• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 7
  • 1
  • Tagged with
  • 21
  • 21
  • 14
  • 13
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Contribution à l'analyse de textures en traitement d'images par méthodes variationnelles et équations aux dérivées partielles

Aujol, Jean-François 17 June 2004 (has links) (PDF)
Cette thèse est un travail en mathématiques appliquées. Elle aborde quelques problèmes en analyse d'images et utilise des outils mathématiques spécifiques.<br /><br />L'objectif des deux premières parties de cette thèse <br /> est de proposer un modèle pour décomposer une image f en trois composantes : f=u+v+w.<br />La première composante, u, contient l'information géométrique. On peut la considérer comme une esquisse de l'image originale f.<br />La seconde composante, v, contient l'information texture.<br />La troisième composante, w, contient le bruit présent dans l'image originale.<br />Notre approche repose sur l'utilisation d'espaces mathématiques <br />adaptés à chaque composante: l'espace BV des fonctions à variations bornées pour u, un espace G proche du dual de BV pour les textures, et un espace de Besov d'exposant négatif E pour le bruit.<br />Nous effectuons l'étude mathématique complète des différents modèles que nous proposons.<br />Nous illustrons notre approche par de nombreux exemples, et donnons deux applications concrètes : une première en restauration d'images RSO, et une seconde en compression d'images.<br /><br /><br />Dans la troisième et dernière partie de cette thèse, nous nous intéressons <br />spécifiquement à la composante texturée.<br />Nous proposons un algorithme de classification supervisée pour les images texturées. L'approche utilisée est basée sur l'utilisation de la méthode des contours actifs et d'un terme d'attache aux donnés spécifiques au textures. Ce dernier est construit à partir d'une transformée en paquets d'ondelettes. Nous obtenons ainsi une fonctionnelle, dont le minimum correspond à la classification cherchée. Nous résolvons numériquement ce problème à l'aide d'un système couplé d'EDP que nous plongeons dans un schéma dynamique. Nous illustrons notre démarche par de nombreux exemples numériques. Nous effectuons également l'étude théorique de la fonctionnelle de classification.
12

Méthode des éléments finis mixte duale pour les problèmes de l'élasticité et de l'élastodynamique: analyse d'erreur à priori et à posteriori.

Boulaajine, Lahcen 10 July 2006 (has links) (PDF)
Dans ce travail, nous étudions le raffinement de maillage pour des méthodes d'éléments finis mixtes duales pour deux types de problèmes : le premier concerne le problème de l'élasticité linéaire et le second problème celui de l'élastodynamique.<br /> <br /> Pour ces deux types de problèmes et dans des domaines non réguliers, les méthodes d'éléments finis mixtes analysées jusqu'à présent, sont celles qui concernent des méthodes mixtes "classiques". Ici, nous analysons la formulation mixte duale pour les deux problèmes de l'élasticité linéaire et de l'élastodynamique. <br /> Pour le problème d'élasticité, nous sommes concernés premièrement par une analyse a priori d'erreur en utilisant l'approximation par l'élément fini $BDM_1$ stabilisé. Afin de dériver une estimation a priori optimales d'erreur, nous établissons des règles de raffinement de maillage. <br /> Ensuite, nous faisons une analyse d'erreur à posteriori sur un domaine simplement ou multiplement connexe. En fait nous établissons un estimateur résiduel fiable et efficace. Cet estimateur est alors utilisé dans un algorithme adaptatif pour le raffinement automatique de maillage. Pour le problème de l'élastodynamique, nous faisons une analyse a priori d'erreur en utilisant le même élément fini que pour le problème d'élasticité, en utilisant une formulation mixte duale pour la discrétisation des variables spatiales. <br /> Pour la discrétisation en temps nous étudions les deux schémas de Newmark explicite et implicite. Par des règles de raffinement de maillage appropriées, nous dérivons des estimées d'erreur optimales pour les deux schémas numérique.
13

Étude mathématique d'écoulements de fluides viscoélastiques dans des domaines singuliers

