• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 131
  • 83
  • 42
  • 16
  • 15
  • 11
  • 9
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 389
  • 72
  • 54
  • 48
  • 42
  • 33
  • 33
  • 29
  • 27
  • 25
  • 22
  • 22
  • 21
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

LOCALIZED ANTIBIOTIC DELIVERY VIA VALINE BASED POLY(ESTER UREA)

Nikam, Shantanu P. 11 June 2018 (has links)
No description available.
312

Integrated analysis of liquid composite molding (LCM) processes

Xu, Liqun 12 October 2004 (has links)
No description available.
313

Polymer Stabilized Magnetite Nanoparticles and Poly(propylene oxide) Modified Styrene-Dimethacrylate Networks

Harris, Linda Ann 15 May 2002 (has links)
Magnetic nanoparticles that display high saturation magnetization and high magnetic susceptibility are of great interest for medical applications. Nanomagnetite is particularly desirable because it displays strong ferrimagnetic behavior, and is less sensitive to oxidation than magnetic transition metals such as cobalt, iron, and nickel. Magnetite nanoparticles can be prepared by co-precipitating iron (II) and iron (III) chloride salts in the presence of ammonium hydroxide at pH 9-10. One goal of this work has been to develop a generalized methodology for stabilizing nanomagnetite dispersions using well-defined, non-toxic, block copolymers, so that the resultant magnetite-polymer complexes can be used in a range of biomedical materials. Hydrophilic triblock copolymers with controlled concentrations of pendent carboxylic acids were prepared. The triblock copolymers contain carboxylic acids in the central urethane segments and controlled molecular weight poly(ethylene oxide) tail blocks. They were utilized to prepare hydrophilic-coated iron oxide nanoparticles with biocompatible materials for utility in magnetic field guidable drug delivery vehicles. The triblock copolymers synthesized contain 3, 5, or 10 carboxylic acids in the central segments with Mn values of 2000, 5000 or 15000 g/mol poly(ethylene oxide) tail blocks. A method was developed for preparing ~10 nm diameter magnetite surfaces stabilized with the triblock polymers. The carboxylic acid is proposed to covalently bind to the surface of the magnetite and form stable dispersions at neutral pH. The polymer-nanomagnetite conjugates described in this thesis have a maximum of 35 wt. % magnetite and the nano-magnetite particles have an excellent saturation magnetization of ~66 - 78 emu/g Fe3O4. Powder X-ray diffraction (XRD) confirms the magnetite crystal structure, which appears to be approximately single crystalline structures via electron diffraction spectroscopy analysis (EDS). These materials form stable magnetic dispersions in both water and organic solvents. / Ph. D.
314

Effects of the nitric oxide donor, DEA/NO on cortical spreading depression.

Wang, M., Obrenovitch, Tihomir P., Urenjak, Jutta A. January 2003 (has links)
No / Cortical spreading depression (CSD) is a transient disruption of local ionic homeostasis that may promote migraine attacks and the progression of stroke lesions. We reported previously that the local inhibition of nitric oxide (NO) synthesis with N¿-nitro-L-arginine methyl ester (L-NAME) delayed markedly the initiation of the recovery of ionic homeostasis from CSD. Here we describe a novel method for selective, controlled generation of exogenous NO in a functioning brain region. It is based on microdialysis perfusion of the NO donor, 2-(N,N-diethylamino)-diazenolate-2-oxide (DEA/NO). As DEA/NO does not generate NO at alkaline pH, and as the brain has a strong acid-base buffering capacity, DEA/NO was perfused in a medium adjusted at alkaline (but unbuffered) pH. Without DEA/NO, such a microdialysis perfusion medium did not alter CSD. DEA/NO (1, 10 and 100 ¿M) had little effect on CSD by itself, but it reversed in a concentration-dependent manner the effects of NOS inhibition by 1 mM L-NAME. These data demonstrate that increased formation of endogenous NO associated with CSD is critical for subsequent, rapid recovery of cellular ionic homeostasis. In this case, the molecular targets for NO may be located either on brain cells to suppress mechanisms directly involved in CSD genesis, or on local blood vessels to couple flow to the increased energy demand associated with CSD
315

