Spelling suggestions: "subject:"dynamische atemsysteme"" "subject:"geodynamische atemsysteme""
21 |
Lyapunov Exponents for Random Dynamical SystemsThai Son, Doan 27 November 2009 (has links)
In this thesis the Lyapunov exponents of random dynamical systems are presented and investigated. The main results are:
1. In the space of all unbounded linear cocycles satisfying a certain integrability condition, we construct an open set of linear cocycles have simple Lyapunov spectrum and no exponential separation. Thus, unlike the bounded case, the exponential separation property is nongeneric in the space of unbounded cocycles.
2. The multiplicative ergodic theorem is established for random difference equations as well as random differential equations with random delay.
3. We provide a computational method for computing an invariant measure for infinite iterated functions systems as well as the Lyapunov exponents of products of random matrices. / In den vorliegenden Arbeit werden Lyapunov-Exponented für zufällige dynamische Systeme untersucht. Die Hauptresultate sind:
1. Im Raum aller unbeschränkten linearen Kozyklen, die eine gewisse Integrabilitätsbedingung erfüllen, konstruieren wir eine offene Menge linearer Kyzyklen, die einfaches Lyapunov-Spektrum besitzen und nicht exponentiell separiert sind. Im Gegensatz zum beschränkten Fall ist die Eingenschaft der exponentiellen Separiertheit nicht generisch in Raum der unbeschränkten Kozyklen.
2. Sowohl für zufällige Differenzengleichungen, als auch für zufällige Differentialgleichungen, mit zufälligem Delay wird ein multiplikatives Ergodentheorem bewiesen.
3.Eine algorithmisch implementierbare Methode wird entwickelt zur Berechnung von invarianten Maßen für unendliche iterierte Funktionensysteme und zur Berechnung von Lyapunov-Exponenten für Produkte von zufälligen Matrizen.
|
22 |
Hyperbolicity & Invariant Manifolds for Finite-Time ProcessesKarrasch, Daniel 27 September 2012 (has links)
The aim of this thesis is to introduce a general framework for what is informally referred to as finite-time dynamics. Within this framework, we study hyperbolicity of reference trajectories, existence of invariant manifolds as well as normal hyperbolicity of invariant manifolds called Lagrangian Coherent Structures. We focus on a simple derivation of analytical results. At the same time, our approach together with the analytical results has strong impact on the numerical implementation by providing calculable expressions for known functions and continuity results that ensure robust computation. The main results of the thesis are robustness of finite-time hyperbolicity in a very general setting, finite-time analogues to classical linearization theorems, an approach to the computation of so-called growth rates and the generalization of the variational approach to Lagrangian Coherent Structures.
|
23 |
Chaotic transport and partial barriers in 4D symplectic mapsFirmbach, Markus 02 March 2021 (has links)
Hamiltonian systems typically exhibit a mixed phase space in which regions of regular and chaotic dynamics coexist. The chaotic transport is restricted due to partial barriers, since they only allow for a small flux between different regions of phase space. In systems with a two-dimensional (2D) phase space these partial barriers are well understood. However, in systems with a four-dimensional (4D) phase space their dynamical origin is an open question. Thus, we study these partial barriers and the related chaotic transport in 4D maps. For the chaotic transport, we observe a slow power-law decay of the Poincaré recurrence statistics. This is caused by long-trapped orbits exploring stochastic layers of resonance channels. Moreover, we analyze them and find clear signatures of partial transport barriers. We identify normally hyperbolic invariant manifolds (NHIMs) as the relevant objects determining the flux across these barriers. In addition, NHIMs also form the backbone for the explicit construction of partial barriers. This allows us to determine the flux by measuring the turnstile volume. Moreover, we