Salloum, Zaynab 25 June 2008 (has links) (PDF)
Cette thèse est consacrée à l'analyse mathématique de trois problèmes d'écoulements de fluides viscoélastiques de type Oldroyd. Tout d'abord, nous étudions des écoulements stationnaires faiblement compressibles dans un domaine borné avec des conditions au bord de type "rentrante-sortante". Nous étudions aussi le problème d'écoulements stationnaires faiblement compressibles dans un coin convexe. En utilisant une méthode de point fixe (premier et deuxième problèmes) et une décomposition de Helmoltz (deuxième problème), nous montrons des résultats d'existence et d'unicité des solutions. Nous étudions également le cas d'un écoulement non stationnaire. Nous montrons un résultat d'existence locale et un résultat d'existence globale, avec des conditions initiales suffisamment petites, pour des fluides compressibles. Nous démontrons aussi la convergence du modèle d'écoulement viscoélastique compressible à faible nombre de Mach vers le modèle incompressible lorsque les données initiales sont "bien préparées"
14

Espaces de fonctions sur les tores quantiques / Function spaces on quantum lori

Xiong, Xiao 02 July 2015 (has links)
Cette thèse donne une étude systématique des espaces de Sobolev, Besov et Triebel-Lizorkin sur le tore quantique. Ces espaces partagent beaucoup de propènes avec leurs analogues classiques. Nous prouvons le théorème de réduction pour tous ces espaces et une inégalité de Poincaré pour les espaces de Sobolev. Nous démontrons les inégalités de plongement pour eux, incluant le plongement d'espaces de Besov et d'espaces de Sobolev. Nous obtenons une caractérisation générale à la Littlewood-Paley pour les espaces de l3esov et Triebel-Lizorkin, qui implique des caractérisations concrètes par les semigroupes de Poisson et de chaleur ainsi par des différences. Certains d'entre elles sont nouvelles, même dans le cas commutatif; par exemple, celle d'espaces de Besov et Triebel-Lizorkin par le semigroupe de Poisson améliore le résultat classique. En conséquence de la caractérisation d'espaces de Besov par des différences, nous étendons les récents résultats de Bourgain-Brézis -Mironescu et Maz'ya-Shaposhnikova sur les limites de normes de Besov au cadre quantique. Nous étudions aussi l'interpolation de ces espaces, et en particulier, déterminons explicitement le K-fonctionnel du couple de l'espace Lp et l'espace de Sobolev, ce qui est l'analogue quantique du résultat classique de Johnen et Scherer. Enfin, nous montrons que les multiplicateurs de Fourier complètement bornés sur tous ces espaces coïncident avec ceux sur les espaces correspondants sur le tore usuel. Nous prouvons également que les multiplicateurs de Fourier sur les espaces de Besov sont complètement déterminés par ceux sur les sous-espaces Lp associés à leurs composantes dans la décomposition de Littlewood-Paley. / This thesis gives a systematic study of Sobolev, Besov and Triebel-Lizorkin spaces on a noncommutative d-torus. We prove, arnong other basic properties, the lifting theorem for all these spaces and a Poincaré type inequality for Sobolev spaces. We establish the embedding inequalities of all these spaces, including the l3esov and Sobolev embedding theorems. We obtain Littlewood-Paley type characterizations for Besov and 'friebel-Lizorki spaces in a general way, as well as the concrete ones internas of the Poisson, heat semigroups and differences. Some of them are new even in the commutative case, for instance, oui Poisson semigroup characterization of Besov and Triebel-Lizorkin spaces improves the classical ones. As a consequence of the characterization of the Besov spaces by differences, we extend to the quantum setting the recent results of Bourgain-Brézis -Mironescu and Maz'ya-Shaposhnikova on the limits of l3esov florins. We investigate the interpolation of all these spaces, in particular, deterrnine explicitly the K-functional of the couple of Lp space and Sobolev space, winch is the quantum analogue of a classical result due to Johnen and Scherer Finally, we show that the completely bounded Fourier multipliers on all these spaces coincide with those on the corresponding spaces on the usuel d-torus. We also give a quite simple description of (completely) bounded Fourier multipliers on the Besov spaces in ternis of their behavior on the Lp-components in the Littlevvood-Paley decomposition.
15

Méthode des éléments finis inversés pour des domaines non bornés / Inverted finite elements method for unbounded domains