[pt] AVALIAÇÃO DO CICLO DE VIDA SIMPLIFICADA PARA TRÊS TECNOLOGIAS DO CICLO DIESEL / [en] SIMPLIFIED LIFE CYCLE ASSESSMENT FOR THREE DIESEL CYCLE TECHNOLOGIES

LUCAS PEREIRA CAETANO 27 August 2024 (has links)
[pt] A análise do ciclo de vida (ACV) é uma ferramenta útil para dimensionar e expor os crescentes impactos ambientais, econômicos e sociais causados por produtos e processos industriais, principalmente quando estes possuem uma cadeia de suprimentos complexa, como é o caso dos principais combustíveis do ciclo diesel (diesel A, biodiesel éster e diesel verde). Utilizando diferentes cenários possíveis para a matriz de combustíveis diesel no Brasil como contexto e a ACV simplificada a partir da estrutura metodológica descrita pela ABNT como ferramenta, esse estudo buscará responder qual o combustível do motor diesel que, ao longo do seu ciclo de vida, gera menos emissões de CO2 na atmosfera, utilizando esse indicador como forma de quantificar os impactos ambientais desses produtos. Uma das principais conclusões é que as duas alternativas renováveis reduzem significativamente as emissões de CO2, quando comparadas com o diesel de origem fóssil. Isso acontece porque enquanto o combustível fóssil gera emissões de CO2 na sua etapa de matéria-prima (petróleo), os biocombustíveis capturam CO2 na etapa equivalente (plantas). Outra conclusão é em relação ao maior impacto de algumas etapas (como consumo e matéria prima) em relação a outras (como produção e transporte). Finalmente, concluiu-se também que a possibilidade de se utilizar o diesel verde sem a necessidade de mistura com o diesel de origem fóssil nos motores à combustão é uma vantagem ambiental desse biocombustível em relação ao biodiesel éster. / [en] LCA (Life Cycle Assessment) is a useful tool for assessing and exposing the growing environmental, economic, and social impacts caused by products and industrial processes, especially when they have a complex supply chain, as is the case with the main fuels of the diesel cycle (diesel A, FAME biodiesel, and HVO). Using different possible scenarios for the diesel fuel matrix in Brazil as context and a simplified LCA methodological structure described by ABNT as a tool, this study aims to answer which diesel engine fuel, over its life cycle, generates fewer CO2 emissions into the atmosphere, using this indicator to quantify the environmental impacts of these products. One of the main conclusions is that both renewable alternatives significantly reduce CO2 emissions when compared to fossil-origin diesel. This is because while fossil fuel generates CO2 emissions in its raw material stage (petroleum), biofuels capture CO2 in the equivalent stage (plants). Another conclusion relates to the greater impact of some stages (such as consumption and raw material) compared to others (such as production and transportation). Finally, it was also concluded that the possibility of using HVO without the need for blending with fossil-origin diesel in combustion engines is an environmental advantage of this biofuel over FAME biodiesel.
316

Att marknadsföra översatt litteratur : En komparativ analys av den tyska utgivningen av Sara Stridsbergoch den svenska utgivningen av Silke Scheuermann

Rüegg, Jana January 2016 (has links)
Adapting literature from a cultural context to another is the main theme of my master's thesis. The aim is to determine how publishing houses adapt a book from a different cultural context to their own, and if there are any specific marketing choices being made during the publishing process.The thesis highlights two authors, Sara Stridsberg from Sweden and Silke Scheuermann from Germany. Interviews have been made with the publishers, editors and translators of the translated novels. One of the main themes is to be able to showcase differences between the Swedish and the German publishing business and their particular cultural characteristics in working with translated novels. I have found that the brand of a publishing house is important when making publishing decisions. For larger publishing houses, the economical capital is of importance, and for smaller publishing houses the cultural capital tends to be of a higher value. The book market is becoming more defined by the economy of attention and economization of culture, which is showing in all different aspects of the business; publishing houses, newspapers and agents are all adapting towards a more economic focus.
317