conjecture the existence of a relevant partial barrier with minimal flux by generalizing a cantorus barrier present in 2D maps. Local properties of the flux are studied and explained in terms of the NHIM. / Hamiltonische Systeme zeigen üblicherweise einen gemischten Phasenraum, in dem Bereiche regulärer und chaotischer Dynamik vorherrschen. Der chaotische Transport wird durch partielle Barrieren behindert, da diese nur einen kleinen Fluss zwischen getrennten Bereichen des Phasenraums zulassen. Für Systeme mit einem zweidimensionalen (2D) Phasenraum sind diese bereits gut verstanden. Hingegen ist deren dynamischer Ursprung in Systemen mit einem vierdimensionalen (4D) Phasenraum noch ungeklärt. In dieser Arbeit betrachten wir deshalb in 4D Abbildungen sowohl chaotischen Transport, als auch partielle Barrieren. Für den chaotischen Transport lässt sich die Verteilung der Poincaré-Rückkehrzeiten durch ein Potenzgesetz beschreiben. Lange Rückkehrzeiten sind dabei auf Trajektorien zurückzuführen, die in den chaotischen Bereichen von Resonanzkanälen verweilen. Für diese stellen wir eindeutige Signaturen von partiellen Barrieren fest. Es zeigt sich, dass normal hyperbolische invariante Mannigfaltigkeiten (NHIM) die maßgeblichen Objekte sind, die den Fluss über partielle Barrieren beschreiben. Anhand dieser lassen sich auch partiellen Barrieren explizit konstruieren, was uns wiederum ermöglicht den Fluss mittels einer Volumenmessung zu bestimmen. Durch die Verallgemeinerung einer Cantorusbarriere, die bereits in 2D Abbildungen auftreten, finden wir eine relevante partielle Barriere mit kleinstem Fluss. Weiterhin betrachten wir die lokale Abhängigkeit des Flusses, welche sich mittels der NHIM beschreiben lässt.
|
24 |
Chaotic transport by a turnstile mechanism in 4D symplectic mapsHübner, Franziska 13 October 2020 (has links)
Many systems in nature, e.g. atoms, molecules and planetary motion, can be described as Hamiltonian systems. In such systems, the transport between different regions of phase space determines some of their most important properties like the stability of the solar system and the rate of chemical reactions. While the transport in lower-dimensional systems with two degrees of freedom is well understood, much less is known for the higher-dimensional case. A central new feature in higher-dimensional systems are transport phenomena due to resonance channels. In this thesis, we clarify the complex geometry of resonance channels in phase space and identify a turnstile mechanism that dominates the transport out of such channels.
To this end, we consider the coupled standard map for numerical investigations as it is a generic example for 4D symplectic maps. At first, we visualize resonance channels in phase space revealing their highly non-trivial geometry. Secondly, we study the transport away from such channels. This is governed by families of hyperbolic 1D-tori and their stable and unstable manifolds. We provide an approach to measure the volume of a turnstile in higher dimensions as well as the corresponding transport. From the very good agreement of the two measurements we conclude that these structures are a suitable generalization of the well-known 2D turnstile mechanism to higher dimensions. / Viele Systeme in der Natur, z.B. Atome, Moleküle und Planetenbewegungen, können als Hamilton'sche Systeme beschrieben werden. In solchen Systemen bestimmt der Transport zwischen verschiedenen Regionen des Phasenraums einige ihrer wichtigsten Eigenschaften wie die Stabilität des Sonnensystems und die Geschwindigkeit chemischer Reaktionen. Während der Transport in niedrigdimensionalen Systemen mit zwei Freiheitsgraden gut verstanden ist, ist für den höherdimensionalen Fall deutlich weniger bekannt. Eine zentrales neues Merkmal von höherdimensionalen Systemen sind Transportphänomene aufgrund von Resonanzkanälen. In dieser Arbeit verdeutlichen wir die komplexe Geometrie von Resonanzkanälen im Phasenraum und identifizieren einen Drehkreuzmechanismus, der den Transport aus einem solchen Kanal heraus dominiert.