Kaliche, Keltoum 16 February 2016 (has links)
La méthode des éléments finis inversés est une méthode sans troncature qui a été introduite pour résoudre des équations aux dérivées partielles en domaines non bornés. L’objective de cette thèse est d’analyser, d’adapter puis d’implémenter cette méthode pour résoudre quelques problèmes issus de la physique, notamment lorsque le domaine géométrique est l’espace R3 tout entier. Dans un premier temps, nous présentons de manière détaillée les aspects et les principes fondamentaux de la méthode. Ensuite, nous adapterons la méthode à des problèmes de type div-rot et de potentiels vecteurs posés dans R3. Après avoir analysé la convergence de la méthode, on montrera quelques résultats numériques obtenus avec un code tridimensionnel. On s’intéresse ensuite au problème de calcul de l’énergie magnétostatique dans des problèmes de micromagnétisme, où on développe avec succès une approche numérique utilisant les éléments finis inversés. Dans la dernière partie, on adapte la méthode à un problème provenant de la chimie quantique (modèle de continuum polarisable) pour lequel on prouve qu’elle donne des résultats numériques très prometteurs. La thèse comporte beaucoup de résultats numériques issus de codes tridimensionnels écrits ou co-écrits, notamment lorsque le domaine est l’espace tout entier. Elle comporte aussi des résultats théoriques liés à l’utilisation des espaces de Sobolev à poids comme cadre fonctionnel. On apporte en particulier une preuve constructive de quelques inégalités de type div-rot dans des domaines non bornés. / Inverted finite element method (IFEM) is a non runcature method which was introduced for solving partial differential equations in unbounded domains. The objective of this thesis is to analyze, to adapt and to implement IFEM for solving several problems arising in physics, especially when the domain is the whole space R3. We first give a presentation in which we detail the principles and the main features of the method. Then, we adapt IFEM for solving some div-curl systems and vector potential problems in the whole space. In a second part, we successfully develop an IFEM based approach for computing the stray-field energy in micromagnetism. In the last part, we are interested in the study of the polarizable continuum model arising in quantum chemistry. The manuscript contains a large number of numerical results obtained with some 3D codes, especially when the domain is the whole space R3. It also contains some theoretical results in relation with weighted Sobolev spaces. We give in particular a constructive proof of some div-curl inequalities in unbounded domains.
16

Interpolation réelle des espaces de Sobolev sur les espaces métriques mesurés et applications aux inégalités fonctionnelles

Badr, Nadine 17 December 2007 (has links) (PDF)
Dans cette thèse, nous étudions l'interpolation réelle des espaces de Sobolev et ses applications. Le manuscrit est constitué de deux parties. Dans la première partie, nous démontrons au premier chapitre que les espaces de Sobolev non homogènes W^1_p (resp. homogènes ) sur les variétés Riemanniennes complètes vérifiant la propriété de doublement et une inégalité de Poincaré forment une échelle d'interpolation réelle pour un intervalle de valeurs de p. Nous étendons ce résultat à d'autres cadres géométriques. Dans un deuxième court chapitre, nous comparons différents espaces de Sobolev sur le cone Euclidien et nous regardons le lien de ces espaces avec l'interpolation. Nous montrons sur cet exemple que l'hypothèse de Poincaré n'est pas une condition nécessaire pour pouvoir interpoler les espaces de Sobolev. Dans le dernier chapitre de cette partie, nous définissons les espaces de Sobolev non homog'nes W^1_p,V (resp. homogènes ) associés à un potentiel positif V sur une variété Riemannienne. Nous démontrons que si la variété véifie la propriété de doublement et une inégalité de Poincaré et si de plus V est dans une classe de Holder inverse, ces espaces forment aussi une échelle d'interpolation réelle pour un intervalle de valeurs de p. Nous étendons ce résultat aux cas des groupes de Lie. Dans la deuxième partie, dans un premier chapitre en collaboration avec E. Russ, nous étudions sur un graphe vérifiant la propriété de doublement et une inégalité de Poincaré, la Lp bornitude de la transformée de Riesz pour p > 2 et son inégalité inverse pour p < 2. Pour notre but, nous démontrons aussi des résultats d'interpolation des espaces de Sobolev et des inégalités de Littlewood-Paley. Dans le deuxième chapitre, nous démontrons en utilisant notre résultat d'interpolation, des inégalités de Gagliardo-Nirenberg sur les variétés Riemanniennes complètes vérifiant le doublement, des inégalités de Poincaré et pseudo-Poincaré. Ce résultat s'applique aussi dans le cadre des groupes de Lie et des graphes.
17