Application de la LIF de molécules aromatiques au dosage de carburants fossiles et biocarburants / Application of the aromatic-based laser-induced fluorescence diagnostic to the quantitative chemical probe of Fossil fuels and Biofuels

Ledier, Constantin 13 December 2011 (has links)
Les industries automobile et aéronautique sont confrontées dans le futur proche à une raréfaction des carburants fossiles, ainsi qu’au problème de pollution de l’environnement émis par les systèmes propulsifs. Pour s’affranchir de ces problèmes, l’utilisation de carburants alternatifs censés apporter rendement et préservation de l’environnement, s’est considérablement développée ces derniers temps. Cependant, leurs impacts sur la pollution, consommation et rendement de combustion ne sont toujours pas clairement établis. En particulier, il est nécessaire de quantifier leurs effets sur les phénomènes physiques clés à la base des processus que sont l’évaporation du carburant liquide et le mélange carburant vapeur/air. L’analyse expérimentale de ces processus physiques nécessite alors l’emploi de diagnostics lasers non-intrusifs et quantitatifs, permettant de mesurer des grandeurs physiques comme les distributions spatiales instantanées de température et de concentration du carburant en phase vapeur. Parmi les techniques optiques les plus attrayantes, l’imagerie de fluorescence induite par laser (PLIF) offre de nombreux avantages. L’objectif de la thèse a été, dans un premier temps, de caractériser les propriétés spectroscopiques de quatre carburants multi-composants, le kérosène (Jet A1), le Biomass-to-Liquid (BtL), le Diesel et l’Ester Méthylique Huile Végétale (EMHV) qui, mis à part le premier, possèdent des propriétés spectroscopiques encore peu connues. L’exploitation de leurs propriétés de fluorescence a ensuite permis d’évaluer leurs capacités à fournir des signaux autorisant la mesure de la température et de la concentration du carburant en phase vapeur. Dans un second temps, un étude exhaustive des propriétés de fluorescence de plusieurs cétones (3-pentanone, benzophénone) et aromatiques (fluoranthène, acénaphtène, naphtalène, 1,2,4-triméthylbenzène…) en fonction de la température et du quenching de l’oxygène moléculaire, a été réalisée à pression atmosphérique pour identifier les traceurs fluorescents potentiellement adaptés au dosage optique des quatre carburants. Les données photophysiques collectées ont ensuite été utilisées pour parfaire l’établissement des couples carburants/traceurs fluorescents ainsi que les stratégies de mesures de température et de concentration de carburant associées. L’exploitation des données acquises lors de différentes campagnes de mesures a ainsi mis en évidence la possibilité de détecter simultanément la fluorescence de plusieurs molécules aromatiques (mono-, di- et/ou tri-aromatique) naturellement présentes ou ajoutées artificiellement dans les carburants. Le cas du Diesel a nécessité le développement d’un carburant modèle pour permettre une étude de son évaporation. L’application de cette nouvelle approche PLIF a été validée sur un injecteur hélicoptère LPP de nouvelle génération fonctionnant avec trois carburants spécifiques que sont le Jet A1, le BtL et un mélange Jet A1/BtL / The automotive and aviation industries are presently confronted with the twin crises of fossil fuel depletion and environmental degradation. Research for alternative fuels, which promise a harmonious correlation with sustainable development, energy conservation, efficiency and environmental preservation, has become highly pronounced in the present context. However, their influence on pollution, consumption and combustion yield are not clearly defined yet. In particular, their effects on key physical processes that initiate these phenomena like fuel evaporation and mixing processes between fuel vapour and air have to be quantified. Experimental analysis of these processes requires the use of non-intrusive and quantitative laser diagnostics, allowing the measurement of key physical parameters like instantaneous spatial distribution of temperature and fuel vapour concentration. Among the optical techniques available thus far, planar laser-induced fluorescence (PLIF) offers many advantages for the study such processes in combustors. The objective of this thesis is then to propose and to develop innovative PLIF strategies to measure fuel distribution and mixture formation when fossil fuels and biofuels are used in aeronautical and automotive combustion chambers. In particular, the fluorescence of various fossil fuels like kerosene (Jet A1) and Diesel, the biodiesel fuel containing Esters (FAME) and the Biomass-To-Liquid fuel (BtL) are investigated. The exploitation of their fluorescence was then used to analyse their capacity to generate signals providing from fluorescent tracers (either present naturally in the fuel or chemically added) that could be used as probe molecules for the measurement of temperature and fuel vapour concentration. To select theses tracers, an exhaustive study of the fluorescence properties of various ketones (3-pentanone, benzophenone) and aromatic molecules (fluoranthene, acenapthene, naphthalene, 1,2,4-trimethylbenzene) with temperature and quenching with molecular oxygen was performed at atmospheric pressure. The photophysical data collected during these experiments have been then used to associate the various fuels with specific fluorescent tracers and to elaborate the strategies of measurement of temperature and fuel concentration associated. Exploitation of the data collected during this thesis thus highlighted the possibility to detect simultaneously the fluorescence of various aromatic molecules (mono-, di-, tri-aromatics) naturally present or artificially seeded in fuels. The specific case of Diesel required the development of a surrogate fuel which allows the study of its evaporation process. An application of these innovative strategies of PLIF measurements has been finally performed on a new generation LPP helicopter injection system running at atmospheric pressure with the following fuels: Jet A1, BtL and a mixture of Jet A1 and BtL. Results obtained allowed the validation of the PLIF strategies defined in this thesis.
318