Zu diesem Zweck betrachten wir die gekoppelte Standardabbildung für numerische Untersuchungen, da sie ein generisches Beispiel für 4D symplektische Abbildungen ist. Zuerst visualisieren wir Resonanzkanäle im Phasenraum und zeigen ihre höchst nicht-triviale Geometrie. Zweitens untersuchen wir den Transport weg von solchen Kanälen. Dieser wird durch Familien von hyperbolischen 1D-Tori sowie deren stabile und instabile Mannigfaltigkeiten bestimmt. Wir stellen einen Ansatz zur Messung sowohl des eingeschlossenen Volumens in höheren Dimensionen als auch des entsprechenden Transports vor. Aus der sehr guten Übereinstimmung der beiden Messungen schließen wir, dass diese Strukturen eine geeignete Verallgemeinerung des bekannten 2D Drehkreuzmechanismus in höheren Dimensionen sind.
|
25 |
Hydrodynamic synchronization in cilia carpets and its robustness to noise and perturbationsSolovev, Anton 28 January 2022 (has links)
Motile cilia are hair-like cell appendages that actively bend themselves, thus driving the surrounding fluid in motion. For many microorganisms, such as unicellular Paramecium, cilia are essential for their motility. Higher animals, including mammals, utilize cilia for transporting fluids. For example, in humans, large collections of cilia, called cilia carpets, remove mucus and pathogens from the airways. Cilia constitute an example of biological oscillators that can spontaneously synchronize their beat in the form of metachronal waves, i.e., traveling waves of cilia phase. These waves may arise purely by hydrodynamic interactions between the cilia and supposedly enhance fluid transport.
Our goal is to theoretically understand how the properties of individual cilia, e.g., cilia beat pattern, determine the emergent behavior, e.g., the direction of the metachronal wave. Additionally, we address the robustness of hydrodynamically-induced synchronization with respect to intrinsic active fluctuations of the cilia beat and disorder of intrinsic cilia frequencies. Both of these effects are not yet well understood.
In this thesis, we studied metachronal synchronization in cilia carpets using a theoretical physicist’s toolbox. First, we proposed a novel multi-scale modeling framework Lagrangian Mechanics of Active Systems (LAMAS) to describe fluid-structure interactions for active elastic structures, such as cilia. We quantified hydrodynamic interactions between cilia using detailed hydrodynamic simulations with a realistic cilia beat pattern. In the dynamical simulations for N = 2 cilia, we found that cilia would synchronize either in-phase or anti-phase, depending on their relative positions.
For a lattice of N ≫ 1 cilia, we found the emergence of metachronal waves, many of which are locally stable. Nevertheless, just a single wave has a predominantly large basin of attraction, i.e., it is likely to be selected from a random initial condition. In the presence of noise, synchronization abruptly breaks up beyond a characteristic noise strength. Likewise, for cilia with non-identical intrinsic frequencies, synchronization is lost beyond a characteristic level of frequency disorder. In large cilia carpets, noise excites long-wavelength perturbations, whose relaxation times are proportional to the square of the system length. Thus, in large systems, we predict locally synchronized domains, instead of the global synchronization.
|
26 |
Dynamical Systems in CategoriesBehrisch, Mike, Kerkhoff, Sebastian, Pöschel, Reinhard, Schneider, Friedrich Martin, Siegmund, Stefan 09 December 2013 (has links)
In this article we establish a bridge between dynamical systems, including topological and measurable dynamical systems as well as continuous skew product flows and nonautonomous dynamical systems; and coalgebras in categories having all finite products. We introduce a straightforward unifying definition of abstract dynamical system on finite product categories. Furthermore, we prove that such systems are in a unique correspondence with monadic algebras whose signature functor takes products with the time space. We substantiate that the categories of topological spaces, metrisable and uniformisable spaces have exponential objects w.r.t. locally compact Hausdorff, σ-compact or arbitrary time spaces as exponents, respectively. Exploiting the adjunction between taking products and exponential objects, we demonstrate a one-to-one correspondence between monadic algebras (given by dynamical systems) for the left-adjoint functor and comonadic coalgebras for the other. This, finally, provides a new, alternative perspective on dynamical systems.:1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Preliminaries and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Preliminaries related to topology and measure theory . . . . . . . . 4
2.2 Basic notions from category theory . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Classical dynamical systems theory . . . . . . . . . . . . . . . . . . . . . . 23
3 Dynamical Systems in Abstract Categories . . . . . . . . . . . . . . . . . . 30