Étude mathématique d’écoulements de fluides viscoélastiques dans des domaines singuliers / Mathematical study of viscoelastic fluid flows in singular domains

Salloum, Zaynab 25 June 2008 (has links)
Cette thèse est consacrée à l’analyse mathématique de trois problèmes d’écoulements de fluides viscoélastiques de type Oldroyd. Tout d’abord, nous étudions des écoulements stationnaires faiblement compressibles dans un domaine borné avec des conditions au bord de type "rentrante-sortante". Nous étudions aussi le problème d’écoulements stationnaires faiblement compressibles dans un coin convexe. En utilisant une méthode de point fixe (premier et deuxième problèmes) et une décomposition de Helmoltz (deuxième problème), nous montrons des résultats d’existence et d’unicité des solutions. Nous étudions également le cas d’un écoulement non stationnaire. Nous montrons un résultat d’existence locale et un résultat d’existence globale, avec des conditions initiales suffisamment petites, pour des fluides compressibles. Nous démontrons aussi la convergence du modèle d’écoulement viscoélastique compressible à faible nombre de Mach vers le modèle incompressible lorsque les données initiales sont "bien préparées" / In this PHD thesis, we study three problems for viscoelastic flows of Oldroyd type. First, we study steady flows of slightly compressible in a bounded domain with non-zero velocities on the boundary ; the pressure and the extra-stress tensor are prescribed on the part of the boundary corresponding to entering velocity. This causes a weak singularity in the solution at the junction of incoming and outgoing flows. We also study the problem of steady flows of slightly compressible fluids with zero boundary conditions in a domain with an isolated corner point. Using a method of fixed point (first and second problems) and a Helmoltz decomposition (second problem), we show some results of existence and uniqueness of solutions. In the last part, we study the case of a non-steady flow : we show some results of local and of global existence, with sufficiently small initial data, for compressible flows. The zero-Mach number limit is also established
18

Etude de Certaines Equations aux Dérivées Partielles

Droniou, Jérôme 18 June 2001 (has links) (PDF)
La première partie de ce travail concerne les équations elliptiques non coercitives. Nous prouvons, tout d'abord dans un cadre linéaire, l'existence et l'unicité d'une solution faible dans l'espace d'énergie habituel $H^1(\Omega)$ pour une classe d'équations de convection-diffusion pour lesquelles le terme de convection provoque la perte de coercitivité. Nous prouvons des résultats de régularité höldérienne sur les solutions de ces équations qui permettent ensuite de résoudre ces mêmes équations avec un second membre mesure. Nous étendons aussi les résultats d'existence et d'unicité d'une solution dans des cas variationnels non-linéaires non-coercitifs et nous étudions, pour une équation elliptique linéaire non-coercitive, la convergence d'un schéma volumes finis. La deuxième partie concerne l'unicité des solutions à des problèmes elliptiques non-linéaires avec seconds membres mesure. La troisième partie aborde la question de la condition d'hyperbolicité des systèmes du premier ordre à coefficients constants. Nous prouvons une CNS pour qu'un tel système ait une solution pour toute condition initiale de type Riemann (condition initiale naturelle dans l'étude des discrétisations numériques de ces systèmes). A l'aide d'un système particulier, nous étudions ensuite la différence entre notre CNS et les diverses conditions d'hyperbolicité de la littérature, puis nous prouvons que la solution d'un système hyperbolique n'est pas toujours stable par rapport au flux. La quatrième partie rassemble quelques autres travaux. Le premier concerne la densité dans $W^{1,p}(\Omega)$ des fonctions régulières satisfaisant une condition de Neumann. Le second est l'étude d'une discrétisation EF mixtes---VF pour un écoulement diphasique à travers un milieu poreux. Le troisième et dernier est l'étude des mesures sur $]0,T[\times \Omega$ ne chargeant pas le boréliens de capacité parabolique nulle et l'application de cette étude à la résolution d'une équation parabolique non-linéaire avec second membre mesure.
19

Localisation et décroissance des champs de la mécanique des fluides et des plasmas. Espaces fonctionnels associés à une famille de champs de vecteurs.