Fonctionnalisation de liaisons C(sp3)-H non activées catalysées par le palladium / Palladium catalyzed functionalization of nonactivated C(sp3)-H bonds

Renaudat, Alice 04 October 2010 (has links)
La fonctionnalisation de liaisons C-H réputées peu réactives ouvre de nouvelles perspectives en synthèse organique. Une stratégie efficace consiste en l’utilisation d’un métal de transition. Les travaux de thèse présentés dans ce mémoire s’inscrivent dans ce contexte. Dans un premier temps, la réaction étudiée, catalysée par le palladium, vise à étendre une méthodologie mise au point au laboratoire, permettant la synthèse de benzocyclobutènes par activation intramoléculaire de liaisons C(sp3)-H de groupements méthyles benzyliques, à des composés non aromatiques. Plusieurs substrats ont été synthétisés pour être ensuite placés dans les conditions de la réaction d’activation C(sp3)-H, dans le but d’induire la formation du cyclobutène ou du cyclobutane désiré. Le processus n’est pas sélectif et de nombreux produits secondaires sont obtenus par des réactions péricyliques ou par des réarrangements suite à l’ouverture du palladacycle intermédiaire. Dans un deuxième temps, nos travaux ont permis de mettre à jour une nouvelle réaction de fonctionnalisation C(sp3)-H, catalysée par le palladium permettant l’arylation d’esters en position β par un mécanisme original. Les investigations portent sur l’optimisation complète de cette réaction, la compréhension du mécanisme et le développement d’une version énantiosélective prometteuse. Le mécanisme de cette réaction, confirmé par des calculs DFT réalisés en collaboration avec C. Kefalidis et E. Clot, se rapproche formellement de celui observé en α-arylation, puisqu’il repose sur la formation d’un énolate de palladium. La stratégie mise au point permet le couplage, dans des conditions douces, d’esters simples et commerciaux avec des halogénures d’aryles contenant un groupement électronégatif en position ortho, donnant ainsi accès à des intermédiaires de synthèse intéressants tels qu’un analogue de la phénylalanine ou des composés fluorés. / The direct functionalization of C-H bonds represents an atom- and step-economical alternative to more traditional synthetic methods based on functional group transformation, which often require multi-step sequences. In particular, transition-metal catalysis has recently emerged as a powerful tool to functionalize otherwise unreactive C-H bonds. In this context, we first investigated the extension of a methodology that has been developed in our laboratory for the synthesis of benzocyclobutenes via C(sp3)-H activation, to non aromatic compounds. Substrates have been synthesized in order to be evaluated in the reaction to form cyclobutenes or cyclobutanes. The process was not selective and several by-products were formed via pericylic reactions or rearrangements of the intermediate palladacycle. Our research has also focused on a conceptually new palladium catalyzed β-C-H arylation of carboxylic esters method. The investigations consisted of a complete optimization of the reaction conditions, an evaluation of the scope and elucidation of the mechanism. It was found that this type of [bêta]-arylation is mechanistically related to α-arylation because it involves the formation of a palladium-enolate. Computational studies (DFT calculations, C. Kefalidis et E. Clot) confirmed the proposed mechanism. Our strategy allowed a mild and efficient intermolecular arylation reaction from aryl halides bearing an ortho electronegative group, giving rise to a range of synthetically useful functionalized carboxylic esters such as phenylalanine analogues and new fluorinated building blocks.
319