3.1 Monoids and monoid actions in abstract categories . . . . . . . . . . 31
3.2 Abstract dynamical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Nonautonomous dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4 Dynamical Systems as Algebras and Coalgebras . . . . . . . . . . . . . .38
4.1 From monoids to monads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 From abstract dynamical systems to monadic algebras . . . . . . . 48
4.3 Connections to coalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Exponential objects in Top for locally compact Hausdorff spaces . . 52
4.5 (Co)Monadic (co)algebras and adjoint functors . . . . . . . . . . . . . .56
|
27 |
On the role of mechanosensitive binding dynamics in the pattern formation of active surfacesBonati, M., Wittwer, L. D., Aland, S., Fischer-Friedrich, E. 22 February 2024 (has links)
The actin cortex of an animal cell is a thin polymeric layer attached to the inner side of the plasma membrane. It plays a key role in shape regulation and pattern formation on the cellular and tissue scale and, in particular, generates the contractile ring during cell division. Experimental studies showed that the cortex is fluid-like but highly viscous on long time scales with a mechanics that is sensitively regulated by active and passive cross-linker molecules that tune active stress and shear viscosity. Here, we use an established minimal model of active surface dynamics of the cell cortex supplemented with the experimentally motivated feature of mechanosensitivity in cross-linker binding dynamics. Performing linear stability analysis and computer simulations, we show that cross-linker mechanosensitivity significantly enhances the versatility of pattern formation and enables self-organized formation of contractile rings. Furthermore, we address the scenario of concentration-dependent shear viscosities as a way to stabilize ring-like patterns and constriction in the mid-plane of the active surface.
|
28 |
Systems biology perspectives on calcium signaling and DNA repairPoliti, Antonio 18 January 2008 (has links)
Der erste Teil dieser Arbeit konzentriert sich auf die Mechanismen hormoninduzierter Ca2+-oszillationen, und wie diese von Konzentrationsschwankungen des Ca2+-freisetzenden Botenstoffes Inositol-1,4,5-trisphosphat (IP3) beinflusst werden. Wir konnten zeigen, dass IP3-Oszillationen die Frequenzkodierung des äußeren Stimulus durch Ca2+-Ozillationen deutlich verstärken. Zwei Mechanismen für das Entstehen der IP3-Oszillationen wurden untersucht: es zeigte sich, dass die Aktivierung der Phospholipase C durch Ca2+ der wahrscheinlichste Mechanismus ist. Um die Rolle der IP3-Oszillationen genauer zu verstehen, wurde ein Modell für den Stoffwechsel des IP3-Vorläufers Phosphatidylinositol-4,5-bisphosphat (PIP2) entwickelt. Es zeigt sich, dass die scheinbar nutzlosen Phosphorylierungs/Dephosphorylierungszyklen eine wichtige Rolle für den PIP2-Haushalt spielen. Durch Nachliefern von PIP2 während der Stimulierung ermöglichen sie anhaltende Ca2+-signale. Der zweite Teil der Arbeit beschäftigt sich mit einem DNS-Reparaturweg, der Reparatur mittels Entfernung von Nukleotiden (NER). Dieser Reparaturmechanismus ist äußerst vielseitig und entfernt Pyrimidinpaare, die durch UV-Strahlung erzeugt wurden, oder Schäden, die durch chemische Agentien erzeugt wurden. Es wurde ein mathematisches Model erarbeitet, das die Grundeigenschaften der NER beschreiben soll. Erstens wurde untersucht, wie die Bindungs- und Freisetzungskinetik der Reparaturfaktoren mit den strukturellen Eigenschaften des Systems, beispielsweise der Bindungsreihenfolge, zusammenhängt. Zweitens wurden anhand von in vivo gemessenen Rekrutierungskinetiken dreier Proteinfaktoren die Modellparameter bestimmt. Das so angepasste Modell sagt unter anderem eine Sättigung der NER durch den Verbrauch des Erkennungsfaktors vorher. Die theoretischen Untersuchungen deuten darauf hin, dass ein sequentieller Anlagerungsmechanismus im Hinblick auf Effizienz und auf Spezifität gegenüber den beschädigten Substrat große Vorteile bringen kann. / The first part of this thesis focuses on the mechanisms of hormone induced Ca2+ oscillations and how these depend on fluctuations in the concentration of the Ca2+-releasing messenger, inositol 1,4,5-trisphosphate (IP3). We were able to show that IP3 oscillations greatly enhances the ability to frequency encode the hormone stimulus by Ca2+ oscillations. Two mechanisms for the generation of IP3-oscillations have been investigated, we could show that Ca2+-activation of phospholipase C is the most probable mechanism. To better understand the role of IP3-oscillations a detailed model for the phosphoinositide pathway has been developed. The model illustrates the importance of futile (de)phosphorylation cycles for regenerating phosphatidylinositol-4,5-bisphophat during stimulation, an essential property to support long-lasting Ca2+ signals. The second part of the thesis is devoted to nucleotide excision repair (NER). It is a versatile DNA repair mechanism that can remove lesions such as UV light induced pyrimidine dimers