Vigneron, Francois 22 November 2006 (has links) (PDF)
La première partie est consacrée à l'étude du comportement asymptotique des solutions de Navier-Stokes incompressible à l'infini de la variable d'espace. On obtient des résultats optimaux de propagation de la décroissance en terme d'espaces à poids, ainsi qu'un developpement asymptotique de la vitesse et de la pression analogue à la loi de Bernoulli. La théorie s'étend à un modèle de la MHD.<br />La seconde partie est consacrée à l'étude des espaces de Sobolev associés à une famille de champs de vecteurs, de type sous-elliptique. Les principaux résultats sont la description des régularités fractionnaires avec la distance de Carnot, la démonstration d'inégalités de Hardy et, dans le cas du groupe de Heisenberg, la théorie des traces sur une hypersurface caractéristique générique.
20

Sur quelques modèles hétérogènes en mécanique des fluides / On some heterogeneous models in fluid mechanics

Al Taki, Bilal 19 December 2016 (has links)
Cette thèse est consacrée à l'analyse mathématique de quelques modèles hétérogènes intervenants en mécanique des fluides. En particulier, elle est consacré a l'étude théorique des systèmes d'équations aux derivées partielles décrivants les trois modèles principaux que nous voulons présenter dans la suite. Le premier modèle étudié dans cette thèse est consacré à l'étude de l'écoulement d'un fluide visqueux newtonien et incompressible dans un bassin avec bathymétrie qui dégenère proche du bord. Le modèle mathématique étudié provient alors des équations de Navier-Stokes incompressible. On cherche à montrer que le problème de Cauchy correspondant est bien posé, au sens qu'on peut garantir l'existence globale et l'unicité de solutions faibles. Nous discuterons aussi la régularité de la solution faible. Finalement,nous établissons la convergence de la solution du modèle visqueux vers celle du modèle non visqueux quand le coefficient de viscosité tend vers zéro.La deuxième partie est dédiée à l'étude d'un modèle issu du système de Navier-Stokes dispersif ( il contient une correction dispersive) qui est lui meme obtenu à partir de la théorie cinétique des gaz. Notre modèle mathématique est dérivé a partir de ce dernier en supposant que le nombre de Mach est très faible. Le modèle obtenu est nommé effet fantôme (ou ghost effect an anglais), puisqu'il ne peut pas être obtenu à partir du modèle de Navier-Stokes compressible classique. L'objectif dans ce cadre sera d'étendre un résultat concernant l'existence locale d'une solution forte vers l'existence globale d'une solution faible. L'ingrédient principal dans notre analyse est une nouvelle inégalité fonctionnelle de type Log-Sobolev.La troisième partie de ce document est une contribution à une thématique de recherche se proposant d'analyser la compréhension des phénomènes rencontrés en géophysique qui font intervenir des milieux granulaires. Le modèle mathématique choisi est de type Bingham incompressible dont on fait dépendre le seuil de plasticité et le coe fficient de viscosité de la pression. On montre un résultat d'existence globale d'une solution faible du problème de Cauchy associé. / This thesis is devoted to the mathematical analysis of heterogeneous models raised by fluid mechanics. In particular, it is devoted to the theoretical study of partial differential equations used to describe the three main models that we present below.Initially, we are interested to study the motion of a compressible newtonienfluids in a basin with degenerate topography. The mathematical model studied derives from incompressible Navier-Stokes equations. We are interested to prove that the Cauchy problem associated is well posed. Well-posedness means that there exists a solution, that it is unique. In the meantime, we prove that the solution of the viscous model converges to the one of the inviscid limit model when the viscosity coe cient tends to zero.The second part in my thesis is devoted to study a model that arises from dispersive Navier-Stokes equations (that includes dispersive corrections to the classical compressible Navier-Stokes equations). Our model is derived from the last model assuming that the Mach number is very low. The obtained system is a Ghost eect system, which is so named because it can be derived from Kinetic theory. The main goal of this part is to extend a result concerning the local existence of strong solution to a global-in time existence of weak solutions. The main ingredient in this work is a new functional inequality of Log-Sobolev type.The last part of my thesis is a part of a research theme intends to analyze the understanding of phenomena encountered in geophysics which involves granular media. The mathematical model is of Bingham incompressible type with viscosity and placticity depending on the pressure. We provide a global existence of weak solutions of the Cauchy problem associated.

Page generated in 0.0385 seconds