Comparação da análise de ácidos graxos TRANS em biscoito por cromatografia gasosa acoplada a espectrometria de massas (cg-em) e por espectroscopia no infravermelho com transformada de fourier e reflectância total atenuada (FT-IR-ATR)

Mayer, Júlia Gonçalves 05 March 2018 (has links)
Submitted by Biblioteca da Faculdade de Farmácia (bff@ndc.uff.br) on 2018-03-05T14:14:06Z No. of bitstreams: 1 JÚLIA GONÇALVES MAYER.pdf: 2883327 bytes, checksum: 6ae955490e1664e27d2c9669ad07a02c (MD5) / Made available in DSpace on 2018-03-05T14:14:06Z (GMT). No. of bitstreams: 1 JÚLIA GONÇALVES MAYER.pdf: 2883327 bytes, checksum: 6ae955490e1664e27d2c9669ad07a02c (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Os métodos analíticos utilizados para medir o percentual de ácido graxo trans (AGT) em alimentos envolvem cromatografia em fase gasosa com detecção de ionização de chama (CG-DIC), espectrometria de massas (CG-EM) e espectroscopia no infravermelho com transformada de Fourier e refletância total atenuada (FT-IR-ATR). O presente estudo teve como objetivo investigar a viabilidade e a aplicabilidade do uso das técnicas de FT-IR-ATR, sem extração, com extração prévia da gordura e após hidrólise e metilação dos ácidos graxos, para avaliar o conteúdo de AGT em biscoitos recheados e comparar os resultados obtidos com os encontrados para a determinação de ácido elaídico pela técnica de CG-EM. Foram escolhidas 9 marcas de biscoitos recheados sabor chocolate e 1 pacote de gordura vegetal hidrogenada, para ser usada como padrão secundário para análise de AGT por FT-IR-ATR. As amostras foram analisadas, inicialmente, quanto aos seus conteúdos de umidade e lipídeos totais. Para todas as amostras não foi observada concentração de umidade superior a 6,03 g/100 g. Os lipídeos totais variaram de 12,51±0,58 a 23,84±0,09 g/100 g. A presença de AGT foi identificada por FT-IR-ATR pela visualização da banda próxima a 966 cm−1 e confirmada com adição de padrão às amostras. Ao analisar as amostras de biscoito homogeneizadas e sem outro preparo, não foi viável a utilização do método de FT-IR-ATR, visto que a absorção de radiação infravermelha de substâncias da amostra se sobrepõe à absorção na região das ligações duplas trans, o que demonstra que a matriz do alimento pode influenciar na análise. Quanto a presença dos AGT, ácido elaídico (C18:1, n-9 trans) foi identificado e confirmado em todas as amostras através de CG-EM. Ao comparar a quantificação pelos métodos CG-EM e FT-IR-ATR em amostras de extratos e na forma de ácidos graxos metilados (FAME), foram observadas concentrações baixas de ácido elaídico/ácidos graxos trans (de 0,03±0,01 a 0,86±0,01 g/100 g de biscoito) obtidas pelos diferentes métodos. Não foram encontradas diferenças significativas entre as concentrações de AGT determinadas pelos três métodos testados para oito das nove