and bulky adducts caused by chemical agents. To understand the mechanisms underlying the protein assembly during NER and the performance of repair, a mathematical model, delineating hallmarks and general characteristics of NER, has been developed. First, the binding and dissociation kinetics of repair factors are related to the structural properties of the system, such as the sequential order in which the factors enter repair. Second, using in vivo kinetic data for the recruitment of three different proteins at local damaged nuclei, the model parameters are determined and the dynamic behavior of the repair process is scrutinized in detail. The observed saturation of NER is predicted to rely on the high engagement of the recognition factor in repair. The theoretical analysis of repair performance indicates that a sequential assembly process is remarkably advantageous in terms of repair efficiency and can show a marked selectivity for the damaged substrate.
|
29 |
Modeling the lamellipodium of motile cells / formation, stability and strength of membrane protrusionsZimmermann, Juliane 06 January 2014 (has links)
Das Kriechen von Zellen über Oberflächen spielt eine entscheidende Rolle bei lebenswichtigen Prozessen wie der Embryonalentwicklung, der Immunantwort und der Wundheilung, aber auch bei der Metastasenbildung. Die Zellbewegung erfolgt über die Bildung einer flachen Ausstülpung der Zellmembran, des Lamellipodiums. In dieser Arbeit wird ein mathematisches Modell entwickelt, das die Bildung, Stabilität und Stärke des Lamellipodiums, sowie die Dynamik der Zellvorderkante beschreibt. Dabei werden zwei Bereiche innerhalb des Lamellipodiums unterschieden. Im Hauptteil besteht es aus einem dichten Netzwerk von Aktinfilamenten, dem sogenannten Aktingel. An der Vorderkante wachsen die Enden der Aktinfilamente durch Polymerisation und bilden einen dynamischen Grenzbereich, die semiflexible Region. Das Gleichgewicht zwischen den Filamentkräften in der semiflexiblen Region und den viskosen sowie den äußeren Kräften bestimmt die Geschwindigkeit der Zellvorderkante. Eine Stabilitätsanalyse liefert Bedingungen für die Existenz stabiler Lamellipodien. Im Parameterbereich mit Filamentdichte Null können keine stabilen Lamellipodien existieren, aber aufgrund von Anregbarkeit trotzdem vorrübergehend gebildet werden. Hier beschreibt das Modell sehr gut das in Epithelzellen gemessene aufeinanderfolgende Vorschieben und Zurückziehen von Lamellipodien. Es zeigt, dass für die Zyklen prinzipiell keine Änderung in der Konzentration von Signalmolekülen innerhalb der Zelle notwendig ist. Das Modell wird auch auf die gemessene Kraft-Geschwindigkeits-Beziehung von Fischkeratozyten angewandt. Aufgrund der guten Übereinstimmung zwischen Experiment und Simulationen wird ein Mechanismus vorgeschlagen, der die charakteristischen Merkmale der Beziehung erklärt. Es wird gezeigt, dass die gemessene Kraft-Geschwindigkeits-Beziehung ein dynamisches Phänomen ist. Eine stationäre Beziehung, die unter der Bedingung gilt, dass die Zellen einer konstanten Kraft ausgesetzt sind, wird vorhergesagt. / Many cells move over surfaces during embryonic development, immune response, wound healing or cancer metastasis by protruding flat lamellipodia into the direction of migration. In this thesis, a mathematical model is developed that describes the formation of lamellipodia, their stability, strength and leading edge dynamics. Two regions inside the lamellipodium are distinguished in the model. The bulk contains a dense cross-linked actin filament network called actin gel. The newly polymerized tips of the actin filaments form a highly dynamic boundary layer at the leading edge called semiflexible region. The balance of filament forces on the membrane in the semiflexible region with viscous and external forces determines the velocity of the leading edge. A stability analysis defines criteria for the existence of stable lamellipodia. No stable lamellipodium can exist in the parameter regime with a filament density of zero. However, due to excitability, lamellipodia can still form transiently. The measured subsequent protrusions and retractions of lamellipodia in epithelial cells are very well reproduced by the excitable behavior. The modeling results show that in principle no signaling is necessary for cycles of protrusion and retraction. Furthermore, they are fitted to the force-velocity relation of keratocytes, which has been measured by placing a flexible cantilever into the cell''s path of migration. Due to the good agreement between experiment and simulations, a mechanism leading to the characteristic features of the force-velocity relation is suggested. Moreover, properties of the structure of the stable keratocyte lamellipodium, like the length of actin filaments and the branch point density, can be concluded. It is shown that the force-velocity relation measured with the cantilever is a dynamic phenomenon. A stationary force-velocity relation is predicted that should apply if cells experience a constant force, e.g. exerted by surrounding tissue.
