estado da arte utilizada
para o planejamento de médio-/longo-prazo da operação de sistemas elétricos
de potência é a Programação Dual Dinâmica Estocástica (PDDE). No entanto,
a tratabilidade computacional proporcionada por este método ainda
requer simplificaçõeses consideráveis de detalhes de sistemas reais de maneira a
atingir performaces aceitáveis em aplicações práticas. Simplificações feitas no
estágio de planejamento em contraste com a implementação das decisões podem
induzir políticas temporalmente inconsistentes e, consequentemente, um
gap de sub-otimalidade. Inconsisência temporal em planejamento hidrotérmico
pode ser induzida, por exemplo, ao assumir um coeficiente de produtividade
constante para as hidrelétricas, ao agregar os reservatórios, ao negligenciar a segunda
lei de Kirchhoff e neglienciando-se critérios de segurança em modelos de
planejamento. As mesmas restrições são posteriormente consideradas na etapa
de implementação do sistema. Esse fato pode estar envolvido com esvaziamento
não planejado de reservatórios e entregabilidade inadequada de reservas girantes.
Ambos podem levar a altos custos operacionais. Além disso, o sistema pode
ficar exposto a um risco sistêmico de racionamento e em última instâcia, blackouts. O gap de sub-otimalidade pode também levar a distorções em mercados
de energia. Assim, é razoável que as consequências da inconstência temporal
em sistemas hidrotérmicos sejam estudadas. Nesse sentido, este trabalho
propõe uma extensão de trabalhos já realizados relacionados à inconsistência
temporal para medir os efeitos de simplificações de modelagem em modelos
de planejamento resolvidos pela PDDE. A abordagem proposta consiste em
usar um modelo simplificado para o planejamento do sistema, que é feito pela
avaliação da função de recurso, e um modelo detalhado para a sua operação.
Estudos de caso envolvendo simplificações em modelagem de linhas de transmissão e critérios de segurança são realizados. No entanto, o foco deste trabalho
se dará na segunda fonte, já que a mesma apresenta maior complexidade na
caracterização do efeito. No entanto, a incorporação de critérios de segurança
é um grande desafio para operadores de sistemas elétricos, pois o tamanho
do modelo tende a crescer exponencialmente quando critérios de segurança
reforçados são aplicados. Motivado por isso, o principal objetivo deste trabalho
é propor uma nova abordagem ao problema que permite que critérios de
segurança possam ser incorporados em modelos de planejamento e consequentemente
garantir a entregabilidade de reservas em políticas de planejamento.
A formulação do problema é uma extensão multiperiodo e estocástica the modelos
de Otimização Robusta Ajustável que já foram propostos na literatura
para resolver o problema relacionado à dimensionalidade para um período. A
metodologia de solução involve um algoritmo híbrido Robusto-PDDE que por
meio do compartilhamento de estados de contingência ativos entre os períodos
e cenários de afluência é capaz de atingir tratabilidade computacional. Com a
nova abordagem proposta, é possível (i) resolver o problema de agendamento
ótimo das reservas em sistemas hidrotérmicos garantindo a entregabilidade das
reservas em um critério n - K e (ii) calcular o custo e os efeitos negativos de
se negligenciar critérios de segurança no planejamento. / [en] The current state of the art method used for medium/long-term planning studies of hydrothermal power system operation is the Stochastic Dual Dynamic Programming (SDDP) algorithm. The computational savings provided by this method notwithstanding, it still relies on major system simplifications to achieve acceptable performances in practical applications. Simplifications in the planning stage in contrast to the actual implementation might induce time inconsistent policies and, consequently, a sub-optimality gap. Time inconsistency in hydrothermal planning might be induced by, for instance, assuming a constant coefficient production for hydro plants, reservoir aggregation, neglecting Kirchhoff s voltage law, and neglecting security criteria in planning models, which are then incorporated in implementating models. Unaccounted for reservoir depletion and inadequate spinning reserve deliverability situations that were observed in the Brazilian power system might be induced by time inconsistency. And this can lead to higher operational costs. Both these consequences are utterly negative since they pose the system to a great systemic risk of energy rationing or ultimately, system blackouts. In addition, the suboptimility gap may also lead to energy markets distortions. Hence, it seems reasonable that further investigations on consequences of time inconsistency in hydrothermal planning should be undertaken. Along these lines, this work proposes an extension to previous work on the subject of time inconsistency to measure the effects of modeling simplifications in the SDDP framework for hydrothermal operation planning. The approach consists of using a simplified model for planning the system, which is done by means of the assessment of the recourse (cost-to-go) function, and a detailed model for its operation (implementation of the policy). Case studies involving simplifications in transmission lines modeling and in security criteria are carried out. Nevertheless, the focus of this work is on the later source as it is more difficult to address due to the complexity involved in the characterization of this effect. However, incorporating security criteria in planning models poses a major challenge to system operators. This is because the size of the model tends to grow exponentially as tighter security criteria are adopted. Motivated by this, the main objective of this work is to propose a new framework that allows security criteria to be incorporated in planning models and consequently ensure reserve deliverability in planning policies. The problem formulation is a multiperiod stochastic extension of Adjustable Robust Optimization (ARO) based models already proposed in literature to successfully address the dimensionality issue regarding the incorporation of security criteria n - K and its variants. The solution methodology involves a hybrid Robust-SDDP algorithm that by means of sharing active contingency states amongst periods and possible inflow scenarios in the SDDP algorithm is capable of achieving computational tractability. Then, with the proposed approach it is possible to (i) address the optimal scheduling of energy and reserve in hydrothermal power systems ensuring reserve deliverability under an n - K security criterion and (ii) assess the cost and side effects of disregarding security criteria in the planning stage.
|
Page generated in 0.1876 seconds