amostras analisadas. O presente trabalho mostrou que a técnica de FT-IR-ATR, analisando o extrato lipídico e as amostras em forma de FAME foi adequado para estimar os teores de AGT em biscoito recheado de chocolate, visto que proporciona uma análise mais rápida, com um menor número de etapas e menor consumo de reagentes em relação às análises por CG-EM / The analytical methods used to measure the percentage of trans fatty acids in foods involve gas chromatography with flame ionization detection (GC-FID), mass spectrometry (GC-MS) and attenuated total reflectance fourier transform infrared spectroscopy (ATR-FT-IR). The aim of the present study was to investigate the feasibility and applicability of ATR-FT-IR techniques, without extraction, with previous extraction of fat and after hydrolysis and methylation of fatty acids to evaluate the content of TFA in filled biscuits, and compare the results obtained with those found for the determination of elaidic acid by the CG-MS technique. Were chosen 9 marks of chocolate filled biscuit and 1 packet of hydrogenated vegetable fat to be used as a secondary standard for AGT analysis by ATR-FT-IR. The samples were initially analyzed for their moisture contents and total lipids. For all samples, no moisture content higher than 6.03 g/100 g. Total lipids ranged from 12.51 ± 0.58 to 23.84 ± 0.09 g/100g. The presence of TFA was identified by ATR-FT-IR through the visualization of the band near 966 cm−1 and confirmed with addition of standard to the samples. When analyzing the homogenized cookie samples and without further preparation, the use of the ATR-FT-IR method was not feasible because the absorption of infrared radiation from sample substances overlaps the absorption in the region of the trans double bonds, which demonstrates that the food matrix may influence the analysis. Regarding the presence of TFA, elaidic acid (C18: 1, n-9 trans) was identified and confirmed in all samples by GC-MS. When comparing quantification by GC-MS and ATR-FT-IR in samples of extracts and in the form of fatty acids methly esters (FAME), low concentrations of elaidic acid / trans fatty acids were observed (0.03 ± 0.01 to 0.86 ± 0.01 g / 100 g of biscuit) obtained by the different methods. No significant differences were found between the concentrations of TFA determined by the three methods tested for eight of the nine samples analyzed. The present study showed that the ATR-FT-IR technique, analyzing the lipid extract and the samples in the form of FAME, was adequate to estimate the TFA contents in chocolate filled biscuit, because it provides a faster analysis with a smaller number of steps and lower toxic chemicals in relation to GC-MS analyzes
320

Studies on the Effects of Carbon Nanotubes on Mechanical Properties of Bisphenol E Cyanate Ester/Epoxy Based Resin Systems and CFRP Composites