|
30 |
Longitudinal dynamics of semiconductor lasersSieber, Jan 23 July 2001 (has links)
Die vorliegende Arbeit untersucht die longitudinale Dynamik von Halbleiterlasern anhand eines Modells, in dem ein lineares hyperbolisches System partieller Differentialgleichungen mit gewöhnlichen Differentialgleichungen gekoppelt ist. Zunächst wird mit Hilfe der Theorie stark stetiger Halbgruppen die globale Existenz und Eindeutigkeit von Lösungen für das konkrete System gezeigt. Die anschließende Untersuchung des Langzeitverhaltens der Lösungen erfolgt in zwei Schritten. Zuerst wird ausgenutzt, dass Ladungsträger und optisches Feld sich auf unterschiedlichen Zeitskalen bewegen, um mit singulärer Störungstheorie invariante attrahierende Mannigfaltigkeiten niedriger Dimension zu finden. Der Fluss auf diesen Mannigfaltigkeiten kann näherungsweise durch Moden-Approximationen beschrieben werden. Deren Dimension und konkrete Gestalt ist von der Lage des Spektrums des linearen hyperbolischen Operators abhängig. Die zwei häufigsten Situationen werden dann einer ausführlichen numerischen und analytischen Bifurkationsanalyse unterzogen. Ausgehend von bekannten Resultaten für die Ein-Moden-Approximation, wird die Zwei-Moden-Approximation in dem speziellen Fall untersucht, dass die Phasendifferenz zwischen den beiden optischen Komponenten sehr schnell rotiert, so dass sie sich in erster Ordnung herausmittelt. Mit dem vereinfachten Modell können die Mechanismen verschiedener Phänomene, die bei der numerischen Simulation des kompletten Modells beobachtet wurden, erklärt werden. Darüber hinaus lässt sich die Existenz eines anderen stabilen Regimes voraussagen, das sich im gemittelten Modell als "bursting" darstellt. / We investigate the longitudinal dynamics of semiconductor lasers using a model which couples a linear hyperbolic system of partial differential equations with ordinary differential equations. We prove the global existence and uniqueness of solutions using the theory of strongly continuous semigroups. Subsequently, we analyse the long-time behavior of the solutions in two steps. First, we find attracting invariant manifolds of low dimension benefitting from the fact that the system is singularly perturbed, i. e., the optical and the electronic variables operate on different time-scales. The flow on these manifolds can be approximated by the so-called mode approximations. The dimension of these mode approximations depends on the number of critical eigenvalues of the linear hyperbolic operator. Next, we perform a detailed numerical and analytic bifurcation analysis for the two most common constellations. Starting from known results for the single-mode approximation, we investigate the two-mode approximation in the special case of a rapidly rotating phase difference between the two optical components. In this case, the first-order averaged model unveils the mechanisms for various phenomena observed in simulations of the complete system. Moreover, it predicts the existence of a more complex spatio-temporal behavior. In the scope of the averaged model, this is a bursting regime.
|
Page generated in 0.0708 seconds