Subba Rao, P January 2016 (has links) (PDF)
The search and research for high performance materials for aerospace applications is a continuous evolving process. Among several fibre reinforced polymers, carbon fibre reinforced polymer (CFRP) is well known for its high specific stiffness and strength. Though high modulus and high strength carbon fibre with structural resin systems have currently been established reasonably well and are catering to a wide variety of aerospace structural applications, these properties are generally directional with very high properties along the fibre direction dominated by fibres and low in other directions depending mainly on the resin properties. Thus, there is a need to enhance the mechanical properties of the resin systems for better load transfer and to improve the resin dominated properties like shear strength and properties in directions other than along the fibre. Use of carbon nanotubes (CNTs) with their extraordinary specific stiffness and strength apparently has great potential as an additional reinforcement in resin for development of CNT-CFRP nanocomposites. However, there are several issues that need to be addressed such as compatibility of a particular resin with CNTs, amount of CNTs that can be added, uniform dispersion of these nanotubes, surface treatment and curing process etc., for optimal enhancement of the required properties. Epoxy and cyanate ester resin systems are finding applications in aerospace structures owing to their desirable set of properties. Of these, bisphenol E cyanate ester (BECy) resin of low viscosity with its low moisture absorption, better dimensional stability, and superior mechanical properties can establish itself as potential structural resin system for these applications. BECy in particular has the advantage of being more suitable for out of autoclave manufacturing process such as Vacuum Assisted Resin Transfer Molding (VARTM). Literature shows that, significant work has been carried out by various researchers reporting improvements using CNTs in epoxy resins along with various associated problems. However, studies on effects of addition of CNTs /fCNTs to BECy-CFRP composite system are not well reported. Thus, objective of this work is to study the effects of adding pristine and functionalized CNTs to low viscosity cyanate ester as well as epoxy resin systems. Further, to study the effects on mechanical properties of nanocomposites with carbon fibre reinforcement in these CNT dispersed resin system through a combination of experimental and computational approaches. Multiwall carbon nanotubes (CNTs) without and with different chemical functionalization are chosen to be added to epoxy and BECy resins. The quantity of these CNTs /fCNTs is varied in steps up to 1% by weight. Different methods of mixing such as shear mixing, ultrasonication and combined mixing cycles are implemented to achieve uniform dispersion of these nanotubes in the resin system. Standard test samples are prepared from these mixtures of nanotubes in resin systems to study the variation in mechanical properties. Further, these nanotubes added resin systems are used in fabricating CFRP laminates by VARTM process. Both uni-directional and bi-directional laminates are made with the above modified resin systems with CNTs/fCNTs. Series of experimental investigations are carried out to study various aspects involved in making of nanocomposites and the effects of the same on different mechanical properties of the nanocomposites. Standard specimens are cut out from these laminates to evaluate them for tension, compression, flexure, shear and interlaminar shear strength. The main parameters investigated are the effects of varied quantity of CNTs and functionalized CNTs in the resin mix and in CFRP nanocomposites, effect of different mixing / curing cycles etc. on the mechanical properties of the nanocomposites. The investigations have yielded very interesting and encouraging results to arrive at optimum quantity of CNTs to be added and also the effects of functionalization to achieve enhanced mechanical properties. In addition, correlation of mechanical property enhancements with failure mechanisms, dispersion behaviour and participation of CNTs / fCNTs in load transfer are explained with the aid of scanning electron microscope images. Computational studies are carried out through atomistic models using computational tools to estimate the mechanical properties, understand and validate the effects of various parameters studied through series of experimental investigations. An atomistic model is built taking into consideration the nanoscale effects of the single wall carbon nanotubes (SWCNTs) and its reinforcement in the BECy resin. Using these atomistic models, mechanical properties of individual SWCNT, BECy polymer resin, polymer with different quantities of added SWCNT, and the CFRP laminates with improved resin are computed. As the interaction of CNT with the polymer is only at the outermost layer and the mechanical properties of either MWCNTs or SWCNTs are too high compared to resin systems, it is not expected to have any difference in the final outcome whether it is MWCNT or SWCNT. Hence, only SWCNTs are considered in computational studies as it helps in reducing the complexity of atomistic models and computational time when coupled with polymer resin. This is valid even for functionalized CNT as functionalization is also a surface phenomenon. To start with, the mechanical behaviour of SWCNT is studied using molecular mechanics approach. Molecular mechanics based finite element analysis is adopted to evaluate the mechanical properties of armchair, zigzag and chiral SWCNT of different diameters. Three different types of atomic bonds, i.e., carbon-carbon covalent bond and two types of carbon-carbon van der Waals bonds are considered in the carbon nanotube system. The stiffness values of these bonds are calculated using the molecular potentials, namely Morse potential function and Lennard-Jones interaction potential function respectively and these stiffness values are assigned to spring elements in the finite element model of the SWCNT. The importance of inclusion of Lennard-Jones interactions is highlighted in this study. Effect of these non-bonded interactions is studied by making the numerical stiffness of these bonds to negligible levels and found that they significantly reduce the mechanical properties. The effect of non-bonded Lennard-Jones atomic interactions (van der Waal interactions) considered here is a novelty in this work which has not been considered in previous research works. The finite element model of the SWCNT is constructed, appropriate boundary conditions are applied and the behaviour of mechanical properties of SWCNT is studied. It is found that the longitudinal tensile strength and maximum tensile strain of armchair SWCNTs is greater than that of zigzag and chiral SWCNTs and its value increases with increasing SWCNT diameter. The estimated values of the mechanical properties obtained agree well with the published literature data determined using other techniques. As the systems become more complicated with the inclusion of polymers, molecular dynamics (MD) method using well established codes is more adoptable to study the effect of SWCNTs on BECy. Hence, it is used to model and solve the nanosystems to generate their stress-strain behavior. Further, MD approach followed here can effectively include interfacial interaction between polymer and the CNTs as well. Mechanical properties of SWCNT functionalized SWCNT (fSWCNT), pure BECy resin and that of the CNT nanocomposite consisting of specific quantity of SWCNT / fSWCNT in BECy are estimated using MD method. Atomistic models of SWCNT, fSWCNT, BECy, BECy with specific quantities of CNT / fSWCNT are constructed. A monomer of BECy is modelled and stabilized before its usage as a building block for modelling of BECy resin and to compute its properties. A cell of specific size containing monomers of BECy and another cell of same size with SWCNT at centre surrounded by BECy monomer molecules are built. The appropriate quantity of SWCNT in resin is modelled. This model captures the required density of the composite resin. The models so constructed are subjected to geometric optimization satisfying the convergence criteria and equilibrated through molecular dynamics to obtain a stable structure. The minimized structure is subjected to small strain in different directions to calculate the Young’s modulus and other moduli of the CNT-BECy resin composite. The process is repeated for different quantities of SWCNT in BECy resin to obtain their moduli. Further, tensile and shear strengths of CNT-BECy are obtained by subjecting the equilibrated structure to a series of applied strains from 0 to 10% in steps of 1%. The stress values corresponding to each strain are obtained and a stress – strain curve is plotted. From the stress- strain curve, the strengths of the CNT -BECy which is the stress corresponding to the modulus after which the material starts to soften are determined. Effects of functionalization on mechanical properties of SWCNT are observed. Further, effects of functionalization of SWCNT are studied with a specific quantity of fSWCNT on different moduli and strengths of BECy are investigated. The properties of enhanced CNT–BECy nanocomposite resin with different quantities of added CNT obtained through MD are used to estimate the mechanical properties of the CNT-BECy-CFRP nanocomposite using micromechanics model. Further, validation with experimental results is attempted comparing the trends in enhancement of properties of the CNT-BECy resin and CNT-BECy-CFRP nanocomposite system. The outcome of this research work has been significantly positive in terms of i) Development of an appropriate process establishing different parameters for dispersing CNTs in the resin system, mixing, curing cycle for making of nanocomposites demonstrating significant and consistent enhancement of mechanical properties of BECy based resin system and CFRP nanocomposites using optimum quantity of CNTs /fCNTs through a series of well planned and executed experimental investigations. Evaluation of mechanical properties for each of the cases has been carried out experimentally. ii) Establishing a computational methodology involving intricate atomistic modelling and molecular dynamics of nanosystems for estimation of mechanical properties of BECy polymer resin and to study the effects by addition of SWCNT / functionalized SWCNT on the properties. Results obtained through series of experimental investigations have been validated through this computational study. This could be an important step towards realising the potential of this resin system for high performance aerospace applications. Thus, in brief, detailed experimental work combined with computational studies performed as presented in this thesis resulted in achieving structurally efficient cyanate ester based nanocomposites which is unique and not reported in open literature.

Page generated in 0.0248 seconds